11 |
Fuel pump motor-drive systems for more electric aircraftSkawinski, Grzegorz January 2010 (has links)
The fuel systems fitted to the current generation of civil transport aircraft are rather complicated, due to the presence of multiple tanks, pumps, valves and complex pipeline systems. During fuel transfer between the tanks, when controlling the aircraft centre of gravity or engine feed and refuel operations, a number of pumps and valves are involved resulting in complex pressure and flow interactions. In order to minimise the pressure surges during sudden system changes and flow overshoot during fuel transfer and refuelling, different motor drive system control strategies have been investigated. It is proposed that the current control method of electrically driven centrifugal-type pumps could be replaced by improved open and closed loop strategies where the flow overshoot can be minimised and pressure surges reduced. Steady-state and dynamic models of an AC induction motor drive and typical aircraft fuel system pipework components have been developed. The validation of these models has been performed using experimental data obtained from a fuel test rig constructed at the University of Bath using water as the working fluid. The simulation results have been shown to agree well with those from experimentation. In addition, the induction motor has been modelled based on its physical properties using the Finite Element Method software MEGA. The investigated fuel system has been described in linear terms and its behaviour has been identified. It is shown that the system dynamic behaviour can be controlled/improved using well established closed loop proportional-integral control. An open loop technique of simultaneous pump and valve control has been proposed and validated using experimental results, resulting in a reduction of both the transient pressure surges and flow overshoot during sudden valve closures, showing significant performance improvements. Improved closed loop control strategies for the pump drive system have also been developed in simulation. These are based on adaptive proportional-integral-derivative and fuzzy logic control strategies.
|
12 |
Neuro/fuzzy speed control of induction motorsKhiyo, Sargon, University of Western Sydney, College of Science, Technology and Environment, School of Engineering and Industrial Design January 2002 (has links)
The thesis involved the design, implementation and testing of a second order neuro-fuzzy controller for the speed control of an AC induction motor, and a comparison of the neuro-fuzzy controller's performance with that of the PI algorithm. It was found experimentally, that the operating temperature of the AC induction motor affected the ability of the PI controller to maintain the set speed. The linear PI algorithm approximation was observed to produce transient speed responses when sudden changes in load occurred. The neuro-fuzzy design was found to be quite involved in the initial design stages. However, after the initial design, it was a simple matter of fine-tuning the algorithm, to optimize performance for any parameter variations of the motor due to temperature or due to sudden changes in load. The neuro-fuzzy algorithm can be developed utilising one of two methods. The first method utilises sensor-less control by detailed modeling of the induction motor; where all varying parameters of the motor are modeled mathematically. This involves using differential equations, and representing them in the form of system response block diagrams. When the overall plant transfer function is known, a fuzzy PI algorithm can be utilised to control the processes of the plant. The second method involves modeling the overall output response as a second order system. Raw data can then be generated in a text file format, providing control data according to the modeled second order system. Using the raw data, development software such as FuzzyTECH is utilised to perform supervised learning, so to produce the knowledge base for the overall system. This method was utilised in this thesis and compared to the conventional PI algorithm. The neuro-fuzzy algorithm implemented on a PLC was found to provide better performance than the PI algorithm implemented on the same PLC. It provided also in the added flexibility for further fine-tuning and avoided the need for rigorous mathematical manipulation of linear equations / Master of Engineering (Hons)
|
13 |
Model Following based £g-Synthesis Control of Induction MotorsChen, Chin-TA 30 June 2000 (has links)
In 1970¡¦s, by applying the field-oriented analysis method, the decoupling of motor speed (motor torque) and rotor flux is obtained. However, the performance is rather sensitive to the variation of motor parameters, especially the motor time constant, which varies with the temperature and saturation of magnetizing inductance. In this thesis, the model following based £g design for induction motor speed control is studied. Roughly speaking, the model following component provides a reference model with desired closed-loop performance and the £g component provides a systematic synthesis procedure so that, under practical uncertainty and load disturbance, the goal of asymptotic model following is achieved.
|
14 |
Simulation of an Electrical Machine : with superconducting magnetic bearingsBahceci, Mesut January 2015 (has links)
This master thesis investigates if there is an induction motor configuration that can be used with a flywheel energy storage system, that uses passve superconducting magnetic bearings (SMBs). The configurations should be able to be designed with induction motor building blocks that are commercially available. The method used to investigate this was simulations of different induction motor configurations in the finite element analysis software COMSOL. The simulations show that when larger air-gaps than that of a commercial IM unit are used it is possible to use SMBs in the IM. SMBs have the advantage of having zero resistance which makes it possible to store energy without resistance losses. However it was found that by using and IM with SMBs the generated power would be lower than that of a commercial unit.
|
15 |
Simulation and implementation of rotor flux control for an induction motorNovinschi, Anca January 1998 (has links)
No description available.
|
16 |
Finite element analysis of defective induction motorObiozor, Clarence Nwabunwanne January 1987 (has links)
No description available.
|
17 |
Thermal Overload Capabilities of an Electric Motor and Inverter Unit Through Modeling Validated by TestingLohse-Busch, Henning 30 June 2004 (has links)
VPT, Inc and the U.S. Dept. of Energy have sponsored the development of a high-speed 12 kW AC induction motor to drive automotive fuel cell air compressors. As one part of the development, thermal considerations and the cooling system are detailed in this paper.
The motor and inverter are packaged in one unit with the heat sink in the middle. The heat sink is a cold chamber designed to absorb the maximum heat losses from the unit. Empirical data was used to validate the model of the cold chamber and finalize the design.
A lumped capacitance finite-difference model was developed to simulate the entire motor inverter assembly. The individual components of the thermal model were tested and the data was used to calibrate and validate the thermal model.
Using the model, the thermal overload conditions were investigated. The limiting factors are the stator copper winding temperatures, which can damage the plastic slot liners. The double current test was simulated and operating temperatures of the system remained within thermal limits for 4 minutes.
As a conclusion from the model, the thermal resistances from the stator to the case or the heat sink need to be reduced. Integrating the motor casing and end plate to the heat sink, rather than building it in sections, would reduce the thermal contact resistances. Also the copper winding ends in the stator could be coated in material that would bond to the case, thus increasing heat transfer from the windings to the case. / Master of Science
|
18 |
PWM Techniques for Split-Phase Induction Motor DriveRakesh, P R January 2014 (has links) (PDF)
A split-phase induction motor (SPIM) is obtained by splitting each of the three-phase stator windings of an induction motor into two equal halves. This results in two sets of three-phase windings with a spatial angle difference of 30◦ (electrical) between them. The two sets of windings are fed from two different voltage-source inverters for speed control of the split-phase motor drive. Low dc bus voltage requirement and improved torque profile are some of the advantages of the split-phase motor, compared to the normal three-phase induction motor.
A pulse width modulation (PWM) technique is used to produce the gating signals for the power semiconductor devices in the two inverters. The PWM technique can either be a carrier comparison (CC) based method or a space-vector (SV) based scheme. The carrier based PWM methods employ six modulating waves, which are compared against a common triangular carrier to generate the gating pulses. In space-vector based PWM schemes, the voltage reference is specified in terms of a rotating reference vector. In each subcycle, a set of voltage vectors are applied for appropriate durations of time to produce an average vector equal to the reference vector. Unlike three-phase induction motor drives, where the voltage vectors are two dimensional, the voltage vectors in the case of SPIM drive are four dimensional. This thesis presents a detailed survey on carrier-comparison based and space-vector based PWM techniques for the SPIM drive.
In this thesis, sine-triangle PWM (STPWM) is analyzed from a space-vector perspective. The set of voltage vectors applied and the sequence of application of the voltage vectors in each half-carrier cycle are studied. The analysis shows that the set of voltage vectors and the switching sequence employed by STPWM are different from those used by the well known SVPWM tech-niques.
Two other CC based PWM techniques, based on common mode injection, are considered for the SPIM drive. In one method, the common-mode signal is derived from all the six modulating signals, and is the same for both the inverters. In the second method, the common-mode signal is different for the two inverters; each common-mode signal is derived from the three-phase sinusoidal signals of the respective inverter. The study shows that the latter method has the highest dc bus utilization and results in the lowest total harmonic distortion (THD) among the CC PWM techniques.
An experimental comparison of the three carrier-comparison techniques with three well known space-vector PWM techniques is presented. Total harmonic distortion (THD) of the line current is measured at different modulation indices for all six techniques. The experimental results are obtained from a 6kW, 200V, 50Hz split-phase induction motor drive, with constant V /F ratio. The PWM techniques are implemented using an ALTERA cyclone II field programmable gate array (FPGA) digital controller.
One of the SV techniques, termed here as 4-dimensional 24-sector (4D24SEC) PWM is found to be the best in terms of line current THD among all the CC and SV based PWM techniques considered. However, compared to any carrier-based technique, implementation of the 4D24SEC PWM based on the space vector approach is found to be resource intensive. Hence, an equivalent carrier-based implementation of 4D24SEC PWM is proposed in this thesis. The feasibility of the proposed approach is verified experimentally, and is found to be consuming much less logical resources than the space-vector implementation (i.e. 4102 logical elements for the CC approach as against 33,655 logical elements for the SV approach).
A new space-vector PWM technique is also proposed in the thesis. This technique utilizes a new set of voltage vectors and a new switching sequence, which are motivated by the analyses of the carrier-based methods, presented earlier. The proposed technique is implemented, and is compared with other space-vector and carrier-based methods at different modulation indices and switching frequencies. The proposed PWM technique is found to have the same dc-bus utilization as the existing 4-dimensional SV based PWM techniques. The performance of the proposed method is found to be not better than existing 4-dimensional SV PWM methods. The possibilities for new switching sequence is being explored here.
|
19 |
Multilevel Voltage Space Vector Generation For Induction Motor Drives Using Conventional Two-Level Inverters And H-Bridge CellsSiva Kumar, K 01 1900 (has links) (PDF)
Multilevel voltage source inverters have been receiving more and more attention from the industry and academia as a choice for high voltage and high power applications. The high voltage multilevel inverters can be constructed with existing low voltage semiconductor switches, which already have a mature technology for handling low voltages, thus improving the reliability of the overall inverter system. These multilevel inverters generate the output voltage in the form of multi-stepped waveform with smaller amplitude. This will result in less dv/dt at the motor inputs and electromagnetic interference (EMI) caused by switching is considerably less. Because of the multi-stepped waveform, the instantaneous error in the output voltage will be always less compared to the conventional two-level inverter output voltage. It will reduce the unwanted harmonic content in the output voltage, which will enable to switch the inverter at lower frequencies.
Many interesting multi level inverter topologies are proposed by various research groups across the world from industry and academic institutions. But apart from the conventional 3-level NPC and H-bridge topology, others are not yet highly preferred for general high power drives applications. In this respect, two different five-level inverter topologies and one three-level inverter topology for high power induction motor drive applications are proposed in this work.
Existing knowledge from published literature shows that, the three-level voltage space vector diagram can be generated for an open-end winding induction motor by feeding the motor phase windings with two two-level inverters from both sides. In such a configuration, each inverter is capable of assuming 8 switching states independent of the other. Therefore a total of 64 switching combinations are possible, whereas the conventional NPC inverter have 27 possible switching combinations. The main drawback for this configuration is that, it requires a harmonic filter or isolated voltage source to suppress the common mode currents through the motor phase winding. In general, the harmonic filters are not desirable because, it is expensive and bulky in nature. Some topologies have been presented, in the past, to suppress the common mode voltage on the motor phase windings when the both inverters are fed with a single voltage source. But these schemes under utilize the dc-link voltage or use the extra power circuit.
The scheme presented in chapter-3 eliminates the requirement of harmonic filter or isolated voltage source to block the common mode current in the motor phase windings. Both the two-level inverters, in this scheme, are fed with the same voltage source with a magnitude of Vdc/2 where Vdc is the voltage magnitude requires for the NPC three-level inverter. In this scheme, the identical voltage profile winding coils (pole pair winding coils), in the four pole induction motor, are disconnected electrically and reconnected in two star groups. The isolated neutrals, provided by the two star groups, will not allow the triplen currents to flow in the motor phase windings. To apply identical fundamental voltage on disconnected pole pair winding, decoupled space vector PWM is used. This PWM technique eliminates the first center band harmonics thereby it will allow the inverters to operate at lower switching frequency. This scheme doesn’t require any additional power circuit to block the triplen currents and also it will not underutilize the dc-bus voltage.
A five-level inverter topology for four pole induction motor is presented in chapter-3. In this topology, the disconnected pole pair winding coils are effectively utilized to generate a five-level voltage space vector diagram for a four pole induction motor. The disconnected pole pair winding coils are fed from both sides with conventional two-level inverters. Thereby the problems like capacitor voltage balancing issues are completely eliminated. Three isolated voltage sources, with a voltage magnitude of Vdc/4, are used to block the triplen current in the motor phase windings. This scheme is also capable of generating 61 space vector locations similar to conventional NPC five-level inverter. However, this scheme has 1000 switching combinations to realize 61 space vector locations whereas the NPC five-level inverter has 125 switching combinations. In case of any switch failure, using the switching state redundancy, the proposed topology can be operated as a three-level inverter in lower modulation index. But this topology requires six additional bi-directional switches with a maximum voltage blocking capacity of Vdc/8. However, it doesn’t require any complicated control algorithm to generate the gating pulses for bidirectional switches.
The above presented two schemes don’t require any special design modification for the induction machine. Although the schemes are presented for four pole induction motor, this technique can be easily extend to the induction motor with more than four poles and thereby the number of voltage levels on the phase winding can be further increased.
An alternate five-level inverter topology for an open-end winding induction motor is presented in chapter-4. This topology doesn’t require to disconnect the pole pair winding coils like in the previous propositions. The open-end winding induction motor is fed from one end with a two-level inverter in series with a capacitor fed H-bridge cell, while the other end is connected to a conventional two-level inverter to get a five voltage levels on the motor phase windings. This scheme is also capable of generating a voltage space vector diagram identical to that of a conventional five-level inverter. A total of 2744 switching combinations are possible to generate the 61 space vector locations. With such huge number switching state redundancies, it is possible to balance the H-bridge capacitor voltage for full modulation range. In addition to that, the proposed topology eliminates eighteen clamping diode having different voltage ratings compared to the NPC inverter. The proposed topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor fed H-bridge cell.
All the proposed topologies are experimentally verified on a 5 h.p. four pole induction motor using V/f control. The PWM signals for the inverters are generated using the TMS320F2812 and GAL22V10B/SPARTAN XC3S200 FPGA platforms. Though the proposed inverter topologies are suggested for high-voltage and high-power industrial IM drive applications, due to laboratory constraints the experimental results are taken on the 5h.p prototypes. But all the proposed schemes are general in nature and can be easily implemented for high-voltage high-power drive applications with appropriate device ratings.
|
20 |
Ψηφιακός έλεγχος ειδικού τύπου AC - κινητήραΓάτας, Κωνσταντίνος 04 September 2013 (has links)
Η παρούσα διπλωματική εργασία αποτελεί μία μελέτη στον
ψηφιακό έλεγχο ενός AC – Κινητήρα ειδικού τύπου. Ο τύπος
αυτός είναι μία ασύγχρονη – επαγωγική μηχανή ενώ ο έλεγχος
που πραγματοποιείται αποτελεί μέρος μίας ευρύτερης μορφής
ελέγχου αυτή του FOC (Προσανατολισμένος προς κάποιο πεδίο
έλεγχος). Ο χαρακτηρισμός του ως ψηφιακού οφείλεται στη
χρήση του ελεγκτή TMDSHVMTRPFCKIT ο οποίος καθιστά
εφικτή την οποιαδήποτε μορφή ελέγχου. Αξίζει να αναφερθεί
πως ο έλεγχος δεν κάνει χρήση αισθητήρων ενώ τα προς έλεγχο
μεγέθη δεν μετριούνται αλλά εκτιμώνται. Τέλος η όλη
διαδικασία ελέγχου δύναται να παρακολουθείται κατά τη
διάρκεια λειτουργίας του επαγωγικού κινητήρα κάνοντας χρήση
του γραφικού λογισμικού GUI, το οποίο απαιτεί και την
κατάλληλη επικοινωνία του ελεγκτή με τον προσωπικό Η/Υ. / This thesis is a study in
digital control of a special type of AC - Motor. This type
is an asynchronous - induction machine while the control
made a part of a broader form
control of FOC (Field Oriented toward some
control). The characterization as digital due to
using the TMDSHVMTRPFCKIT controller which makes
possible any form of control. It is worth mentioning
that the control does not use sensors to control while
sizes are not measured but estimated. Finally the whole
process control can be monitored during the
operation of the induction motor using
graphic software GUI, which requires the
proper communication controller with the P/C.
|
Page generated in 0.0978 seconds