241 |
Material Extrusion Additive Manufacturing of Binder-Coated Zirconia: Process, Comprehensive Characterizations, and ApplicationsHuang, Rui 05 May 2022 (has links)
No description available.
|
242 |
How driver behaviour and parking alignment affects inductive charging systems for electric vehiclesBirrell, Stewart A., Wilson, Daniel, Yang, Chek Pin, Dhadyalla, Gunwant, Jennings, Paul 18 November 2020 (has links)
Inductive charging, a form of wireless charging, uses an electromagnetic field to transfer energy between two objects. This emerging technology offers an alternative solution to users having to physically plug in their electric vehicle (EV) to charge. Whilst manufacturers claim inductive charging technology is market ready, the efficiency of transfer of electrical energy is highly reliant on the accurate alignment of the coils involved. Therefore understanding the issue of parking misalignment and driver behaviour is an important human factors question, and the focus of this paper. Two studies were conducted, one a retrospective analysis of 100 pre-parked vehicles, the second a dynamic study where 10 participants parked an EV aiming to align with a charging pad with no bay markings as guidance. Results from both studies suggest that drivers are more accurate at parking laterally than in the longitudinal direction, with a mean lateral distance from the centre of the bay being 12.12 and 9.57 cm (retrospective and dynamic studies respectively) compared to longitudinally 23.73 and 73.48 cm. With current inductive charging systems having typical tolerances of approximately ±10 cm from their centre point, this study has shown that only 5% of vehicles in both studies would be aligned sufficiently accurately to allow efficient transfer of electrical energy through induction.
|
243 |
Conception et l'amélioration de la structure de couplage magnétique pour des systèmes de transfert de puissance inductive localisées / Design and improvement of magnetic coupling structure for lumped inductive power transfer systemsAnele, Amos onyedikachi 28 June 2016 (has links)
Compte tenu du contexte économique du marché des hydrocarbures et les problématiques environnementales, le développement des véhicules électriques (VE) prend de l’ampleur car ils sont considérés comme plus écologiques. Aujourd’hui, les véhicules électriques sont considérés comme une solution favorable pour une énergie plus verte. L'électricité qu'ils consomment peut être générée à partir d'un large éventail de sources qui comprennent les combustibles fossiles, l'énergie nucléaire et les énergies renouvelables. Toutefois, les utilisateurs et les propriétaires de véhicules électriques ont encore des réticences car cela nécessite un stockage d'énergie électrique à bord pour assurer une bonne autonomie.Le système de transfert de puissance par effet inductif (LIPT en anglais) est une nouvelle technologie qui permet le transfert d'énergie électrique par champ magnétique et un système de bobines primaires et secondaires. Le champ magnétique est un champ haute-fréquence à plusieurs dizaines de kilohertz. Par rapport au système de câble conventionnel, le système LIPT est capable de fournir une recharge qui est pratique mais également efficace des véhicules électriques. Cependant, actuellement son principal facteur limitant est la mauvaise performance de sa structure de couplage magnétique (MCS). L’objectif de cette thèse est d'améliorer la performance des systèmes MCS pour les systèmes de LIPT afin de concevoir des systèmes à meilleur rendement.Dans un premier temps, sur la base de modèles mathématiques issus de la littérature, un code Matlab a été mis en œuvre pour calculer l'inductance mutuelle des systèmes de bobines mise en jeu dans le MCS. Puis, le calcul et la validation expérimentale des champs magnétiques entre le primaire et le secondaire a été effectué.Dans un second temps, un modèle d'un système LIPT pour la charge d’une batterie de véhicule électrique est présenté. Sur la base des spécifications techniques d’une Renault ZOE, les résultats obtenus montrent que, en adaptant la fréquence de la bobine primaire et en compensant avec un système série-série de condensateurs, un système à 3 kW et un système à 22 kW peuvent atteindre des performances permettant la recharge d’une Renault Zoe dans de bonnes conditions.Enfin, une analyse par éléments finis (FEA) sous COMSOL est développée pour la conception, le calcul et l’optimisation de systèmes MCS plus complexes de nouveaux LIPT. Les modèles de MCS conçus intègrent des bobines d'air évidées avec des configurations appropriées de noyaux magnétiques (par exemple en ferrite), avec des études également sur des parties couvrantes des bobines primaires et secondaires en acier. Les performances des modèles conçus sont déterminées par les valeurs de l'inductance mutuelle et la tension induite qui sont deux critères d’évaluations. / Taking into account high oil prices and environmental awareness, the development of electric vehicles (EVs) is considered as a healthier mode of transportation. Amongst other eco-friendly vehicles, EVs are considered as a favourable solution for a greener energy because the electricity they consume can be generated from a wide range of sources which include fossil fuel, nuclear power and renewable energy. However, users and owners of EVs feel uncomfortable because EVs require sufficient electrical energy battery storage on-board to provide sufficient driving autonomy.Lumped inductive power transfer (LIPT) system is a new technology that allows the transfer of electric power between its air-cored primary and secondary coils via high frequency magnetic fields to a consuming device. Unlike the conventional plug-in system, LIPT system is capable of providing a safe, efficient and convenient overnight recharging of EVs. However, its main limiting factor is the poor performance of its magnetic coupling structure (MCS), which is intended to transfer power efficiently. Thus the problem statement of this thesis is to improve the performance of MCS models for LIPT systems.Firstly, based on a more efficient and relevant mathematical model available in the literature, MATLAB code is implemented to compute the mutual inductance between air-cored filamentary circular (FC) coils. Also, the computation and experimental validation of the magnetic fields between two FC coils are presented.Furthermore, computational models of an IPT system for EV battery charge are presented in this thesis. Based on the technical specifications of Renault ZOE, the results obtained show that by supplying a higher frequency AC voltage to the primary coil of the MCS and compensating the primary and secondary sides of the air-cored coils with series-series capacitors, the 3 kW single-phase and 22 kW three-phase IPT systems modelled using MATLAB/Simulink are capable of delivering the electricity needed to power the Renault ZOE.Finally, in order to recommend a suitable and cost-efficient MCS model that can help transfer electric power more efficiently for the battery charging of EVs and E-bikes, a 3-D finite element analysis (FEA) package called COMSOL multiphysics is used to design, compute and investigate a more complex and realistic MCS model of LIPT systems. The designed MCS models incorporate air-cored coils with proper configuration of magnetic cores (e.g. ferrite), structural steel covering for the bottom part of the primary coil and top part of the secondary coil and lastly, iron plate which serves as a covering for the primary coil installed underground and the chassis or underbody structure of EVs. The performance of the designed models are determined by the values of the mutual inductance and induced voltage obtained from COMSOL.
|
244 |
Modeling Actions and State Changes for a Machine Reading Comprehension DatasetJanuary 2019 (has links)
abstract: Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects of actions on these entities while doing reasoning and inference at the same time is a particularly difficult task. A recent natural language dataset by the Allen Institute of Artificial Intelligence, ProPara, attempted to address the challenges to determine entity existence and entity tracking in natural text.
As part of this work, an attempt is made to address the ProPara challenge. The Knowledge Representation and Reasoning (KRR) community has developed effective techniques for modeling and reasoning about actions and similar techniques are used in this work. A system consisting of Inductive Logic Programming (ILP) and Answer Set Programming (ASP) is used to address the challenge and achieves close to state-of-the-art results and provides an explainable model. An existing semantic role label parser is modified and used to parse the dataset.
On analysis of the learnt model, it was found that some of the rules were not generic enough. To overcome the issue, the Proposition Bank dataset is then used to add knowledge in an attempt to generalize the ILP learnt rules to possibly improve the results. / Dissertation/Thesis / Masters Thesis Computer Science 2019
|
245 |
Design Optimization of Inductive Power Transfer Systems for Contactless Electric Vehicle Charging ApplicationsMoghaddami, Masood 18 October 2018 (has links)
Contactless Electric Vehicle (EV) charging based on magnetic resonant induction is an emerging technology that can revolutionize the future of the EV industry and transportation systems by enabling an automated and convenient charging process. However, in order to make this technology an acceptable alternative for conventional plug-in charging systems it needs to be optimized for different design measures. Specifically, the efficiency of an inductive EV charging system is of a great importance and should be comparable to the efficiency of conventional plug-in EV chargers.
The aim of this study is to develop solutions that contribute to the design enhancement of inductive EV charging systems. Specifically, generalized physics-based design optimization methods that address the trade-off problem between several key objectives including efficiency, power density, misalignment tolerance, and cost efficiency considering critical constraints are developed. Using the developed design methodology, a 3.7kW inductive charging system with square magnetic structures is investigated as a case study and a prototype is built to validate the optimization results. The developed prototype achieves 93.65% efficiency (DC-to-DC) and a power density of 1.65kW/dm3.
Also, self-tuning power transfer control methods with resonance frequency tracking capability and bidirectional power transfer control are presented. The proposed control methods enhance the efficiency of power converters and reduce the Electromagnetic Interference (EMI) by enabling soft-switching operations. Several simplified digital controllers are developed and experimentally implemented. The controllers are implemented without the use of DSP/FPGA solutions. Experimental tests show that of the developed simplified controllers can effectively regulate the power transfer around the desired value. Moreover, the experiments show that compared to conventional converters, the developed converters can achieve 4% higher efficiency at low power levels.
Moreover, enhanced matrix converter topologies that can achieve bidirectional power transfer and high efficiency with a reduced number of switching elements are introduced. The self-tuning controllers are utilized to design and develop control schemes for bidirectional power transfer regulation. The simulation analyses and experimental results show that the developed matrix converters can effectively establish bidirectional power transfer at the desired power levels with soft-switching operations and resonance frequency tracking capability. Specifically, a direct three-phase AC-AC matrix converter with a reduced number of switches (only seven) is developed and built. It is shown that the developed converters can achieve efficiencies as high as 98.54% at high power levels and outperform conventional two-stage converters.
|
246 |
Finding “Place” in Public Administration: A Study of Collaborative Governance in Rural CommunitiesIrish, Aiden J. January 2021 (has links)
No description available.
|
247 |
Investigating the Domain of Geometric Inductive Reasoning Problems: A Structural Equation Modeling AnalysisWang, Kairong 26 April 2008 (has links) (PDF)
Matrix inductive reasoning has been a popular research topic due to its claimed relationship with the general factor of intelligence. In this research, four subabilities were identified: working memory, rule induction, rule application, and figure detection. This quantitative study examined the relationship between these four subabilites and students' general ability to solve Matrix Reasoning problems. Using tests developed for this research to measure the identified subabilities, the data were collected from 334 Chinese students aged from 12 to 15. Structural equation modeling method was used to analyze the collected data and to evaluate the hypothesized models. Results from the analysis showed that a valid model existed to represent the construct of matrix inductive reasoning. Except for figural detection ability, the other three subabilities had significant direct effects on matrix inductive reasoning ability. Readers should interpret from this result with caution due to the unsatisfactory reliability of the Figure Detection scores. To improve the validity of the interpretation, a new model without the latent variable of figure detection was reexamined. In this analysis, significant relationships still existed from the three subablities to matrix inductive reasoning ability. The strongest relationship existed from working memory ability to matrix reasoning ability, with a standardized coefficient of .52. Effects from rule induction and rule application ability to matrix reasoning dropped to .36 and .34 respectively. These results suggested the important role of working memory on solving inductive reasoning problems. In addition, a significant and substantial indirect path was found that lead from working memory to rule induction to rule application to matrix reasoning. The indirect path indicated that a process existed when students solved Matrix Reasoning tasks.
|
248 |
High school principals leadership and delegation of decision rights with the Education Act (SFS 2010: 800)Pettersson, Johan January 2017 (has links)
The Swedish secondary upper school organization, leadership and staff activities are governed by and construed by the Education Act (SFS 2010:800). The Act states that the principal can delegate its desicion rights. The Swedish Schools Inspectorate have shown that principals need to work for greater involvement. In this qualitative pilot study are nine semi-structured questions to teachers and principals about their experience of delegation. The overarching question is how principals leadership looks in reality. Who receives delegation, when, how and why? The transcription was done by the investigator who compiled meaningful quotes. Themes and dimensions was made by triangulation of an experienced Head of unit within a social-educational work outside the municipal school. The results showed some similarities between the thesis theoretical background and the empirical survey on leadership and delegation.
|
249 |
Inductive fast charging of IoT devices : An in-depth analysis of short-range wireless charging technologies based on inductionWikner, Franz January 2024 (has links)
In the era of Internet of things (IoT), sensor-equipped devices exchange data over networks. In battery powered IoT devices, the lifespan of the devices is often much longer than the battery life, leading to multiple costly and environmentally hazardous battery replacements during the operational life of the devices. As a result, there is a growing interest in using rechargeable batteries that can be wirelessly fast charged to prolong the lifespan of IoT devices and their batteries. In wireless power transfer based on induction, the transmitter and receiver antennas can be accurately modeled as two coils in separate circuits. The transmitter coil, energized by alternating current, generates an oscillating magnetic field that induces an electric field in the nearby receiver coil, following Faraday's law of induction. By connecting a resistive load to the receiver coil, it is then possible to extract energy from the induced electric field. This project investigates inductive fast charging for IoT devices with a focus on the electromagnetic power transfer. Two different types of coil antennas were simulated in a solver based on the finite element method and tested in lab for verification purpose. One was a transformer-like ETD coil and the other a flat spiral coil. Both the transmitter and receiver coils were compensated with a capacitor in series to allow for increased efficiency and power transfer at the designated frequency of 100 kHz. The compensating capacitors were tuned such that frequency bifurcation or frequency splitting was avoided. Due to the higher quality factor of the ETD coil compared to the spiral coil they were compensated differently to operate at the resonance peak. The simulation and the experimental tests agreed well, and the findings indicate that both types of coils demonstrate the ability to transfer high power with high efficiency. Theoretically there is no limit in the power transfer for both types of coils since it is proportional to the square of the excitation voltage. All tested coils exhibited the ability to transfer a power of at least 30 W with an 86 to 92 % efficiency without experiencing any significant temperature elevation. The advantages of each coil depend on the design of the systems surrounding the power transfer unit and the nature of the built charging system. For scenarios where the equivalent load resistance of the battery charger unit on the receiver remains relatively constant throughout the charging process, the spiral coil proves to be a suitable choice due to its inherent capacity for easy dimensioning, allowing optimal efficiency for a specific load resistance. Conversely, if the equivalent load resistance fluctuates significantly during the charging process, the ETD coil would be a better alternative, since it exhibits small load dependence and high efficiency. Finally, to further increase the validity of the simulation model, the full magnetization curve of the ferrite core and a more general core loss model should be implemented to enhance the accuracy in studying the effects of higher harmonics and when operating closer to saturation.
|
250 |
Automatic waste sorter : Automatic sorting of metal and non-metal objects / Automatisk avfalls sorterare : Automatisk sortering av metall och icke-metall föremålSharan, Vishi, Iskander, Merna January 2022 (has links)
Our earths resources are not endless, so it is important to avoid wasting our planets natural resources. Recycling metal saves 95% more energy than producing new metal from ore, which is why it is necessary to reuse metal. Waste sorting is very important in today’s modern society as the demand for metals is increasing at a rapid rate. Landfills are overfilled, lots of energy is required to mine ore and produce metal’s, thus metals should be used sparingly and recycled. Considering all these aspects, we felt an urgent need to look into other methods to make recycling metal easier. The most common way waste sorting is done in today’s society is manually. We are trying to make it automatic to have a higher percentage of correct sorts and to make it easier and faster for consumers to sort their waste. The purpose of this project is to construct a prototype which will automatically sort metal and non-metal waste. By using an inductive proximity sensor, the prototype will be able to distinguish if the object is made of metal. Using a stepper motor, two waste bins, one for metal objects and the other for non-metal objects, will rotate depending on if the inductive proximity sensor gives a signal or not. Ultrasonic sensors were used to detect if an object was present and needed to be sorted. Two ultrasonic sensors gave an increase of 118% accuracy in comparison to using only one ultrasonic sensor. The purpose of the project is achieved, resulting in an automatic waste sorter that is user-friendly and can assist the user in daily waste sorting. However this prototype is limited to objects smaller than 65 millimeters in diameter, and in future work the prototype could be expanded. / Vår planets resurser är inte oändliga och därför är det nödvändigt att undvika slöseri av vår planets naturresurser. Att återvinna metall sparar 95% mer energi än att producera ny metall från malm, därför är det nödvändigt att återanvända metall. Avfallssortering är mycket viktigt i dagens samhälle då efterfrågan på metaller ökar i snabb takt. Deponier är överfyllda, mycket energi krävs för att bryta malm och producera metaller, därför bör metaller användas sparsamt och återvinnas. Med tanke på alla dessa aspekter kände vi ett akut behov av att undersöka andra metoder för att göra återvinning av metall enklare. Det vanligaste sättet att sortera avfall i dagens samhälle är manuellt. Vi försöker göra det automatiskt för att få en högre andel korrekta sorteringar och för att göra det enklare och snabbare för konsumenterna att sortera sitt avfall. Syftet med detta projekt är att konstruera en prototyp som automatiskt sorterar metall- och icke-metall avfall. Genom att använda en induktiv närhetssensor kan prototypen urskilja om föremålet är gjort av metall eller inte. Med hjälp av en stegmotor kommer två avfallskärl, en för metallföremål och en för icke-metallföremål, att rotera beroende på om den induktiva närhetssensorn ger en signal eller inte. Ultraljudssensorer användes för att upptäcka om ett föremål fanns i behållaren och behövde sorteras. Två ultraljudssensorer gav en ökning på 118% noggrannhet jämfört med att endast använda en ultraljudssensor. Syftet med projektet har uppnåts, vilket har resulterat i en automatisk avfallssorterare som är användarvänlig och kan hjälpa användaren i dens dagliga sopsortering. Denna prototyp är dock begränsad till föremål som är mindre än 65 millimeter i diameter, och i framtida arbeten kan prototypen utökas.
|
Page generated in 0.0725 seconds