• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 46
  • 10
  • Tagged with
  • 145
  • 63
  • 44
  • 38
  • 35
  • 32
  • 29
  • 26
  • 24
  • 23
  • 23
  • 22
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Robustness analysis with integral quadratic constraints, application to space launchers. / Analyse de robustesse par contraintes intégrales quadratiques, application aux lanceurs spatiaux

Chaudenson, Julien 04 December 2013 (has links)
Les travaux effectués dans le cadre de cette thèse « Analyse de robustesse par contraintes intégrales quadratiques - Application aux lanceurs spatiaux » ont été menés en collaboration entre le Département Automatique de Supélec, EADS Astrium ST, l’Agence Spatiale Européenne (ESA) et l’université de Stuttgart. Le but était d’adapter et d’utiliser des méthodes analytiques de validation de loi de commande d'un lanceur en phase balistique pour améliorer les résultats obtenus par l’approche probabiliste fondée sur des simulations, technique actuellement majoritaire dans l’industrie. Dans ce cadre, l’utilisation des contraintes intégrales quadratiques (IQC) a permis de caractériser la stabilité et la performance robuste de la loi de commande d’un modèle représentatif du lanceur. Nous avons étudié l’influence de la dynamique non-linéaire des lanceurs sur la stabilité et la performance robuste. Dans ce cadre, nous avons factorisé les équations du mouvement en prenant en compte les incertitudes de la matrice d’inertie ainsi que les couplages gyroscopiques. Le second axe traita de l’influence des actionneurs de type modulateur de largeur impulsions (PWM) sur la stabilité du système par deux études IQC. La conclusion de ces travaux de thèse met l’accent sur l’importance de l’utilisation de méthodes analytiques dans le domaine spatial. Ces méthodes permettent l’obtention de garanties rigoureuses de stabilité et de performance des systèmes. De plus, toutes les méthodes d’analyse possèdent leur extension pour la synthèse de correcteurs robustes. Ainsi on imagine aisément l’immense gain que pourrait produire l’utilisation de ces méthodes pour la synthèse de correcteurs robustes. / The introduction of analytical techniques along the steps of the development of a space launcher will allow significant reductions in terms of costs and manpower, and will enable, by a more systematical way of tuning and assessing control laws, to get flyable designs much faster. In this scope, IQC based tools already present promising result and show that they may be the most appropriate ones for the robustness analysis of large complex systems. They account for the system structure and allow dealing specifically with each subsystems, it means that we can improve the representation contained in the multipliers easily and reuse the set up to assess the improvements. The flexibility of the method is a huge advantage. We experienced it during two phases. The first was dedicated to the analysis of the three-degree-of-freedom uncertain nonlinear equation of motion of a rigid body. Secondly, we studied the influence of the pulse-width modulator behavior of the attitude control system on the launcher stability. IQC-based stability analysis allowed defining estimations of the stability domain with respect to uncertainties and system parameters. Moreover, the results obtained with IQC can go way beyond stability analysis with performance analysis with description of the particular performance criteria of the field with appropriate multipliers. Later on controller synthesis and merging of IQC method with worst-case search algorithms could extend greatly the frame of use of this analytical tool and give it the influence it deserves.
42

Calcul des singularités dans les méthodes d’équations intégrales variationnelles / Calculation of singularities in variational integral equations methods

Salles, Nicolas 18 September 2013 (has links)
La mise en œuvre de la méthode des éléments finis de frontière nécessite l'évaluation d'intégrales comportant un intégrand singulier. Un calcul fiable et précis de ces intégrales peut dans certains cas se révéler à la fois crucial et difficile. La méthode que nous proposons consiste en une réduction récursive de la dimension du domaine d'intégration et aboutit à une représentation de l'intégrale sous la forme d'une combinaison linéaire d'intégrales mono-dimensionnelles dont l'intégrand est régulier et qui peuvent s'évaluer numériquement mais aussi explicitement. L'équation de Helmholtz 3-D sert d'équation modèle mais ces résultats peuvent être utilisés pour les équations de Laplace et de Maxwell 3-D. L'intégrand est décomposé en une partie homogène et une partie régulière ; cette dernière peut être traitée par les méthodes usuelles d'intégration numérique. Pour la discrétisation du domaine, des triangles plans sont utilisés ; par conséquent, nous évaluons des intégrales sur le produit de deux triangles. La technique que nous avons développée nécessite de distinguer entre diverses configurations géométriques ; c'est pourquoi nous traitons séparément le cas de triangles coplanaires, dans des plans sécants ou parallèles. Divers prolongements significatifs de la méthode sont présentés : son extension à l'électromagnétisme, l'évaluation de l'intégrale du noyau de Green complet pour les coefficients d'auto-influence, et le calcul de la partie finie d'intégrales hypersingulières. / The implementation of the boundary element method requires the evaluation of integrals with a singular integrand. A reliable and accurate calculation of these integrals can in some cases be crucial and difficult. The proposed method is a recursive reduction of the dimension of the integration domain and leads to a representation of the integral as a linear combination of one-dimensional integrals whose integrand is regular and that can be evaluated numerically and even explicitly. The 3-D Helmholtz equation is used as a model equation, but these results can be used for the Laplace and the Maxwell equations in 3-D. The integrand is decomposed into a homogeneous part and a regular part, the latter can be treated by conventional numerical integration methods. For the discretization of the domain we use planar triangles, so we evaluate integrals over the product of two triangles. The technique we have developped requires to distinguish between several geometric configurations, that's why we treat separately the case of triangles in the same plane, in secant planes and in parallel planes.
43

Contributions à l'étude de quelques fonctionnelles stochastiques

Breton, Jean-Christophe 26 June 2009 (has links) (PDF)
Ce mémoire est une présentation de contributions à l'étude de fonctionnelles stochastiques. Ces contributions comportent à la fois des analyses théoriques des lois des fonctionnelles (régularité, inégalités de déviation, théorèmes limites), et des études de modèles motivés par les applications (mathématiques financières, modèles de boules aléatoires). Le mémoire est organisé selon trois thèmes principaux que nous décrivons brièvement. Dans une première partie, les lois de différents types d'intégrales stochastiques (stable, Wiener-Itô, Poisson) sont étudiées. En considérant les intégrales comme des fonctionnelles sur l'espace des trajectoires de processus naturellement associés aux mesures aléatoires d'intégration, nous analysons la régularité des lois (existence de densité, convergence en variation par rapport aux fonctions intégrées). La deuxième partie est consacrée à des inégalités sur les lois de probabilités. Les premières sont des inégalités de concentration qu'on propose pour des fonctionnelles sur l'espace de Poisson lorsque le gradient (de type différence) satisfait certaines bornes. Nos résultats sont spécialisés pour de nombreuses classes de fonctionnelles (parmi lesquelles~: des vecteurs d'intégrales de Poisson, des fonctionnelles de Wiener quadratiques, des fonctionnelles stables). Les secondes sont des inégalités de comparaison convexe pour des exponentielles stochastiques ou des vecteurs à représentation prévisible. Des applications aux bornes de prix d'options financières sont également considérées. La troisième partie regroupe différents théorèmes limites pour différentes convergences et différents objets. Des convergences en variation sont obtenues pour des processus empiriques en renforçant des principes d'invariance, et pour les variations d'Hermite du mouvement brownien fractionnaire en obtenant des résultats de type Berry-Esséen. Dans des modèles de boules aléatoires et de mots aléatoires, ce sont des fluctuations en lois de fonctionnelles d'intérêt que nous analysons.
44

La méthode des équations intégrales de frontière pour la résolution des problèmes de potentiel en électrotechnique, et sa formulation axisymétrique

Krähenbühl, Laurent 16 December 1983 (has links) (PDF)
Sur le plan international, deux formulations des problèmes de champs par les équations intégrales de frontières sur un potentiel scalaire se sont imposées. Au premier chapitre, nous établissons ces deux formulations: "globale" et "de l'identité de Green" à partir des équations physiques fondamentales et nous dégageons l'intérêt et les limites de chacune. Le domaine d'application privilégié de la première est l'électrostatique en raison de la linéarité des milieux généralement rencontrés et des conditions aux limites qui lui sont propres. La seconde est une généralisation de la première et permet de résoudre le problème de Laplace associé à n'importe quelles conditions aux limites : on peut de ce fait envisager dans l'avenir un couplage avec une méthode variationnelle pour la résolution des problèmes non linéaires. <br /><br />Le second chapitre est consacré à la méthode de l ' identité de Green en général. Dans un premier paragraphe, nous établissons de façon originale les conditions d'équivalence entre les équations physiques et les équations intégrales de frontières, ce qui nous conduit en particulier à une condition a priori d'équivalence pour les systèmes plans. Le traitement numérique et en particulier la discrétisation des équations introduit des erreurs que nous cherchons à caractériser au second paragraphe. Le troisième paragraphe est consacré plus spécialement aux problèmes associés à la discrétisation par des éléments finis isoparamétriques : critères de choix des ensembles de points où sont écrites les équations, de la méthode de résolution – directe ou projective – ; traitement particulier des points anguleux, rôle et utilisation du facteur angulaire de l'équation intégrale. Le chapitre se termine par un paragraphe consacré à l'exploitation des résultats : calcul des grandeurs en dehors des frontières et des grandeurs globales, tracé de lignes équipotentielles.<br /><br />Le troisième chapitre concerne la formulation axisymétrique de la méthode de l'identité de Green : lorsqu'un système possède une symétrie de révolution, il n'a en fait que deux dimensions et il est possible d'exprimer directement les équations intégrales dans ces deux dimensions. Après avoir établi les expressions analytiques nécessaires et montré la démarche faite pour les traiter numériquement, nous présentons des résultats de validation obtenus avec le programme d'ordinateur PHIAX que nous avons développé.
45

Résolution hautes fréquence d'équations intégrales par une méthode de discrétisation microlocale

Tolentino, Marc 17 December 1997 (has links) (PDF)
Ce travail a consisté en la présentation et la validation d'une nouvelle méthode ayant pour thème la simulation de la propagation d'ondes. Le problème analysé est celui de la diffraction d'ondes en régime harmonique par des obstacles tridimensionnels quelconques. Pour modéliser ces phénomènes, nous nous sommes intéressés aux équations intégrales. La méthodes proposée a pour objectif de les utiliser à hautes fréquences en réduisant la complexité du calcul et surtout en stockage mémoire. Son originalité réside en une approche en deux temps de la solution cherchée. Dans un premier temps, on utilise une discrétisation microlocale. Dans un second temps, on propose une transformation par ondelettes. L'approche microlocale, qui repose sur l'usage systèmatique d'une localisation en espace et en direction de propagation, conduit à inverser des matrices creuses mais très mal conditionnées. Pour surmonter cette difficulté, nous aovns considéré la seconde approche qui consiste à opérer un filtrage par ondelettes. Ces approximations se sont avérées particulièrement efficaces pour diminuer le remplissage et la taille des matrices issues de la résolutions d'équations intégrales.<br />Le développement et la mise au point d'un code ont été effectués au CERMICS-INRIA Sophia-Antipolis. La vérification de la validité de notre code s'appuie sur des calculs de surface équivalente radar. Des résultats numériques encourageants sont présentés pour des obstacles convexes et non-connexes.<br />La méthode est ensuite étendue aux opérateurs pseudo-différentiels et Fourier-intégraux. Ils interviennent dans le cas de milieux hétérogènes et anisotropes.
46

Calcul stochastique généralisé et applications au mouvement brownien fractionnaire; Estimation non-paramétrique de la volatilité et test d'adéquation

Nourdin, Ivan 30 June 2004 (has links) (PDF)
Dans la première partie de cette thèse, nous introduisons des intégrales d'ordre m et leur associons des formules d'Ito. Nous nous intéressons plus particulièrement au cas du mouvement brownien fractionnaire. Dans la seconde partie, nous étudions les approximations aux premier et second ordres des intégrales d'ordre m. Nous donnons des résultats de convergences presque-sure et en loi. Dans la troisième partie, nous nous intéressons aux équations différentielles dirigées par une fonction holdérienne. Nous donnons un résultat d'existence et d'unicité et étudions deux approximations de la solution. Dans la quatrième partie, nous étudions l'absolue continuité de la loi de la solution d'une équation différentielle stochastique dirigée par un mouvement brownien fractionnaire. Nous proposons un critère simple assurant que la solution au temps t admet une densité. Enfin, la dernière partie s'intéresse à l'estimation du coefficient de volatilité de la solution d'une équation différentielle stochastique classique. Nous construisons également un test d'adéquation.
47

Analyse mathématique d'équations de semi-conducteurs avec mobilités non constantes et identification des frontières libres dans les jonctions PN

Ellabib, Abdellatif 20 June 2000 (has links)
La description des mécanismes de conduction dans les dispositifs semi-conducteurs par le modèle dérive-diffusion (DD) mène à un système de trois équations aux dérivées partielles non linéaires fortement couplées. Cette thèse est composée de trois parties. La première est consacrée à la mise en équations et à la présentation des régimes de fonctionnement ainsi que la simplification du modèle dans le cas d'une jonction pn. La deuxième partie consiste à identifier la zone de dépletion dans une jonction PN. En formulant le problème en un problème d'inéquations variationnelles, nous démontrons que le problème admet une solution. L'originalité numérique de cette partie est l'utilisation des noeuds sur la frontière libre comme inconnus. Nous proposons deux algorithmes de résolution que nous testons en utilisant la méthode des éléments finis et la méthode des équations intégrales. Dans la troisième partie, nous nous intéressons à l'étude mathématique du modèle DD à l'état stationnaire dans les semi-conducteurs écrit avec les variables de Slotboom. Nous démontrons l'existence d'une solution, dans le cas où les lois de mobilités dépendent du champ électrique, en appliquant les techniques de l'analyse convexe. Ensuite, nous considérons que le terme d'avalanche est non nul, nous donnons des estimations a priori et nous prouvons un théorème d'existence. Afin d'étudier l'unicité de solutions de notre modèle, nous exposons tout d'abord une condition pour que le système possède au plus une solution. Nous en déduisons des résultats d'unicité dans des cas spécifiques tels que le domaine soit suffisamment petit ou la permittivité soit assez grande. Nous donnons un théorème d'unicité locale dans les cas où le terme d'avalanche est non nul et les changements de conditions aux limites se font à angles droits.
48

Application des méthodes intégrales pour l'évaluation de la performance des puits horizontaux dans un réservoir stratifié à géométrie quelconque

MOUMAS, Valérie 07 October 2003 (has links) (PDF)
L'utilisation des méthodes intégrales dans le milieu pétrolier est récente et reste limitée à des problèmes 2D, le puits étant modélisé comme un terme source. Dans ce travail, nous proposons une nouvelle méthode intégrale pour évaluer la performance des puits dans un réservoir stratifié à géométrie quelconque en 3D. Ici, l'écoulement dans le puits est pris en compte par deux types de conditions aux limites, la première linéaire, la seconde non-linéaire et non-locale. Nous avons démontré que chacun des deux modèles (linéaire et non-linéaire) est bien posé. Du point de vue numérique, nous avons développé une nouvelle formulation intégrale, équivalente au modèle linéaire. Les équations intégrales ont été discrétisées par une méthode de Galerkin. D'autre part, nous avons pu tirer profit du problème d'échelle pour faire une approximation filaire du puits. Les tests numériques montrent que cette nouvelle méthode intégrale permet de calculer l'indice de productivité du puits à 1% près.
49

Analyse et résolution numérique de l'équation de transfert. Application au problème des atmosphères stellaires

Titaud, Olivier 19 December 2001 (has links) (PDF)
Cette thèse traite de la résolution numérique des équations de Fredholm de seconde espèce faiblement singulières, posées dans un espace de Banach. Les méthodes décrites ici sont appliquées plus particulièrement dans le cas de l'espace des fonctions continues sur un intervalle compact et dans le cas de l'espace des fonctions intégrables, au sens de Lebesgue, sur un intervalle compact. Le premier chapitre fixe brièvement le cadre théorique de cette étude. Différents types de convergence d'une suite d'opérateurs dans un espace de Banach complexe, ainsi que leurs propriétés, y sont notamment rappelés. Le deuxième chapitre est consacré à la description et à l'analyse de deux méthodes d'approximation de rang fini sur lesquelles sont appliqués trois schémas de raffinement itératif. Des majorations des erreurs relatives associées à chaque méthode et dans chacun des espaces fonctionnels considérés y sont déduites, ainsi que les taux de convergence des schémas de raffinement correspondants. Une description détaillée de la mise en \oe uvre de ces derniers est donnée. Le troisième chapitre traite de l'application de ces méthodes à la résolution numérique de l'équation de transfert. Cette équation intervient au sein d'un problème beaucoup plus vaste (émanant de la théorie du transfert) dont une brève description est donnée dans le cadre particulier des atmosphères stellaires. Des expériences numériques, portant sur la validation des méthodes proposées et sur des cas ayant un sens astrophysique, sont présentées. La fin de ce chapitre est consacrée à la description de méthodes asymptotiques de décomposition du domaine permettant de surmonter la difficulté de résoudre cette équation lorsque le paramètre d'intégration varie dans un intervalle très large, ce qui est le cas dans certaines applications astrophysiques.
50

Simulation des convertisseurs électromécaniques

Leconte, Vincent 11 October 2000 (has links) (PDF)
La simulation numérique du fonctionnement des dispositifs électromécaniques doit prendre en compte simultanément les aspects magnétiques, électriques et mécaniques en présence. En effet, les convertisseurs étudiés sont généralement reliés à un circuit d'alimentation électrique et possèdent des pièces magnétiques et conductrices en mouvement. Les modélisations proposées sont basées sur la méthode des éléments finis qui permet une discrétisation des équations des phénomènes physiques à traiter. Une formulation du problème des courants induits avec mouvement est présentée, ainsi que les couplages nécessaires avec les équations électriques et cinématiques. L'essentiel des travaux porte sur les techniques de prise en compte du mouvement dans un tel contexte. Deux méthodes sont alors proposées et comparées : le couplage des éléments finis avec des équations intégrales de frontières d'une part, et des procédures de remaillage automatique d'autre part. Une approche originale de maillage à l'aide de boules est présentée. Les développements réalisés sont appliqués pour l'étude 2D de dispositifs électromécaniques industriels. Les modélisations permettent d'étudier l'influence de phénomènes tels que les courants induits ou les saturations magnétiques sur leur fonctionnement.

Page generated in 0.0353 seconds