• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 42
  • 12
  • 11
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 163
  • 36
  • 28
  • 25
  • 20
  • 19
  • 18
  • 18
  • 17
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Acceleration of Transient Stability Simulation for Large-Scale Power Systems on Parallel and Distributed Hardware

Jalili-Marandi, Vahid 11 1900 (has links)
Transient stability analysis is necessary for the planning, operation, and control of power systems. However, its mathematical modeling and time-domain solution is computationally onerous and has attracted the attention of power systems experts and simulation specialists for decades. The ultimate promised goal has been always to perform this simulation as fast as real-time for realistic-sized systems. In this thesis, methods to speedup transient stability simulation for large-scale power systems are investigated. The research reported in this thesis can be divided into two parts. First, real-time simulation on a general-purpose simulator composed of CPU-based computational nodes is considered. A novel approach called Instantaneous Relaxation (IR) is proposed for the real-time transient stability simulation on such a simulator. The motivation of proposing this technique comes from the inherent parallelism that exists in the transient stability problem that allows to have a coarse grain decomposition of resulting system equations. Comparison of the real-time results with the off-line results shows both the accuracy and efficiency of the proposed method. In the second part of this thesis, Graphics Processing Units (GPUs) are used for the first time for the transient stability simulation of power systems. Data-parallel programming techniques are used on the single-instruction multiple-date (SIMD) architecture of the GPU to implement the transient stability simulations. Several test cases of varying sizes are used to investigate the GPU-based simulation. The simulation results reveal the obvious advantage of using GPUs instead of CPUs for large-scale problems. In the continuation of part two of this thesis the application of multiple GPUs running in parallel is investigated. Two different parallel processing based techniques are implemented: the IR method, and the incomplete LU factorization based approach. Practical information is provided on how to use multi-threaded programming to manage multiple GPUs running simultaneously for the implementation of the transient stability simulation. The implementation of the IR method on multiple GPUs is the intersection of data parallelism and program-level parallelism, which makes possible the simulation of very large-scale systems with 7020 buses and 1800 synchronous generators. / Energy Systems
32

Simulation of voltage source converter based shunt active filter in EMTP‐RV

Khera, Dinesh 01 August 2010 (has links)
The deterioration in power quality due to the increase in non linear loads has sparked a new interest in the filtering techniques used in transmission and distribution systems. Unlike passive filters, active filters are adaptable to rapidly changing source impedance and provide the necessary harmonic compensation for varying non-linear loads. This thesis models a Voltage Source Converter (VSC) based shunt active filter (SAF) to filter harmonics due to large non linear loads. SAF compensates the harmonics by injecting a compensating current which is equal in magnitude but opposite in phase to the disturbance in the system. The power circuit of this SAF consists of a three-phase VSC and the switching signals for this converter is generated by hysteresis based current modulation method. The controller uses the sinusoidal current control strategy of the generalized instantaneous p-q control theory to calculate the reference compensating current. Proposed SAF is simulated using EMTP-RV simulation package under steady state and dynamic conditions and its effectiveness in mitigating harmonics is tested. The stability and response of the SAF is also tested satisfactorily under transient load and severe AC / DC fault conditions. / UOIT
33

A Market Model For Pricing Inflation Indexed Bonds With Jumps Incorporation

Guney, Ibrahim Ethem 01 August 2008 (has links) (PDF)
Protection against inflation is an essential part of the today&#039 / s financial markets, particularly in high-inflation economies. Hence, nowadays inflation indexed instruments are being increasingly popular in the world financial markets. In this thesis, we focus on pricing of the inflation-indexed bonds which are the unique inflation-indexed instruments traded in the Turkish bond market. Firstly, we review the Jarrow-Yildirim model which deals with pricing of the inflation-indexed instruments within the HJM framework. Then, we propose a pricing model that is an extension of the Jarrow-Yildirim model. The model allows instantaneous forward rates, inflation index and bond prices to be driven by both a standard Brownian motion and a finite number of Poisson processes. A closed-form pricing formula for an European call option on the inflation index is also derived.
34

Comparison Of Various Svc Topologies And Control Strategies For Heavy Industry

Yalvac, Erdinc 01 September 2009 (has links) (PDF)
Power quality issues of heavy industry, especially iron and steel plants, require special solutions. High levels of harmonic currents, unbalanced operation and light flicker arising from rapid fluctuations of active and reactive power demands are common problems in these plants. Almost all of these plants in Turkey are equipped with modern Static Var Compensator (SVC) Systems. In this thesis, alternative control strategies and flicker compensation system topologies are investigated and evaluated based on real-time field data and compared with the existing SVC systems. It is found out that the currently installed SVCs are not fully capable of solving the power quality issues of EAFs. This thesis is dedicated to detailed analysis, design, control, and simulation of TCR based SVC using instantaneous power theory, Three Phase Bridge Connected STATCOM and Delta Connected STATCOM. These 3 different types of compensators are modelled based on the similar installed capacities and their contribution to voltage quality and reactive power compensation are compared.
35

Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners

Dooley, Jeffrey Brandon 17 February 2005 (has links)
Three experimental studies were conducted to quantify the effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential air conditioners. For all studies, the indoor dry-bulb (db) temperature was 80°F (26.7°C) db. The cycling study consisted of twelve transient tests conducted with an outdoor temperature of 95°F (35°C) db for cycle times of 6, 10, 15, and 24 minutes. Indoor relative humidities of 40%, 50%, and 60% were also considered. The evaporator airflow study consisted of twenty-four steady-state tests conducted with an indoor condition of 67°F (19.4°C) wet-bulb (wb) for evaporator airflows ranging from 50% below to 37.5% above rated airflow. Outdoor temperatures of 85°F (29.4°C) db, 95°F (35°C) db, and 105°F (40.6°C) db were also considered. The coil fouling study used a total of six condensers that were exposed to an outdoor environment for predetermined amounts of time and tested periodically. Three of the condensers were cleaned and retested during the periodic testing cycles. Testing consisted of thirty-three steady-state tests conducted with an indoor condition of 67°F (19.4°C) wb for outdoor exposure times of 0, 2000, 4000, and 8000 hours. Outdoor temperatures of 82°F (27.8°C) db and 95°F (35°C) db were also considered.
36

Opportunistic maintenance policy of a multi-unit system under transient state

Jain, Sulabh 01 June 2005 (has links)
Most modern systems are equipped with very complex, expensive, and high technology components whose maintenance costs have become an increasingly large portion of the total operating cost of these systems. Thus, the efficacy of the maintenance policy for these and related systems has become a major concern to both manufacturing and design engineers. Different kinds of maintenance strategies have been proposed to solve the problem. While some of these have proven effective, there is yet no definitive approach that has been found that support the maintainability requirements of transient systems or systems that exhibit transient behavior. Transient behavior is the notion of non-steady state operation, which is the characteristic of system operation during its useful life. For designing convenience most of the maintenance strategies have assumed negligible maintenance or repair time which is not practical.In this research an opportunistic maintenance (OM) approach is implemented on a multi-unit system that exhibits transient behavior. Under OM policy, if a maintenance event has been scheduled for certain components and in the process of implementing the scheduled maintenance of these targeted components, the maintenance of other components whose maintenance times are in close proximity is also implemented at the same time. As a result, the time and cost of marshalling and staging maintenance resources are reduced. As part of the system effectiveness measure, the instantaneous system availability based on the transient nature of the system, is estimated using the renewal theory approach.
37

Acceleration of Transient Stability Simulation for Large-Scale Power Systems on Parallel and Distributed Hardware

Jalili-Marandi, Vahid Unknown Date
No description available.
38

On the Machining Dynamics of Turning and Micro-milling Processes

Halfmann, Eric 2012 August 1900 (has links)
Excessive vibrations continue to be a major hurdle in improving machining efficiency and achieving stable high speed cutting. To overcome detrimental vibrations, an enhanced understanding of the underlying nonlinear dynamics is required. Cutting instability is commonly studied through modeling and analysis which incorporates linearization that obscures the true nonlinear characteristics of the system which are prominent at high speeds. Thus to enhance cutting dynamics knowledge, a comprehensive nonlinear turning model that includes tool-workpiece interaction is experimentally validated using a commercial laser vibrometer to capture tool and workpiece vibrations. A procedure is developed to use instantaneous frequency for experimental time-frequency analysis and is shown to thoroughly characterize the underlying dynamics and identify chatter. For the tests performed, chatter is associated with changing spectral components and bifurcations which provides a view of the underlying dynamics not experimentally observed before. Validation of the turning model revealed that the underlying dynamics observed experimentally are accurately captured, and the coupled tool-workpiece chatter vibrations are simulated. The stability diagram shows an increase in the chatter-free limit as the spindle speed increases until 1500rpm where it begins to level out. At high speeds the workpiece dominates the dynamics, and excessive workpiece vibrations create another stability limit to consider. Thus, workpiece dynamics should not be neglected in analyses for the design of machine tools and robust control laws. The chip formation mechanisms and high speeds make micro-milling highly non-linear and capable of producing broadband frequencies that negatively affect the tool. A nonlinear dynamic micro-milling model is developed to study the effect of parameters on tool performance through spectral analysis using instantaneous frequency. A lumped mass-spring-damper system is assumed for modeling the tool, and a slip-line force mechanism is adopted. The effective rake angle, helical angle, and instantaneous chip thickness are accounted for. The model produced the high frequency force components seen experimentally in literature. It is found that increasing the helical angle decreased the forces, and an increase in system stiffness improved the dynamic response. Also, dynamic instability had the largest effect on tool performance with the spindle speed being the most critical parameter.
39

Photonic Implementation of an Instantaneous Frequency Measurement

Sarkhosh, Niusha, niusha.sarkhosh@rmit.edu.au January 2009 (has links)
With the rapid and ongoing developments in telecommunication and electronic warfare technology, faster and more flexible systems are in demand. Wideband signal processing is thus needed to implement such systems. Microwave photonics has been introduced as a tool for achieving such ultra broadband signal processing. Instantaneous Frequency Measurement (IFM) receivers play an important role in electronic warfare. They have been developed as a means of obtaining a rapid indication of the presence of a threat and to roughly identify the frequency of the threat signals. They also have the advantages of low-cost, compactness and moderate to good sorting capability in an interference-free environment. The main limitation of the traditional RF IFM receivers is constrained bandwidth. Microwave Photonic IFMs have been considered, but the main disadvantages of photonic realization of the recent IFM receiver is cost. This work aims to propose and demonstrate low-cost photonic IFM receivers with a broad frequency measurement range. The proposed methods are based on the use of photonic mixing to down-convert the RF modulated optical signals to DC. In a RADAR warning receiver, usually a bank of IFMs is required. Increasing the numbers of IFMs requires an increase in the number of photo-detectors. Thus if low-frequency, low-cost detectors can be used, then the net system cost will be reduced significantly. The concept is proven and the issues arising are analyzed. In the proof of concept system, measurement of the RF frequency required advance knowledge of the RF power. Secondly, the use of co-axial RF cables as delay elements limited the bandwidth and increased bulk. Using a photonic hybrid approach to achieve orthogonal measurements was demonstrated as a means of dentifying both RF frequency and power simultaneously and independently. Employing all optical mixing removed the need for co-axial RF cables delays using non-linear optical devices such as Semiconductor Optical Amplifier (SOA) and Highly Non-Linear Fiber (HLNF). The last investigation is to improve the sensitivity of the implemented IFM system. The sensitivity of the implemented system is characterized first and a lock-in technique is employed to improve the sensitivity of the system. The final system achieves a sensitivity of -41 dBm which is comparable with the traditional RF IFM receivers.
40

Conception d'amplificateurs intégrés de puissance en technologies Silicium pour station de base de la quatrième génération des systèmes de radiocommunications cellulaires / Design of base stations integrated power amplifier in silicon technology for the fourth generation of cellular radio communication networks

Plet, Sullivan 30 November 2016 (has links)
Ces travaux de recherche concernent les amplificateurs RF de puissance pour stations de base. La technologie actuelle de transistor RF la plus compétitive, le LDMOS, est confrontée à l’augmentation constante du débit et à la concurrence d’autres technologies comme le HEMT GaN. Un autre challenge est l’intégration de l’adaptation de sortie réalisée en dehors du boîtier qui n’est plus compatible avec les futurs standards combinant jusqu’à soixante-quatre amplificateurs de puissance proches les uns des autres.Une première piste envisagée dans cette thèse est le substrat Si à haute résistivité. A partir de simulations puis de mesures sur plaques, l’amélioration du facteur de qualité des éléments passifs a été démontrée mais ces premières investigations ne permettent pas l’intégration de l’adaptation de sortie avec la technologie actuelle bien que les résultats soient très encourageants. Les challenges technologiques de ce nouveau substrat ont mené à considérer la structure différentielle pour les amplificateurs. En plus des avantages connus de cette configuration, nous avons montré que la conception d’un amplificateur de puissance différentiel montre une amélioration importante de la bande instantanée répondant au besoin d’un débit toujours plus élevé. Cette amélioration ne dégrade pas les autres performances en gain, rendement et puissance de sortie. Dans la continuité de cette thèse, les perspectives concernent la conception d’un amplificateur de puissance sur substrat SI à haute résistivité combinée à une structure différentielle qui pourrait permettre une avancée majeure sur toutes les performances tout en gardant l’avantage du faible coût du LDMOS Silicium en comparaison des autres substrats. / This research concerns the RF power amplifiers for base stations. The current most competitive technology of RF transistor, the LDMOS, faces the constantly increasing data rate and competition from other technologies such as GaN HEMT. Another challenge is the integration of the output matching made outside of the package which is not compatible with future standards combining up to sixty-four power amplifiers close to each other. A first track proposed in this thesis is the high resistivity Si substrate. From simulations and measurements on wafers, improved passive elements quality factor has been demonstrated but these initial investigations do not allow the integration of the output matching with the current technology, although the results are very encouraging. The technological challenges of this new substrate led to consider the differential structure for amplifiers. Besides to the known advantages of this configuration, we have shown that the design of a differential power amplifier shows a significant improvement in the instantaneous band width meeting the need for higher data rate. This improvement does not degrade other performance as gain, efficiency and output power. In continuation of this thesis, the perspective concerns the design of a power amplifier on a high resistivity Si substrate combined with a differential structure that could enable a major advance over all performance while keeping the advantage of low cost of LDMOS silicon compared to other substrates.

Page generated in 0.0825 seconds