• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 39
  • 7
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 133
  • 28
  • 23
  • 22
  • 22
  • 20
  • 20
  • 19
  • 17
  • 16
  • 15
  • 15
  • 15
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

Bierwagen, Oliver 22 June 2007 (has links)
Selbstorganisierte InAs Nanostrukturen in InP, wie Quantendrähte, Quantenpunkte, und Quantengräben als Referenz, werden bezüglich ihres Wachstums, ihrer Struktur, optischen Eigenschaften und Transporteigenschaften untersucht. Das Stranski-Krastanov Wachstum der Nanostrukturen auf exakt orientiertem und vizinalem InP(001) wird mittels Gasquellen-Molekularstrahlepitaxie untersucht. Ich zeige, dass die Missorientierung des vizinalen InP, weitestgehend unabhängig von den Wachstumsparametern, den Nanostrukturtyp definiert. Optische Polarisation der Interbandübergänge (im 1.55 Mikrometer Bereich) aufgrund des Nanostrukturtyps wird mittels Photolumineszenz- und Transmissionsspektroskopie wird nachgewiesen. Die experimentell unaufwändige 4-Kontakt van der Pauw Hall Messung wird erweitert, um anisotrope Transporteigenschaften zu bestimmen. Der Ladungstägertransport in einer Schicht dicht gepackter, lateral gekoppelter InAs Nanostrukturen ist stark anisotrop mit der Hochbeweglichkeitsrichtung [-110], was parallel zur Richtung der Quantendrähte ist. Die maximalen Anisotropien übersteigen 30 für Elektronen und 100 für Löcher. Die extreme Anisotropie im Falle der Löcher basiert auf diffusem Transport in der [-110], und Hoppingtransport in der [110] direction. Die Elektronenbeweglichkeit bei niedrigen Temperaturen wird duch Grenzflächenrauhigkeitsstreuung in der [110] direction, und Streuung an entfernten Störstellen in der [-110] dominiert. Im Kontext gekoppelter Nanostrukturen, zeige ich, dass die Transportanisotropie auf anisotroper Tunnelkopplung zwischen benachbarten Nanostrukturen beruht, und weniger durch die Form der Nanostruktur bestimmt wird. Transport im Quanten-Hall Regime, und die Schwache Lokalisierung werden untersucht. Ein neuartiges Baulelement basierend auf Gate-konrollierter Transportanisotropie wird vorgeschlagen. Es wird gezeigt, dass modulationsdotierte InAs Quantendrähte für eine Implementierung des Bauelements geeignet sind. / Self-assembled InAs nanostructures in InP, comprising quantum wires, quantum dots, and quantum wells as reference, are studied in terms of their formation, structural properties, optical properties, and anisotropic transport properties. The Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). I demonstrate that the off-cut direction of vicinal substrates - largely independent of growth conditions - determines the nanostructure type. Optical polarization of the interband transitions (in the 1.55 micron wavelength range) arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement is extended to yield the anisotropic transport properties. The in-plane transport in large ensembles of closely spaced, laterally coupled InAs nanostructures is highly anisotropic with the high-mobility direction [-110], which is parallel to the direction of the quantum wires. The maximum anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport in the [-110], and hopping transport in the [110] direction. The principal electron mobilities at low temperature are dominated by interface roughness scattering in the [110] direction, and by remote impurity scattering in the [-110] direction. In the context of coupled nanostructure, I demonstrate that the transport anisotropy results from directionally anisotropic tunnel coupling between adjacent nanostructures rather than from the nanostructure shape anisotropy. The Quantum-Hall regime, and the weak-localization contribution to conductivity is studied. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. Modulation-doped InAs/InP quantum wires are demonstrated to be a candidate for implementation of the device.
112

InGaAs-AlAs and InGaAs-InGaP Strain-Compensated Heterostructures for Short-Wavelength Intersubband Transitions and Lasers

Semtsiv, Mykhaylo 28 September 2004 (has links)
Der Quantenkaskadenlaser (QCL) ist ein unipolares Intersubbandbauelement dessen Funktionsweise auf Übergängen zwischen dem ersten angeregten Zustand und dem Grundzustand in einem Quantentopf (quantum well, QW) beruht. Er wurde im Jahre 1974 von Kazarinov und Suris theoretisch vorhergesagt und erstmals 1994 von Faist et al. experimentell realisiert. Das Elektron verlässt nach dem Laserübergang nicht das Leitungsband und kann somit durch ein angelegtes elektrisches Feld in die nächste aktive Zone transferiert werden, wo es wiederum einem Laserübergang untergehen kann. Schliesslich, nach einer Reihe solcher Kaskadenprozesse, emittiert ein einzelnes Elektron viele Photonen; dies definiert die hohe Quanteneffizienz der QCLs. Das Hauptproblem bei der kaskadierten Benutzung von aktiven Regionen ist ein schneller Elektronentransport zwischen den emittierenden QWs mithilfe des sogenannten Injektors. Ein schneller Transport der Ladungsträger ist notwendig um das obere Laserniveau zu populieren und das untere zu depopulieren, womit die für die stimulierte Emission notwendige Besetzungsinversion erreicht werden kann. Zur Gewährleistung des schnellen Transports im Injektor ist die Verwendung von Materialien mit einer geringen effektiven Masse naheliegend. Unter den technologisch wichtigen III-V Verbindungen besitzt InAs die geringste elektronische effektive Masse von 0.023m0 (wobei m0 die Masse des freien Elektrons ist). Die binäre Verbindung mit der nächst grösseren effektiven Masse ist GaAs mit m*=0.067m0. Bisher wurden QCLs in beiden, InAs und GaAs und weiterhin im ternären InGaAs basierten QW Materialsystem realisiert. Gegenwärtig zeigen QCLs einen hohen Grad der Reife; hohe Lichtleistung, Dauerstrichbetrieb und Betrieb bei Raumtemperatur sowie Oberflächenemission wurden erzielt. Der von den QCLs abgedeckte spektrale Bereich erstreckt sich von 3.5 Mikrometer bis zu 87 Mikrometer. Trotz des hohen Reifegrades ist der Quantenkaskadenlaser immernoch in der Entwicklung. Speziell die Erweiterung des spektralen Bereichs ist für viele Anwendungen essentiell. Enorme Fortschritte bei der Erweiterung hin zu grösseren Wellenlängen wurden in den letzten Jahren erzielt, dennoch ist der kurzwellige Rekord von 3.5 Mikrometer aus dem Jahre 1998 bisher ungebrochen. Nichtsdestotrotz besitzt der QCL auch im nahen Infrarot das Potential den konventionellen Interbandlaser zu übertreffen. Neben dem Wettstreit um Schwellströme und Ausgangsleistungen, ist aufgrund der andersartigen Physik des Laserüberganges eine verbesserte Anwendungsmöglichkeit im Bereich des schnellen optischen Schaltens zu erwarten. Die Herausforderung im Bereich der kurzwelligen QCLs liegt in der beschränkten Leitungsbanddiskontinuität (CBO) zwischen Quantentopf- und Quantenbarrierenmaterial. Um zwei gebundene elektronische Eigenzustände innerhalb der Quantentöpfe der aktiven Zone zu gewährleisten, wird eine grosse Leitungsbanddiskontinuität benötigt. Weiterhin kann nur so eine ausreichend hohe Barriere zwischen den angeregten Zuständen und dem klassischen Zustandskontinuum bei angelegtem elektrischen Feld erreicht werden. Neben der Notwendigkeit des grossen CBO sollte das Barrierenmaterial eine direkte Bandlücke aufweisen oder zumindest der angeregte Zustand in der aktiven Zone unterhalb des niedrigsten Leitungsbandes des Barrierenmaterials liegen. Mit der Einschränkung bezüglich der Gitterkonstanten von Quantentopf und -barrierenmaterial für ein koh ärentes Wachstum auf einem bestimmten Substrat, endet man bei nur einer Hand voll vielversprechender Materialkombinationen für die Anwendung in QCLs. Das grösste CBO für Materialien mit direkter Bandlücke findet man bei InGaAs/InAlAs. Wir erzielen 520 meV für die ternäre an InP gitterangepasste und 740 meV für die spannungskompensierte In(0.70)Ga(0.30)As/In(0.40)Al(0.60)As Kombination. Unter den Barrierenmaterialien mit indirekter Bandlücke ist die Kombination InAs/AlSb auf GaSb oder InAs mit 2.1 eV CBO im Gamma-valley sehr vielversprechend. Quantenkaskadenlaser basierend auf diesem Materialsystem mit Emission bei 10 Mikrometer wurden kürzlich von Ohtani and Ohno realisiert. Jedoch wurde im kurzwelligen Bereich um 4 und 3 Mikrometer in diesem System bisher nur spontane Emission beobachtet. Damit ist es bis heute ein offene Frage, welches Materialsystem tatsächlich das geeignetste für die Anwendung in kurzwelligen QCLs sein wird und ob es überhaupt möglich sein wird, ihren Wellenlängenbereich auf die Telekommunikationswellenlänge von 1.55 Mikrometer auszuweiten, was zweifellos die grösste Herausforderung darstellt. Oberflächenemission von QCLs ist bisher mittels der Aufbringung einer Rippenstruktur mit kurzer Periode auf der Oberfläche der Laserstreifen erreicht worden. Die Möglichkeit einer Polarisation in der Fläche mithilfe selbstorganisierter Quantenpunktstrukturen innerhalb der aktiven Zone ist ein aktuelles Thema innerhalb der QCL-Gemeinschaft, aber bisher noch unerreicht. Die Kombination aus feldinduzierten Minibändern aus elektronischen Zuständen in konventionellen QCLs und diskreten atomartigen Zuständen in Quantenpunkten ist eine kreative und gleichzeitig widersprüchliche Idee. Dennoch vereint dieses Thema ein gewaltiges Interesse sowohl von theoretischer als auch experimenteller Seite innerhalb der QCL-Gemeinschaft. Diese Arbeit ist der Erweiterung der Materialvielfalt für die Herstellung von Quantenkaskadenlasern gewidmet. Die Mission dieser Forschungsarbeit ist - die Grenzen im Gebrauch des spannungskompensierten Designs des klassischen InGaAs/InAlAs Materialsystems auf InP für kurzwellige Emission auszuloten; - die Möglichkeiten kurzwelliger Intersubbandemission in einer der extraordinären Materialkombinationen für die QCL-Anwendung zu erforschen: spannungskompensiertes InGaAs/InGaP auf GaAs; Die Quintessenz der gesamten Forschungsarbeit besteht in der spannungskompensierten Herangehensweise und den InGaAs enthaltenden Materialsystemen für die Anwendung in Quantenkaskadenlasern. Die Arbeit ist wie folgt strukturiert: Kapitel 1: Die vorliegende Einführung. Kapitel 2: Kurzer überblick der Eigenschaften von Intersubbandübergängen und der Grundlagen der QCL-Funktionsweise. In diesem Kapitel wird eine Einführung in die Eigenschaften von Intersubbandübergängen und den Minibandtransport gegeben. Dieses Kapitel unterstreicht den physikalischen Unterschied von Intersubbandübergängen und Transport zum Fall der Interbandübergnge und gibt eine Einführung in die vorteilhaften Eigenschaften der Intersubbandbauelemente. Weiterhin wird eine Einführung in die Physik des Quantenkaskadenlasers und eine übersicht der Designvielfalt der aktiven Zone gegeben. Im Speziellen wird auf die unterschiedlichen Strategien bei der Erzielung der Besetzungsinversion eingegangen. Kapitel 3: Experimentelles Kapitel. Das 3. Kapitel fasst die erzielten eigenen Ergebnisse innerhalb des InGaAs/InAlAs Materialsystems auf InP zusammen. Dabei konzentriert es sich auf extreme Fälle des spannungskompensierten Designs welche die Realisierung kurzwelliger übergänge zum Ziel haben. Kapitel 4: Experimentelles Kapitel. Im 4. Kapitel werden die erzielten eigenen Ergebnisse innerhalb des InGaAs/InGaP Materialsystems dargestellt. Das InGaAs/InGaP Materialsystem auf GaAs wurde unseres Wissens zuvor füür Intersubbandbauelemente weder benutzt noch vorgeschlagen. Das Kapitel beschreibt den gesamten Verlauf, beginnend mit dem Probenwachstum über grundlegende Materialstudien, bis hin zum Design der QC-Teststruktur und deren Fabrikation. Kapitel 5: Hierin wird die Zusammenfassung der erzielten eigenen Ergebnisse und daraus resultierenden Schlussfolgerungen gegeben. / Quantum cascade lasers, QCL, are unipolar intersubband devices, which work on transitions between the first excited and the ground state in quantum wells, QW. They where predicted theoretically by Kazarinov and Suris 1974, and realized experimentally for the first time by Faist et al. 1994. Electron does not leave the conduction band after the lasing transition in QCL. And therefore it can be used again in the next active region, where it can be transferred due to applied electric field. Finally, after a number of such cascade processes, single electron emits many photons, which defines a high quantum efficiency of QCLs. The key issue in use of cascaded active regions is a fast electron transport in between the emitting QWs (so called, injector region). Fast carrier transfer is needed on the one hand to effectively populate the upper lasing state in active region QW and on the other hand to quickly depopulate the lower lasing state. So that population inversion, necessary for stimulated emission, is achieved. To provide the fast transport in injector region it is likely to deal with materials with a low effective mass. Among the variety of technologically important III-V compounds InAs has the lowest electron effective mass of 0.023m0 (where m0 is the free electron mass). Next low effective mass binary material after InAs is GaAs with m*=0.067m0. Up to now QCLs are realized on both, InAs- and GaAs- as well as ternary InGaAs-based-QW material systems. Currently QCLs show a high level of maturity. High power, cw-operation and room temperature operation as well as surface emission are achieved. Spectral range, covered by QCLs, extends from 3.5 micrometer up to 87 micrometer. Despite of the high level of maturity, QCLs are still under development. In particular, extension of the spectral range of operation is likely for many applications. Tremendous progress was achieved last years in long wavelength range extension of QCLs. However, the short wavelength record of 3.5 micrometer has not been beaten since 1998. Nevertheless, QCLs has a potential to outperform conventional interband lasers also in near infrared spectral range. Apart from competition in threshold current densities and output power, QCLs are expected to be better in fast optical switching operation due to different physics of lasing transitions. The challenge of short wavelength QCLs is a limited conduction band edge offset, CBO, between the quantum well and barrier material. High CBO is needed to confine two quantized electron states in active region QW and to provide sufficient barrier between the excited state and classical continuum of states above the barrier material conduction band edge under applied electric field. More over, despite of high CBO demand, barrier should be the direct band gap material, or at least, the upper lasing state in active region should lay below the lowest conduction band valley in the barrier material. Together with restriction on the lattice constant of both, well and barrier materials, for coherent growth on a certain substrate, we end up with very few promising material combinations for QCL application. The highest CBO for direct band gap materials combination we find in InGaAs/InAlAs. We obtain 520 meV for lattice matched to InP ternaries and about 740 meV for strain-compensated In(0.70)Ga(0.30)As/In(0.40)Al(0.60)As combination. Among the indirect barrier material combinations, very promising is InAs/AlSb on GaSb or InAs with 2.1 eV CBO in gamma-valley. QCL emitting at 10 micrometer has been recently realized on this material system by Ohtani and Ohno. However, at short wavelength, 4 and 3 micrometer, only spontaneous emission is obtained in this material system up to now experimentally. So up to now, it is still an open question, which material system is going to be most suitable for short wavelength QCL application. And it is still an open question, if it is possible at all to extend the operation wavelength of QCLs to the most challenging 1.55 micrometer telecommunication wavelength. Surface emission is achieved in QCLs up to now by manufacturing of the short period grating on the top of the planar laser stripe. The possibility of in-plane polarized emission involving self organized quantum dot structures into the QCL active region is a hot topic in QCL community, but it is not achieved experimentally up to now. Combining the field induced minibands of electron states in conventional QCLs together with discrete atom-like states in QDs is a creative and at the same time contradictive idea. Nevertheless, this topic attracts a huge interest from both, theoretical and experimental, side of QCL community. This work is dedicated to make a step forward in extension of material variety used for QCL fabrication. The mission of this research is - to find out the limits of use of strain-compensated designs on classical InGaAs/InAlAs material system on InP to achieve the short wavelength generation; - to discover the possibilities of short wavelength intersubband generation in one of extraordinary material combinations for QCL application: strain-compensated InGaAs/InGaP on GaAs; The bottom line of the whole research is strain compensation approach and InGaAs containing material systems for QCL application. Present work consist of: Chapter 1: The current introduction. Chapter 2: Brief overview of intersubband transitions properties and the basics of QCL action. In the overview-chapter an introduction into the properties of intersubband transitions and miniband transport is given. This chapter underlines the difference in physics of intersubband transitions and transport comparing to the case of interband transitions; and gives an introduction into the advantageous properties of intersubband devices. This chapter gives an introduction into the quantum cascade laser physics and overview on variety of active region designs. This chapter is, specially, dedicated to point out different ways of achieving the population inversion in each QCL active region approach. Chapter 3: Experimental chapter. Third chapter describes obtained original results on InGaAs/InAlAs material system on InP during the present work. It concentrates on extreme cases of strain-compensated designs for achieving the short wavelength transitions. Chapter 4: Experimental chapter. Forth chapter describes obtained original results on InGaAs/InGaP material system. InGaAs/InGaP material system on GaAs was never before, up to our knowledge, proposed or used for intersubband devices. So, the chapter describes all the way from the sample growth issues and basic study of this material up to QC test-structure design and fabrication. Chapter 5: Here, the summary of obtained original results and conclusions are given.
113

Circuits intégrés amplificateurs à base de transistors HEMT pour les transmissions numériques à très haut débit (>=40 Gbit/s)

MELIANI, Chafik 17 June 2003 (has links) (PDF)
La systématisation de la conversion analogique/numérique a eu pour effet d'uniformiser le mode de transmission de données aux transmissions numériques ; et notamment sur fibre optique. Dans ce cadre, cette thèse traite des méthodologies de conception et faisabilité de circuits amplificateurs de signaux rapides. Après l'étude de l'effet des éléments parasites sur les structures amplificatrices de base (spécifiquement, les problèmes de chemins de masse, et de référencement de signaux d'entrée), la théorie de distribution est appliquée à la technologie coplanaire InP ; où via une méthodologie que nous avons cherché à systématiser (notamment pour les conditions d'égalité et de faible variation des délais de groupe), sont réalisés des amplificateurs large bande avec Fc=92GHz et entre autres, un produit gain-bande à l'état de l'art de 410 GHz. Au delà des problèmes posés par la technologie coplanaire tels que les discontinuités de masse et la nécessité de préserver le mode de propagation coplanaire, elle ouvre de nouvelles possibilités telles que des lignes artificielles d'entrée/sortie à longueurs identiques, et permet une compacité plus élevée que celle des techniques micro-ruban. Les limites de l'amplification différentielle sont ensuite investies et repoussées, en proposant une structure innovante : la paire différentielle distribuée ; alliant ainsi le fonctionnement à courant constant du mode différentiel (donc avec un degré de liberté supplémentaire, pour le potentiel DC en sortie), à l'aspect large bande du distribué. Des amplificateurs avec 4 Vpp en sortie à 40 Gbit/s ont ainsi été réalisés en pHEMT GaAs. Ce résultat, permettrait à terme, l'élimination des capacités de passage dans les modules driver et la conception de drivers de modulateur mono-puce.
114

Electronical model evaluation and development of compact model including aging for InP heterojunction bipolar transistors (HBTs) / Evaluation de modèle électrique et développement d?un modèle compact incluant le vieillissement pour des transistors bipolaire à hétérojonctions (TBH) à InP

Ghosh, Sudip 20 December 2011 (has links)
Les technologies de transistors bipolaires à hétérojonctions (HBT) ont montré leur efficacité pour permettre aux circuits de traiter les grands signaux au delà de 100Gbit/s pour les réseaux optiques Ethernet. Pour assurer ce résultat, une bonne fiabilité doit être garantie. Des tests de vieillissements accélérés sous contraintes thermiques et électrothermiques sont réalisés et analysés avec les outils de simulation physique Sentaurus TCAD afin d’obtenir les lois de vieillissement physiques. Le modèle compact HICUM niveau 2, basé sur la physique, est utilisé pour modéliser précisément le composant avant vieillissement, puis pour ajuster les caractéristiques intermédiaires pendant le vieillissement. L’évolution des paramètres du modèle est décrit avec des équations appropriées pour obtenir un modèle électrique compact du vieillissement basé sur la physique. Les lois de vieillissement et les équations d’évolutions des paramètres avec le temps de contrainte sont implantées dans le modèle électrique de vieillissement en langage Verilog-A, ce qui permet de simuler l’impact des mécanismes de défaillances sur le circuit en conditions opérationnelles. / Modern InP Heterojunction Bipolar Transistors (HBT) technology has shown its efficiency for making large signal ICs working above 100 Gbits/s for Ethernet optical transport network. To full-fill this expectation, a good reliability has to be assured. Accelerated aging tests under thermal and electro-thermal stress conditions are performed and analyzed with Sentaurus TCAD device simulation tools to achieve the physical aging laws. The physics based advanced bipolar compact model HICUM Level 2 is used for precise modeling of the devices before aging. The HICUM parameters are extracted to fit the intermediate characterizations during aging. The evolution of the model parameters is described with suitable equations to achieve a physics based compact electrical aging model. The aging laws and the parameter evolution equations with stress time are implemented in compact electrical aging model in Verilog-A languages which allows us to simulate the impact of device failure mechanisms on the circuit in operating conditions.
115

Design and fabrication of a photonic integrated circuit comprising a semi-conductor optical amplifier and a high speed photodiode (SOA-UTC) for >100 Gbit/s applications / Etude d'un récepteur pré-amplifié de type PIC (Photonic Integrated Circuit) réalisé par intégration monolithique d'un amplificateur (SOA) optique à semi-conducteur et d'une photodiode (UTC) pour les liaisons courtes distances à 100 Gbit/s et au delà

Anagnosti, Maria 13 November 2015 (has links)
Ce travail porte sur la conception, la fabrication et la caractérisation d’une photodiode très haut débit (UTC PD) et son intégration avec un préamplificateur optique à semi-conducteur (SOA) pour les liaisons optiques à courte distance à 100 Gbit/s en bandes C et O. Il porte également sur la conception d'un duplexeur (Tx / Rx) avec liaison montante en bande C et liaison descendante en bande O. L'intégration monolithique d’un SOA avec une photodiode haut débit sans filtre optique entre les deux présente des avantages majeurs parmi lesquels: - Augmentation de la distance de transmission. - Augmentation du nombre d'utilisateurs connectés. - Diminution des coûts globaux de fabrication incluant l’assemblage. La première partie de cette étude porte sur l'optimisation SOA pour un fonctionnement à forte puissance (Psat). Un faible facteur de bruit (NF) et une faible dépendance à la polarisation (PDL) sont requis pour les récepteurs préamplifiés. De plus, un fonctionnement du et opérer en régime linéaire est nécessaire pour les schémas de modulation complexes. Le SOA actuel possède un gain de 18 dB avec un facteur de bruit de 8 dB, une faible PDL (<2 dB), et une bonne puissance de saturation en entrée (-8 dBm). Grâce à l’optimisation de la structure verticale du SOA et de son couplage avec la fibre les performances attendues sont améliores : Psat >-5 dBm, NF <8 dB, PDL et gain similaire. D'autre part, les interconnexions électriques de la photodiode ont été optimisées ce qui a permis de démontrer des photodiodes avec une bande passante supérieure à 100 GHz. Les photodiodes présentent un fort coefficient de réponse (R) (0,6 A/W à 1,3 μm et 0,55 A/W à 1,55 μm) et une faible PDL <1 dB. Un fort courant de saturation de 14 mA à 100 GHz a aussi été démonté. Enfin, la caractérisation des SOA-UTC réalisés a montré simultanément une très forte responsivité (95 A/W), une faible dépendance à la polarisation PDL (<2 dB), un faible NF (8 dB) et une large bande passante à 3 dB (> 95 GHz), qui placent nos composants au meilleur niveau de l’état de l’art avec un produit gain-bande record de 6,1 THz. Les Mesures numériques à 64 Gbit/s montrent que notre récepteur atteint une sensibilité de -17 dBm pour un taux d'erreur de 10-9, et la sensibilité attendue à 100 Gbit/s est de -14 dBm / This work focuses on the design, fabrication and measurements of a uni-travelling carrier high speed photodiode (UTC PD) and its integration with a semiconductor optical preamplifier (SOA) for short reach 100 Gbit/s optical links, in O- and C- bands. This work also focuses on the design of a duplexer (Tx/Rx) with downstream in O-band and upstream in C-band. The SOA monolithic integration with a high speed PD without an optical filter in between yields major benefits among which: - Increase in the transmission distance. - Increase in the split ratio correlated to the number of connected users. - Decrease of the overall fabrication and assembling cost. The first part of this work is dedicated to optimizing the SOA for high power operation (Psat). The low noise figure (NF), and polarization dependence loss (PDL) are critical parameters for a preamplified receiver. Also complex modulation formats require linear gain regime of the SOA. The current SOA presents 18 dB gain with NF (8 dB), low PDL (<2 dB), and good input power saturation (-8 dBm). Thanks to further optimization of the SOA vertical structure and coupling with the optical fiber, the expected SOA performance is higher Psat >-5 dBm, NF <8 dB, similar PDL and gain. Secondly, the electrical interconnects of the photodiode is optimized to increase the photodiodes’ bandwidth, which allows to demonstrate photodiode with >100 GHz bandwidth. The PD presents high responsivity (R) (0,6 A/W at 1,3 μm and 0.55 A/W at 1,55 μm) and low PDL <1 dB. Also the saturation photocurrent is high (14 mA at 100 GHz). Finally, the SOA-UTC demonstrates high responsivity (95 A/W), low PDL (<2 dB), low NF (8 dB) and a wide 3 dB bandwidth (>95 GHz), which yields a record gain-bandwidth product of 6.1 THz. Large signal measurements at 64 Gbit/s show that our receiver reaches a low sensitivity of -17 dBm for a bit error rate of 10-9, and is expected to reach -14 dBm at 100 Gbit/s
116

Synthesis and Characterization of Indium Phosphide Quantum Dots for Photoelectrochemical Applications

Harabi, Imen 09 June 2023 (has links)
[ES] Hoy en día, existen desafíos tecnológicos y de ingeniería que se beneficiarían de las contribuciones de la nanociencia y la nanotecnología. A esta escala, las propiedades físicas y químicas de los sistemas han de cumplir con el respeto al medio ambiente (ahorro de energía, minimización de la contaminación, calentamiento global, etc.). Para estos fines, las nanopartículas basadas en puntos cuánticos de semiconductores II-VI "Quantum Dots" han sido las más estudiadas. Entre varios materiales, los puntos cuánticos de InP (InP-QDs) han despertado un gran interés debido a las características de baja toxicidad. Este prometedor elemento es el tema central de esta tesis. Para obtener partículas monodispersas en solución, la ruta de inyección en caliente presenta varias ventajas que la convierten en una técnica útil para controlar el tamaño de las nanopartículas. Este trabajo trata de la síntesis de puntos cuánticos de InP por el método de inyección en caliente para aplicaciones fotoelectroquímicas. Comenzamos nuestro trabajo optimizando la síntesis de InP QDs por el método de inyección en caliente mientras estudiamos los parámetros de la síntesis sobre las propiedades morfológicas, estructurales y especialmente las propiedades de fotoluminiscencia de los puntos cuánticos de InP. Inicialmente, la optimización de las condiciones de los puntos cuánticos se basó en la mejora de las propiedades ópticas, en particular la fotoluminiscencia. Cuando pasivamos los InP QDs con una envolvente de ZnS, la doble envolvente ZnS/ZnS, logra disminuir los defectos superficiales y esto resulta en la mejora de la fotoluminiscencia de los InP QDs. Además, la morfología superficial de estos QDs tiene una forma esférica más regular y homogénea. Por otro lado, las propiedades ópticas de los InP QDs dopados con vanadio no mostraron ninguna mejora en la fotoluminiscencia, mientras que si se observó una disminución en el tamaño de las nanopartículas. El segundo objetivo de esta tesis gira en torno a los QDs de InP depositados en nanotubos metálicos de dióxido de titanio (TiO2) por el método de recubrimiento por centrifugado con el fin de comparar la eficiencia fotoelectroquímica de los QDs de InP (núcleo), los QD de InP/ZnS de núcleo/corteza y los QD de InP/ZnS/ZnS de núcleo/corteza/corteza. Este estudio muestra un aumento en la fotocorriente casi 4 y 6 veces mayor que TiO2 / InP QDs. Esta medición tiene como objetivo observar el comportamiento dinámico del material y evaluar si las cargas se recombinan rápidamente en los nanotubos de TiO2 a partir de los puntos cuánticos. Se obtuvo una buena eficiencia en la respuesta de fotocorriente después del sistema de crecimiento del sistema núcleo/corteza/corteza debido a la pasivación de sitios de recombinación no radiativos, como los estados de trampas superficiales. Este resultado fue confirmado los estudios de simulación de los diferentes parámetros que caracterizan la célula solar basada en TiO2/InP, TiO2/InP/ZnS y TiO2/InP/ZnS/ZnS con el software SCAPS-1D. Según los cálculos numéricos, se ha obtenido un buen rendimiento de la mencionada célula con la adición de capa de ZnS. Los resultados de la simulación muestran que el InP fue capaz de utilizar todo el espectro de luz cuando se recubrió con la capa de ZnS en la parte superior. / [CA] Avui dia, hi ha desafiaments tecnològics i d'enginyeria que es beneficiarien de les contribucions de la nanociència i la nanotecnologia. En aquesta escala, les propietats físiques i químiques dels sistemes han de complir amb el respecte al medi ambient (estalvi d'energia, minimització de la contaminació, escalfament global, etc.). Per a aquestes finalitats, les nanopartícules basades en punts quàntics de semiconductors II-VI "Quantum Dots" han estat les més estudiades. Entre diversos materials, els punts quàntics d'InP (InP-QDs) han despertat un gran interès a causa de les característiques de baixa toxicitat. Aquest prometedor element és el tema central d'aquesta tesi. Per obtenir partícules monodisperses en solució, la ruta d' injecció en calent presenta diversos avantatges que la converteixen en una tècnica útil per controlar la mida de les nanopartícules. Aquest treball tracta de la síntesi de punts quàntics d'InP pel mètode d'injecció en calent per a aplicacions fotoelectroquímiques. Comencem el nostre treball optimitzant la síntesi d'InP QDs pel mètode d'injecció en calent mentre estudiem els paràmetres de la síntesi sobre les propietats morfològiques, estructurals i especialment les propietats de fotoluminiscència dels punts quàntics d'InP. Inicialment, l' optimització de les condicions dels punts quàntics es va basar en la millora de les propietats òptiques, en particular la fotoluminiscència. Quan passivem els InP QDs amb una envolupant de ZnS, la doble envolupant ZnS/ZnS, aconsegueix disminuir els defectes superficials i això resulta en la millora de la fotoluminiscència dels InP QDs. A més, la morfologia superficial d' aquests QDs té una forma esfèrica més regular i homogènia. D'altra banda, les propietats òptiques dels InP QDs dopats amb vanadi no van mostrar cap millora en la fotoluminiscència, mentre que si es va observar una disminució en la mida de les nanopartícules. El segon objectiu d'aquesta tesi gira al voltant dels QDs d'InP dipositats en nanotubs metàl·lics de diòxid de titani (TiO2) pel mètode de recobriment per centrifugat per tal de comparar l'eficiència fotoelectroquímica dels QDs d'InP (nucli), els QD d'InP/ZnS de nucli/cortesa i els QD d'InP/ZnS/ZnS de nucli/cortesa/cortesa. Aquest estudi mostra un augment en la fotocorrent gairebé 4 i 6 vegades més gran que TiO2 / InP QDs. Aquest mesurament té com a objectiu observar el comportament dinàmic del material i avaluar si les càrregues es recombinen ràpidament en els nanotubs de TiO2 a partir dels punts quàntics. Es va obtenir una bona eficiència en la resposta de fotocorrent després del sistema de creixement del sistema nucli/cortesa/cortesa a causa de la passivació de llocs de recombinació no radiatius, com els estats de trampes superficials. Aquest resultat va ser confirmat els estudis de simulació dels diferents paràmetres que caracteritzen la cèl·lula solar basada en TiO2/InP, TiO2/InP/ZnS i TiO2/InP/ZnS/ZnS amb el programari SCAPS-1D. Segons els càlculs numèrics, s' ha obtingut un bon rendiment de l' esmentada cèl·lula amb l' addició de capa de ZnS. Els resultats de la simulació mostren que l'InP va ser capaç d'utilitzar tot l'espectre de llum quan es va recobrir amb la capa de ZnS a la part superior. / [EN] Today, there are modern technological and engineering challenges that would advantage from the contributions of the nanoscience community and nanotechnology. At this scale, the physical and chemical properties of the systems are highly dependent on respect for the environment (energy saving, pollution minimization, global warming etc¿). In this term, nanoparticles based on II-VI semiconductors "Quantum Dots" have been by far the most studied. Among several material, InP Quantum Dots has brought huge interest because of the low toxicity features. This promising element is the subject of this thesis. Hence, to obtain monodisperse particles in solution, the hot injection route has several advantages that make it a useful technique, such as controlling the size of the nanoparticles. This work deals with the synthesis of InP Quantum Dot by hot injection method as the basis for photoelectrochemical application. We started our work by optimizing the synthesis of InP QDs by the hot injection method while studying the synthesis parameters on the morphological, structural, and specially the photoluminescence properties of InP Quantum Dots. Initially, the optimization of the Quantum Dots conditions was based on the enhancement the optical properties in particular the photoluminescence. When we passivated the InP QDs by ZnS shell, ZnS/ZnS double shell we succeed to decrease the surface defects resulting on the enhancement of the InP QDs photoluminescence. Also, the surface morphology of these QDs has a more regular spherical form and is well dispersed. On the other hand, the optical properties of the InP QDs doped with Vanadium was shown no improvement in the photoluminescence while there's a decrease on the size of the nanoparticle. The second aim of this thesis revolves around InP QDs deposited on metallic titanium dioxide nanotubes TiO2 by spin coating method with a view to comparing the photoelectrochemical efficiency of core InP QDs, core/shell InP/ZnS QDs, and core/shell/shell InP/ZnS/ZnS QDs. This study shows an increase in the photocurrent almost 4 and 6 times higher than TiO2/InP QDs. Hence, this measurement aims to observe the dynamic behavior of the material and to assess whether the charges recombine rapidly into the TiO2 NTAs Nanotubes from the quantum dots. So, a good efficiency in the photocurrent response was obtained following the growth core/shell/shell system due to the successful passivation of non-radiative recombination sites such as surface trap states. This result was supported by a simulation study of the different parameters characterizes the solar cell based TiO2/InP, TiO2/InP/ZnS and TiO2/InP/ZnS/ZnS with software SCAPS-1D. According to this theoretical work, a good performance of the cell has obtained in the adding of ZnS layer. The simulation results show that the InP was able to successfully utilize the full spectrum of light when coated with ZnS layer on top. / Harabi, I. (2023). Synthesis and Characterization of Indium Phosphide Quantum Dots for Photoelectrochemical Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194013
117

Люминесцентные свойства и фотометрические характеристики наноструктур с квантовыми точками InP/ZnS : магистерская диссертация / Luminescent properties and photometric characteristics of nanostructures with InP/ZnS quantum dots

Савченко, С. С., Savchenko, S. S. January 2016 (has links)
В работе проведено исследование оптических характеристик коллоидных квантовых точек (КТ) InP/ZnS различных размеров (QD-1, QD-2, QD-3) и композитных наноструктур анодированного оксида алюминия (AAО) с КТ методами спектрофотометрии и люминесцентной спектроскопии. Выполнен литературный обзор, касающийся электронных состояний в идеальном нанокристалле (НК), синтеза КТ на основе InP, использования НК для создания нанокомпозитов и расчёта цветовых характеристик излучателей. Описаны методики подготовки образцов и проведения измерений спектров оптического поглощения (ОП) и фотолюминесценции (ФЛ). По анализу спектров ОП КТ определены значения энергий оптических переходов. Полосы с наименьшей энергией соответствуют первому экситонному пику поглощения ядра InP. Другие могут быть приписаны оболочке из ZnS. По синему сдвигу осуществлена оценка размера ядер образцов КТ. Для QD-1 исследована температурная зависимость первого экситонного пика поглощения. Спектры ФЛ позволяют предположить, что полосы свечения формируются как экситонными переходами, так и дефектами кристаллической решётки ядра InP. Синтезирован ряд структур нанопористого оксида алюминия, отожженного при различных температурах, с осаждёнными КТ и исследована их ФЛ. Показано, что после осаждения в AAО НК InP/ZnS, сохраняют свои флуоресцентные свойства, следовательно, можно говорить об успешном создании композитных люминофоров InP/ZnS@AAO. Обсуждаются цветовые характеристики изучаемых образцов. / This study deals with the investigation of optical characteristics of differently sized InP/ZnS colloidal quantum dots (QD-1, QD-2, QD-3) and composite nanostrucrures of anodic aluminum oxide with QDs by means of spectrophotometry and luminescence spectroscopy techniques. The literature review concerning electronic states in an ideal nanocrystal (NC), synthesis of InP-based QDs, use of NCs for creating nanocomposites and calculating color characteristics of emitters was carried out. The methods of sample preparation and measurements of optical absorption (OA) and photoluminescence (PL) spectra are described. Values of optical transition energies are determined according to the analysis of QD OA spectra. The bands with the lowest energy correspond to the first exciton absorption peak of the InP core. The other transitions can be attributed to the ZnS shell. The core size of the QD samples was evaluated using the blue shift. The temperature dependence of the first exciton absorption peak was investigated for the QD-1. PL spectra of QDs indicate that the emission bands are formed by exciton transitions and defects of the InP crystal lattice. A series of structures of nanoporous aluminum oxide, annealed at different temperatures, with deposited QDs were synthesized and their PL were studied. Fluorescent properties of the QDs are found to be retained after the deposition, therefore, InP/ZnS@AAO composite phosphors were successfully created. Сolor characteristics of the samples under study are discussed.
118

Elaboration d'hétérostructures d'InN/InP et de semi-conducteurs III-V poreux : caractérisations physico-chimique, optique et électrique

Ben Khalifa, Sana 20 October 2008 (has links) (PDF)
Nous avons élaboré des structures de quatre couches d'InN/InP (100) en enrichissant en In la surface nitrurée à l'aide d'une cellule d'évaporation calibrée. Les propriétés physiques de ces structures ont été étudiées in-situ à l'aide de spectroscopie, des électrons Auger (AES), des photoélectrons X (XPS) et UV (UPS) avant d'être analysées ex-situ par photoluminescence (PL) et mesures électriques (I(V) et C(V)). Nous avons mené une étude de PL en fonction de la température et l'évolution de l'énergie du pic de PL obtenue en fonction de la température suivait la forme en S-inversé caractéristique des effets de localisation. Les caractéristiques électriques courant-tension des structures Hg/InN/InP montrent qu'elles forment un contact Schottky. Les caractéristiques capacité-tension montrent qu'elles se comportent comme une structure lorsqu'on polarise négativement et comme une structure MIS quand on polarise positivement. Dans la dernière partie de cette thèse, des résultats sont présentés sur l'étude des propriétés physico-chimiques et optiques de semi-conducteurs poreux : le GaAs et l'InP poreux. L'effet de confinement quantique dans les cristallites de GaAs poreux a été confirmé après avoir caractérisé optiquement par Photoréflectivité (PR) et photoluminescence (PL) des échantillons de GaAs poreux
119

Absorbant saturable ultra-rapide à multipuits quantiques pour le traitement tout-optique du signal

Gicquel-Guézo, Maud 09 July 2004 (has links) (PDF)
Cette thèse est consacrée à l'étude des absorbants saturables à multipuits quantiques (MPQ) InGaAs/InP dopés fer. Les non-linéarités de l'absorption excitonique sont exploitées pour la régénération tout-optique du signal à 1.55mm. Un modèle théorique permet de calculer les propriétés optiques non-linéaires des puits quantiques. L'efficacité du dopage fer des MPQ à réduire le temps de relaxation de l'absorption est démontrée expérimentalement et expliquée par un modèle dynamique de la capture des porteurs par les atomes de fer. L'insertion des MPQ dopés fer en microcavité, à mode accordé à la résonance excitonique, réduit la puissance de commande optique d'un facteur 50 et permet d'obtenir un contraste de 8dB. Un tel contraste augmente la distance de propagation de plus de 1000km pour un signal numérique à 10 Gb/s. Le temps de réponse peut être réduit à une valeur record de 290fs, tout en gardant un contraste de 5dB.
120

Croissance de boîtes quantiques d'InAs/InP(113)B pour les applications en télécommunications optiques

Caroff-Gaonac'H, Philippe 12 July 2005 (has links) (PDF)
Ce travail de thèse porte sur l'étude de la croissance des boîtes quantiques (BQs) d'InAs/InP(113)B en vue d'applications lasers pour les télécommunications optiques à 1.55 µm. Les BQs sont formées en épitaxie par jets moléculaires selon le mode de croissance Stranski-Krastanow. Les faibles dimensions de ces nanostructures entraînent des propriétés optoélectroniques remarquables. Dans un premier temps nous présentons des modèles dit de "nucléation-croissance", qui permettent de rendre compte de la plupart des résultats expérimentaux. La croissance des BQs est ensuite étudiée en fonction des paramètres de croissance, par des moyens d'analyses structurales et optiques. Nous avons obtenu une évolution originale des BQs avec le flux d'arsenic. Cette spécificité de la croissance sur (113)B a permis l'augmentation de la densité des BQs jusqu'à 1,6 1011 cm-2 et une amélioration de la dispersion en taille. Une nouvelle procédure de croissance en deux étapes, appelée "Double Cap Quaternaire" (DC) a été développée pour contrôler la longueur d'onde d'émission. Cette procédure donne lieu à une amélioration de la dispersion en taille. Une faible largueur de photoluminescence de 40 meV est ainsi obtenue. L'empilement de plusieurs plans de BQs DC Quaternaire est étudié, dans le but d'améliorer les performances lasers. Pour une forte densité les BQs présentent un ordre vertical et une bonne organisation dans le plan de croissance. La fabrication de structures lasers à BQs selon la procédure DC Quaternaire a permis l'obtention de l'émission laser à température ambiante. Les structures à BQs réalisées avec les conditions de croissance optimisées ont conduit à une réduction importante de la densité de courant de seuil avec une valeur record de 190 A/cm2.

Page generated in 0.0887 seconds