• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 15
  • 8
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 104
  • 28
  • 22
  • 20
  • 20
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Contribution to the qualitative study of planar differential systems

Grau Montaña, Maria Teresa 17 December 2004 (has links)
Aquesta tesi es situa en el marc de la teoria qualitativa dels sistemes diferencials en el pla. Cada capítol conté un aspecte diferent. A la introducció, es dóna un resum dels resultats més coneguts i s'hi introdueix la notació que es fa servir al llarg de la tesi. En particular, descrivim el problema de la integrabilitat i alguns resultats sobre la determinació de l'estabilitat d'un punt singular o d'una òrbita periòdica a fi de presentar els darrers capítols. El problema de la integrabilitat es defineix com el problema de trobar la integral primera d'un sistema d'equacions diferencials en el pla i determinar la classe funcional a la qual pertany. Els Capítols 2 i 3 tracten el problema de la integrabilitat.En el Capítol 2 donem un resultat que permet trobar una expressió explícita per a una integral primera d'un cert tipus de sistemes polinomials. Mitjançant un canvi racional de variables, fem correspondre a una equació diferencial lineal homogènia de segon ordre: A2(x) w'(x) + A1(x) w'(x) + A0(x) w(x) = 0, els coeficients de la qual són polinomials, a un sistema diferencial polinomial pla. Provem que aquest sistema té un invariant per a cada solució arbitrària no nul·la w(x) de l'edo de segon ordre, que, quan w(x) és un polinomi, dóna lloc a una corba algebraica invariant. A més, donem una expressió explícita per a una integral primera del sistema construïda a partir de dues solucions independents de l'edo de segon ordre. Aquesta integral primera no és, en general, una funció Liouvilliana. Finalment, verifiquem que tots els exemples coneguts de famílies de sistemes quadràtics amb una corba algebraica invariant de grau arbitràriament alt es poden descriure mitjançant aquesta construcció (mòdul transformacions birracionals).En el Capítol 3, les corbes algebraiques invariants d'un sistema diferencial polinomial pla juguen el paper fonamental. Si un sistema diferencial polinomial pla té una corba algebraica invariant irreductible, aleshores els valors del seu cofactor en cadascun dels punts singulars no degenerats estan determinats. De fet, aquest valor es una combinació lineal a coeficients naturals dels valors propis associats al punt singular no degenerat. Aquests coeficients naturals es poden determinar completament en alguns casos depenent de la natura del punt singular. Així mateix, els punts de l'infinit també es poden tenir en compte. Un cop considerem el sistema en el pla projectiu complex, el grau d'una corba algebraica invariant esdevé un paràmetre del seu cofactor. Si considerem un sistema de grau d, aleshores té d^2 + d + 1 punts singulars (comptats amb la seva multiplicitat) i el cofactor d'una corba algebraica invariant té grau pel cap alt d-1. Procedim de la manera següent: prenem un polinomi de grau d-1 amb els seus d(d+1)/2 coeficients arbitraris i suposem que és el cofactor d'una corba algebraica invariant irreductible de grau n. Aleshores, imposem totes les condicions que ens donen els punts singulars no degenerats. En el cas general, imposem d^2 + d +1 condicions i, així, podem determinar completament el cofactor i el grau de la corba, l'existència de la qual es pot determinar resolent un sistema d'equacions lineal, o trobem una condició d'incompatibilitat. D'aquesta manera, en general, podem determinar l'existència de totes les corbes algebraiques invariants d'un sistema.El Capítol 4 tracta sobre l'estabilitat d'una òrbita periòdica d'un sistema diferencial pla. Suposem que f(x,y)=0 és una corba invariant irreductible amb cofactor que conté l'òrbita periòdica. Provem que les integrals sobre l'òrbita periòdica de la divergència i del cofactor coincideixen. Així, podem decidir sobre l'estabilitat de l'òrbita periòdica mitjançant la integració del cofactor sobre aquesta. En el Capítol 5, donem una aplicació dels resultats descrits en els Capítols 3 i 4. Considerem els sistemes quadràtics amb un cicle límit algebraic coneguts fins al moment de la redacció d'aquesta tesi. Aquest cicles límit algebraics estan continguts en corbes algebraiques invariants de graus 2, 4, 5 i 6 i algunes d'aquestes famílies de sistemes quadràtics son birracionalment equivalents. Aplicant el mètode descrit en el Capítol 3, mostrem que la corba algebraica invariant que conté el cicle límit es l'única corba algebraica invariant del sistema. Aprofitem aquest resultat per provar que aquests sistemes no tenen integral primera Liouvilliana. I aplicant la formula donada en el Capítol 4, provem que aquests cicles límit algebraics son hiperbòlics. El Capítol 6 tracta sobre l'estudi i les propietats de la funció període associada a un punt singular amb part lineal de tipus centre-focus. Com que el punt singular és sempre monodròmic, donada una secció transversal al flux amb el punt singular com a extrem, podem definir l'aplicació de Poincaré i la funció període associades a la secció. Diem que el punt és isòcron si podem trobar una secció tal que la seva funció període associada és constant. Aquesta definició generalitza la definició usual donada per centres a punts singulars qualssevol amb part lineal de tipus centre-focus. Caracteritzem aquesta propietat mitjançant simetries de Lie i formes normals, tot generalitzant els procediments coneguts per centres. Així mateix, donem un exemple d'una família de sistemes depenent d'un paràmetre real, tals que el seu origen és un punt singular amb part lineal de tipus centre-focus i que mai no és un punt isòcron. / Esta tesis se sitúa en el marco de la teoría cualitativa de los sistemas diferenciales en el plano. Cada capítulo contiene un aspecto distinto. En la introducción, se da un resumen de los resultados conocidos y se presenta la notación usada durante el resto de la tesis. En particular, se describe el problema de la integrabilidad y algunos resultados referentes a la determinación de la estabilidad de un punto singular o una órbita periódica con el fin de introducir los últimos capítulos. Definimos el problema de la integrabilidad como el problema de encontrar una integral primera para un sistema diferencial plano y determinar la clase funcional a la cual ésta debe pertenecer. Los Capítulos 2 y 3 tratan sobre el problema de la integrabilidad. En el Capítulo 2, obtenemos un resultado que permite encontrar una expresión explícita para una integral primera para un cierto tipo de sistema polinomial. Mediante un cambio racional de variable, hacemos corresponder una ecuación diferencial lineal homogénea de segundo orden: A2 (x) w'(x) + A1(x) w'(x) + A0(x) w(x) = 0, cuyos coeficientes son polinomios, a un sistema diferencial polinomial en el plano. Probamos que dicho sistema tiene un invariante para cada solución arbitraria no nula w(x) de la edo de segundo orden, que, en caso que w(x) sea un polinomio, da lugar a una curva algebraica invariante. Además, damos una expresión explícita de una integral primera para el sistema construida a partir de dos soluciones independientes de la edo de segundo orden. Esta integral primera no es, en general, una función Liouvilliana. Finalmente, verificamos que todos los ejemplos conocidos de familias de sistemas cuadráticos con una curva algebraica invariante de grado arbitrariamente alto se pueden describir mediante esta construcción (módulo transformaciones birracionales).En el Capítulo 3, las curvas algebraicas invariantes de un sistema diferencial plano polinomial juegan un papel fundamental. Si una curva algebraica invariante e irreducible existe para un sistema polinomial plano, entonces los valores de su cofactor en cada punto singular no degenerado están determinados. De hecho, este valor es una combinación lineal a coeficientes naturales de los valores propios asociados al punto singular no degenerado. Estos coeficientes naturales se pueden determinar completamente según la naturaleza del punto singular. Además, también podemos considerar los puntos del infinito. Una vez que el sistema se considera en el plano proyectivo complejo, el grado de una curva algebraica invariante deviene un parámetro de su cofactor. Si consideramos un sistema de grado d, entonces tiene d^2 + d + 1 puntos singulares (contados con su multiplicidad) y el cofactor de una curva algebraica invariante es un polinomio de grado a lo sumo d-1. Procedemos de la manera siguiente: tomamos un polinomio de grado d-1 con sus d(d+1)/2 coeficientes arbitrarios y suponemos que es el cofactor de una curva algebraica invariante e irreducible de grado n. Entonces, imponemos todas las condiciones dadas por los puntos singulares no degenerados. En el caso general, imponemos d^2 + d + 1 condiciones y, en consecuencia, determinamos completamente el cofactor y el grado de la curva, cuya existencia puede ser determinada resolviendo un sistema lineal de ecuaciones, o mostramos una condición de incompatibilidad. Por tanto, podemos determinar la existencia de todas las curvas algebraicas invariantes para un sistema general. El Capítulo 4 trata sobre la estabilidad de una órbita periódica de un sistema diferencial plano. Suponemos que f(x,y)=0 es una curva invariante e irreducible con cofactor que contiene la órbita periódica. Probamos que las integrales sobre la órbita periódica de la divergencia y del cofactor coinciden. De aquí que podamos deducir la estabilidad de una órbita periódica mediante la integración del cofactor sobre ésta. En el Capítulo 5, describimos una aplicación de los resultados dados en los Capítulos 3 y 4. Consideramos los sistemas cuadráticos con un ciclo límite algebraico conocidos hasta la redacción de esta tesis. Estos ciclos límite algebraicos están contenidos en curvas algebraicas invariantes de grados 2, 4, 5 y 6 y algunas de estas familias de sistemas cuadráticos son birracionalmente equivalentes. Aplicando el método descrito en el Capítulo 3, mostramos que no existe ninguna curva algebraica invariante excepto la que contiene el ciclo límite. Aprovechamos este resultado para mostrar que estos sistemas no tienen integral primera Liouvilliana. Y, aplicando la formula dada en el Capítulo 4, probamos que estos ciclos límite algebraicos son hiperbólicos. El Capítulo 6 trata sobre el estudio de las propiedades de la función periodo asociada a un punto singular con parte lineal de tipo centro-foco. Dada una sección transversal al flujo con dicho punto singular por extremo, podemos definir la aplicación de Poincaré y la función periodo asociadas a esta sección puesto que este punto es siempre monodrómico. Decimos que este punto es isócrono si podemos encontrar una sección tal que la función periodo asociada a ella sea constante. Esta definición generaliza la definición usual dada para centros a cualquier punto singular con parte lineal de tipo centro-foco. Caracterizamos esta propiedad mediante simetrías de Lie y formas normales, generalizando los procedimientos conocidos para centros. Además, damos un ejemplo de una familia de sistemas que dependen de un parámetro real, tales que el origen es un punto singular con parte lineal de tipo centro-foco y que nunca es un punto isócrono. / This thesis is situated in the framework of the qualitative theory of differential systems in the plane. Each chapter contains a different topic. In the introduction, a summary of known results is given and the notation used through the rest of the memory is presented. In particular, we describe the integrability problem and some results concerning the determination of the stability of a singular point or a periodic orbit in order to introduce the latest chapters. We define the integrability problem as the problem of finding a first integral for a planar differential system and determining the functional class it must belong to. Chapters 2 and 3 are concerned with the integrability problem. In Chapter 2, we obtain a result which allows to find an explicit expression for a first integral of a certain type of polynomial system. By means of a rational change of variable, we make correspond the homogenous second order linear differential equation: A2 (x) w'(x) + A1(x) w'(x) + A0(x) w(x) = 0, whose coefficients are polynomials, to a planar polynomial differential system. We prove that this system has an invariant for each arbitrary nonnull solution w(x) of the second-order ode, which, in case w(x) is a polynomial, gives rise to an invariant algebraic curve. In addition, we give an explicit expression of a first integral for the system constructed from two independent solutions of the second order ode. This first integral is not, in general, a Liouvillian function. Finally, we verify that all the known examples of families of quadratic systems with an invariant algebraic curve of arbitrarily high degree can be described by this construction (modulus birrational transformations). In Chapter 3, invariant algebraic curves of a planar polynomial differential system play the fundamental role. If an irreducible invariant algebraic curve for a planar polynomial differential system exists, then the values of its cofactor at each non-degenerate singular point are determined. In fact, this value is a linear combination with natural coefficients of the eigenvalues associated to the non-degenerate singular point. These natural coefficients can be completely determined in some cases depending on the nature of the singular point. Moreover, the points at infinity can also be taken into account. Once the system is considered in the projective complex plane, the degree of an invariant algebraic curve becomes a parameter of its cofactor. If we consider a system of degree d, then it has d^2 + d + 1 singular points (counted with multiplicity) and the cofactor of an invariant algebraic curve is a polynomial of degree at most d-1. We proceed as follows: we take a polynomial of degree d-1 with its d(d+1)/2 arbitrary coefficients and we assume that it is the cofactor of an irreducible invariant algebraic curve of degree n. Then, we impose all the conditions given by the non-degenerate singular points. In the general case, we impose d^2 + d + 1 conditions and, hence, we completely determine the cofactor and the degree of the curve, whose existence can be determined by solving a linear system of equations, or we show an incompatibility condition. Therefore, we can determine the existence of all the invariant algebraic curves of a general system.Chapter 4 is about the stability of a periodic orbit of a planar differential system. We assume that f(x,y)=0 is a real irreducible invariant curve with cofactor which contains the periodic orbit. We prove that the integrals over the periodic orbit of the divergence and the cofactor coincide. Hence, we can decide the stability of a periodic orbit by means of the integration of the cofactor over it. In Chapter 5, we describe an application of the results given in Chapters 3 and 4. We consider the quadratic systems with an algebraic limit cycle known until the composition of this thesis. These algebraic limit cycles are contained in invariant algebraic curves of degrees 2, 4, 5 and 6 and there are some of these families of quadratic systems which are birrationally equivalent one to the other. Applying the method given in Chapter 3, we show that there is no other irreducible invariant algebraic curve that the one which contains the limit cycle. We take profit from this result to show that these systems have no Liouvillian first integral. And applying the formula given in Chapter 4, we prove that these algebraic limit cycles are hyperbolic.Chapter 6 is devoted to the study of the properties of the period function associated to a singular point with linear part of centre-focus type. Given a section through the flow with such a singular point as endpoint, we can define the Poincaré map and the period function associated to this section since this point is always monodromic. We say that this point is isochronous if we can find a section such that the period function associated to it is constant. This definition generalizes the usual definition given for centres to any singular point with linear part of centre-focus type. We characterize this property by means of Lie symmetries and normal forms, generalizing the known procedures for centres. Moreover, we provide an example of a family of systems depending on a real parameter, such that the origin is a singular point with linear part of centre-focus type and which is never an isochronous point. / Cette thèse de doctorat traite sur la théorie qualitative des systèmes différentiels planaires. Chaque chapitre contient un sujet différent. Dans l'introduction, un sommaire des résultats connus est donné et la notation utilisée dans le reste du mémoire est présentée. En particulier, nous décrivons le problème de l'intégrabilité et quelques résultats concernant la détermination de la stabilité d'un point singulier ou d'une orbite périodique afin de présenter les derniers chapitres. Nous définissons le problème de l'intégrabilité comme le problème de trouver une intégrale première pour un système différentiel planaire et de déterminer la classe fonctionnelle à la quelle elle doit appartenir. Les Chapitres 2 et 3 traitent du problème de l'intégrabilité. Au Chapitre 2, nous obtenons un résultat permettant de trouver une expression explicite pour une intégrale première d'un certain type de système polynomial. Au moyen d'un changement rationnel de variables, nous faisons correspondre l'équation linéaire du deuxième degré: A2(x) w''(x) + A1(x) w'(x) + A0(x) w(x) = 0, dont les coefficients sont des polynômes, à un système différentiel polynomial planaire. Nous montrons que ce système a un invariant pour chaque solution arbitraire w(x) différent de zéro de l'équation considérée, qui, dans le cas où le w(x) serait un polynôme, est une courbe algébrique invariante. De plus, nous donnons une expression explicite d'une intégrale première pour le système construite à partir de deux solutions indépendantes de l'edo du deuxième degré. Cette intégrale première n'est pas, en général, une fonction de Liouville. En conclusion, nous vérifions que tous les exemples connus des familles des systèmes quadratiques avec une courbe algébrique invariante de degré arbitrairement élevé peuvent être décrits par cette construction (modulo des transformations birationnelles). Au Chapitre 3, les courbes algébriques invariantes d'un système différentiel polynomial planaire jouent le rôle fondamental. Si une courbe algébrique invariante et irréductible existe pour un système différentiel polynomial planaire, alors les valeurs de son cofacteur à chaque point singulier non dégénéré sont déterminées. En fait, cette valeur est une combinaison linéaire avec des coefficients naturels des valeurs propres associées au point singulier non dégénéré. Ces coefficients naturels peuvent être complètement déterminés dans certains cas selon la nature du point singulier. De plus, les points à l'infini peuvent également être pris en considération. Une fois que le système est considéré dans le plan projectif complexe, le degré d'une courbe algébrique invariante devient un paramètre de son cofacteur. Si nous considérons un système de degré d, alors il y a d^2 + d + 1 points singuliers (comptés avec sa multiplicité) et le cofacteur d'une courbe algébrique invariante est un polynôme de degré au plus d-1. Nous opérons comme suit: nous prenons un polynôme de degré d-1 avec ses d(d+1)/2 coefficients arbitraires et nous supposons que c'est le cofacteur d'une courbe algébrique invariante et irréductible de degré n. Nous imposons alors toutes les conditions données par les points singuliers non dégénérés. Dans le cas général, nous imposons d^2 + d + 1 conditions et, par conséquent, nous déterminons complètement le cofacteur et le degré de la courbe, dont l'existence peut être déterminée en résolvant un système linéaire d'équations, ou bien nous prouvons l'incompatibilité d'une condition. Par conséquent, nous pouvons déterminer l'existence de toutes les courbes algébriques invariantes d'un système général. Le sujet du Chapitre 4 est la stabilité d'une orbite périodique d'un système différentiel planaire. Nous supposons que f(x,y)=0 est une courbe invariante irréductible réelle avec cofacteur qui contient l'orbite périodique. Nous montrons que les intégrales sur l'orbite périodique de la divergence et le cofacteur coïncident. Par conséquent, nous pouvons déterminer la stabilité d'une orbite périodique en intégrant le cofacteur sur celle-ci.Dans le Chapitre 5, nous décrivons une application des résultats donnés aux Chapitres 3 et 4. Nous considérons les systèmes quadratiques avec un cycle limite algébrique connus jusqu'alors. Ces cycles limites algébriques sont contenus dans des courbes algébriques invariantes de degrés 2, 4, 5 et 6 et il existe certaines de ces familles de systèmes quadratiques qui sont birationnellement équivalentes. Appliquant la méthode exposée au Chapitre 3, nous prouvons qu'il n'y a aucune autre courbe algébrique invariante et irréductible différente à celle qui contient le cycle limite. Ceci nous permet de prouver que ces systèmes n'ont aucune intégrale première de Liouville. En appliquant la formule donnée au Chapitre 4, nous montrons que ces cycles limites algébriques sont hyperboliques. Le Chapitre 6 est consacré à l'étude des propriétés de la fonction de période associée à un point singulier dont la partie linéaire est de type centre-foyer. Etant donnée une section du flux avec tel point singulier comme point final, nous pouvons définir l'application de Poincaré et la fonction de période associée à cette section puisque ce point est toujours monodromique. Nous disons que ce point est isochronique si nous pouvons trouver une section telle que la fonction de période associée à elle est constante. Cette définition généralise la définition habituelle donnée pour des centres à n'importe quel point singulier dont la partie linéaire est de type centre-foyer. Nous caractérisons cette propriété au moyen des symétries de Lie et des formes normales, généralisant les procédures connues pour des centres. De plus, nous donnons un exemple d'une famille de systèmes avec un paramètre réel, telle que l'origine est un point singulier dont la partie linéaire est de type centre-foyer et qui n'est jamais un point isochronique.
32

Commutative And Non-commutative Integrable Equations: Lax Pairs, Recursion Operators

Unal, Gonul 01 July 2011 (has links) (PDF)
In this thesis, we investigate the integrability properties of some evolutionary type nonlinear equations in (1+1)-dimensions both with commutative and non-commutative variables. We construct the recursion operators, based on the Lax representation, for such equations. Finally, we question the notion of integrability for a certain one-component non-commutative equation. [We stress that calculations in this thesis are not original.]
33

Θεωρία εμφυλλώσεων και γεωμετρική ολοκληρωσιμότητα : αλγεβρική και τοπολογική άποψη

Κάτσιος, Κωνσταντίνος 25 May 2015 (has links)
Στο πρώτο κεφάλαιο της εργασίας, παρουσιάζεται το πιο απλό παράδειγμα εμφύλλωσης και στη συνέχεια δίνεται ο ορισμός μιας εμφυλλωμένης πολλαπλότητας, υπό δύο διαφορετικές σκοπιές. Ο ορισμός συμπληρώνεται με τον σχολιασμό της τοπολογίας των φύλλων της εμφύλλωσης, δίνοντας το τοπολογικό πλαίσιο της πολλαπλότητας για τον ορισμό του κανονικού εμφυλλωμένου άτλαντα. Η εισαγωγή στη Θεωρία Εμφυλλώσεων ολοκληρώνεται με μία σειρά παραδειγμάτων εμφυλλώσεων, με επικεντρωμένο το ενδιαφέρον στην εμφύλλωση του Reeb και στην προσανατολισμένη εμφύλλωση του Seifert. Στο δεύτερο κεφάλαιο, συνδέεται η έννοια της γεωμετρικής ολοκληρωσιμότητας με την Θεωρία των Εμφυλλώσεων, μέσω του κλασικού θεωρήματος του Frobenius. Τα φύλλα της εμφύλλωσης του χώρου των φάσεων αποτελούν το γεωμετρικό πρότυπο επίλυσης δυναμικών συστημάτων, ως πρώτα ολοκληρώματα. Το κλασικό θεώρημα του Frobenius έδωσε τις αναγκαίες και ικανές συνθήκες ώστε η θεωρούμενη κατανομή να αποτελεί τον εφαπτόμενο χώρο της εμφύλλωσης. Το θεώρημα Frobenius δίνεται και αποδεικνύεται με πέντε ισοδύναμες εκδοχές. Μία από αυτές είναι η αλγεβρική εκδοχή, όπου τα πρώτα ολοκληρώματα καθορίζονται από τους γεννήτορες του ιδεώδους της εξωτερικής άλγεβρας, επιλύoντας τις εξισώσεις Pfaff. Οι παραγόμενες μορφές μέσω της εξωτερικής διαφόρισης των γεννητόρων του ιδεώδους, στην περίπτωση που ικανοποιούν τη συνθήκη ολοκληρωσιμότητας, συγκροτούν στο module των διαφορικών μορφών το διαφορικό ιδεώδες. Ακόμα, γίνεται αναφορά στο Λήμμα του Poincaré, που δίνει τις προϋποθέσεις για την ύπαρξη πρώτων ολοκληρωμάτων, στην περίπτωση απλά συνεκτικών πολλαπλοτήτων, και στην εύρεση ολοκληρωτικού παράγοντα. Στο τρίτο και τελευταίο κεφάλαιο, ως εφαρμογή στη Θεωρία Εμφυλλώσεων, αποδεικνύεται η ύπαρξη φύλλων μέσα στο σύνολο προσβασιμότητας, που καθορίζεται από το εκάστοτε σύστημα ελέγχου. Πρόκειται για το θεώρημα που δόθηκε τη δεκαετία του 70 από τον Sussmann. Ορίζοντας τη Lie άλγεβρα των κατανομών η οποία δημιουργείται από τις επαναλαμβανόμενες αγκύλες Lie. Στα πλαίσια αυτής ελέγχεται η συμπεριφορά των κατανομών, οι οποίες διαχωρίζονται σε ολοκληρώσιμες και bracket generating. Οι τελευταίες παράγουν τον εφαπτόμενο χώρο της πολλαπλότητας και αποτελούν βασική προϋπόθεση για να εφοδιαστεί η πολλαπλότητα με μια υπο-Riemannian δομή. Με αυτή τη δομή ορίζεται η υπο-Riemannian απόσταση από την οποία φτιάχνεται η βάση μιας τοπολογίας που συμπίπτει με τη φυσική τοπολογία της πολλαπλότητας. Σε αυτήν την τοπολογία ορίζονται τα φύλλα του συνόλου προσβασιμότητας. Επιπλέον, δίνεται μια απάντηση και στο πρόβλημα της ελεγξιμότητας, που διαπραγματεύεται η Θεωρία Ελέγχου. Τέλος, γίνεται αναφορά στις γεωδαισιακές εξισώσεις, όπως αυτές ορίζονται στο συνεφαπτόμενο ινώδες των τετραγωνικών μορφών, με χαρακτηριστικό παράδειγμα τις γεωδαισιακές που προκύπτουν από την ομάδα του Heisenberg. / --
34

Algebraic aspects of integrability and reversibility in maps

Jogia, Danesh Michael, Mathematics & Statistics, Faculty of Science, UNSW January 2008 (has links)
We study the cause of the signature over finite fields of integrability in two dimensional discrete dynamical systems by using theory from algebraic geometry. In particular the theory of elliptic curves is used to prove the major result of the thesis: that all birational maps that preserve an elliptic curve necessarily act on that elliptic curve as addition under the associated group law. Our result generalises special cases previously given in the literature. We apply this theorem to the specific cases when the ground fields are finite fields of prime order and the function field $mathbb{C}(t)$. In the former case, this yields an explanation of the aforementioned signature over finite fields of integrability. In the latter case we arrive at an analogue of the Arnol'd-Liouville theorem. Other results that are related to this approach to integrability are also proven and their consequences considered in examples. Of particular importance are two separate items: (i) we define a generalization of integrability called mixing and examine its relation to integrability; and (ii) we use the concept of rotation number to study differences and similarities between birational integrable maps that preserve the same foliation. The final chapter is given over to considering the existence of the signature of reversibility in higher (three and four) dimensional maps. A conjecture regarding the distribution of periodic orbits generated by such maps when considered over finite fields is given along with numerical evidence to support the conjecture.
35

Θέματα ολοκληρώσιμων συστημάτων και θεωρίας χορδών

Καραΐσκος, Νικόλαος 21 December 2012 (has links)
Υπάρχει μια ιδιαίτερη κατηγορία φυσικών συστημάτων, τα οποία καλούνται ολοκληρώσιμα. Η ολοκληρωσιμότητα ενός συστήματος συνεπάγεται άμεσα πως αυτό είναι ακριβώς επιλύσιμο, ενώ συνήθως το σύστημα παρουσιάζει μεγάλη συμμετρία. Η θεωρία των ο- λοκληρώσιμων συστημάτων, κλασικών και κβαντικών, παρέχει τα κατάλληλα εργαλεία για τη μελέτη των εν λόγω προτύπων με συστηματικό τρόπο. Στην παρούσα διατρι- βή μελετούμε τέτοιου είδους συστήματα, δίνοντας έμφαση στις αλγεβρικές δομές και τις συμμετρίες που βρίσκονται πίσω από αυτά. Στο πρώτο μέρος, περιγράφονται στοιχεία της θεωρίας των κλασικών ολοκληρώσιμων συστημάτων. Ο συστηματικός τρόπος περιγρα- φής τους επιτρέπει και την επέκταση αυτών, εισάγοντας για παράδειγμα μη τετριμμένες συνοριακές συνθήκες ή τοπικές ατέλειες, έτσι ώστε η ολοκληρωσιμότητα του συστήματος να διατηρείται. Στο δεύτερο κεφάλαιο περιγράφεται η θεωρία της ολοκληρωσιμότητας σε κβαντικό επίπεδο και το πλαίσιο ακριβούς επίλυσης τέτοιων συστημάτων μέσω ισχυρών μεθόδων, όπως η τεχνική Bethe ansatz. Σημαντικό ρόλο στο πεδίο αυτό διαδραματίζει η ομάδα braid και τα υποσύνολά της, καθώς εξασφαλίζουν την παραγωγή συμμετρικών λύσεων των εξισώσεων της κβαντικής ολοκληρωσιμότητας, με συστηματικό τρόπο. Στο κεφάλαιο αυτό περιγράφεται το πλαίσιο παραγωγής τέτοιων λύσεων, και συγκεκριμένα δημοσιευμένα αποτελέσματα. Τέλος, στο κεφάλαιο 3 περιγράφονται εμβαπτίσεις μεμβρα- νών σε σφαιρικές υποπολλαπλότητες, όπως αυτές υπεισέρχονται στη θεωρία των χορδών. Εκτός της κατασκευής των συγκεκριμένων εμβαπτίσεων, παρουσιάζεται και η σχέση τους με συστήματα της φυσικής της συμπυκνωμένης ύλης, χρησιμοποιώντας το ισχυρό πλαίσιο της αντιστοιχίας AdS/CFT. / There is a special category of physical systems, called integrable. The integrability of a system implies directly that this is exactly solvable, while there usually exists a large amount of symmetry. The theory of integrable systems, both classical and quantum, provides the appropriate tools for the study of these models in a systematic way. In this dissertation we study such systems, giving emphasis on the underlying algebraic structures and symmetries. In the first part, we describe elements of the theory of classic integrable systems. The systematic way of describing them leads to natural extensions, for example by introducing non-trivial boundary conditions or local defects, in a way that the integrability of the system is preserved. In the second chapter the theory of integrability at the quantum level is described, as well as the framework for exactly solving such systems through powerful methods, such as Bethe ansatz method. Important role in this framework is played by the braid group and its quotients, as they provide a systematic way of obtaining solutions of the equations of quantum integrability in a systematic manner. This chapter describes the framework for the construction of such solutions, and particular published results. Finally, chapter 3 describes brane embeddings in sphere submanifolds, which exist within string theory. Besides the construction of these embeddings, their relation with systems of physics of condensed matter is presented, using the powerful framework of the AdS/CFT correspondence.
36

From two Algebraic Bethe Ansätze to the dynamics of Dicke-Jaynes-Cummings-Gaudin quantum integrable models through eigenvalue-based determinants / De deux Ansätze de Bethe Algébriques à la dynamique des modèles intégrables quantiques de Dicke-Jaynes-Cummings-Gaudin via des déterminants reposant sur les valeurs propres

Tschirhart, Hugo 12 July 2017 (has links)
Le travail présenté dans cette thèse est inspiré de précédents résultats sur les modèles de Gaudin ne contenant que des spins-1/2 (ces modèles sont intégrables) qui, par un changement de variable dans les équations de Bethe algébriques, parviennent à simplifier le traitement numérique de ces modèles. Cette optimisation numérique s'effectue par l'intermédiaire d'une construction en déterminant, ne dépendant que des variables précédemment mentionnées, pour chaque produit scalaire intervenant dans l'expression de la moyenne d'une observable à un temps donné. En montrant qu'il est possible d'utiliser la méthode du Quantum Inverse Scattering Method (QISM), même dans un cas où l'état du vide n'est pas état propre de la matrice de transfert, les résultats précédents concernant uniquement des spins-1/2 sont généralisés à des modèles contenant en plus une interaction spin-boson. De fait, cette généralisation a ouvert plusieurs voies de recherche possibles. Premièrement, il est montré qu'il est possible de continuer à généraliser l'utilisation de déterminants pour des modèles de spins décrivant l'interaction d'un spin de norme arbitraire avec des spins-1/2. La méthode permettant d'obtenir la construction des expressions explicites de ces déterminants est donnée. On peut également pousser la généralisation à d'autres modèles de Gaudin dont l'état du vide n'est pas état propre de la matrice de transfert. C'est ce que nous avons fait pour des spins-1/2 en interaction avec un champ magnétique dont l'orientation est arbitraire. Enfin, un traitement numérique de ces systèmes de spins-1/2 interagissant avec un mode bosonique est présenté. L'évolution temporelle de l'occupation bosonique et de l'aimantation locale des spins est ainsi étudiée selon deux Hamiltoniens différents, l'Hamiltonien de Tavis-Cummings et un Hamiltonien type spin central. Cette étude nous apprend que la dynamique de ces systèmes, qui relaxent d'un état initial vers un état stationnaire, conduit à un état superradiant lorsque l'état initial choisi y est favorable / The work presented in this thesis was inspired by precedent results on the Gaudin models (which are integrable) for spins-1/2 only which, by a change of variables in the algebraic Bethe equations, manage to considerably simplify the numerical treatment of such models. This numerical optimisation is carried out by the construction of determinants, only depending on the previously mentioned variables, for every scalar products appearing in the expression of the mean value of an observable of interest at a given time. By showing it is possible to use the Quantum Inverse Scattering Method (QISM), even when the vacuum state is not eigenstate of the transfer matrix, the previous results concerning spins-1/2 only are generalised to models including an additional spin-boson interaction. De facto, this generalisation opened different possible paths of research. First of all, we show that it is possible to further generalise the use of determinants for spin models describing the interaction of one spin of arbitrary norm with many spins-1/2. We give the method leading to the explicit construction of determinants’ expressions. Moreover, we can extend this work to other Gaudin models where the vacuum state is not an eigenstate of the transfer matrix. We did this work for spins-1/2 interacting with an arbitrarily oriented magnetic field. Finally, a numerical treatment of systems describing the interaction of many spins-1/2 with a single bosonic mode is presented. We study the time evolution of bosonic occupation and of local magnetisation for two different Hamiltonians, the Tavis-Cummings Hamiltonian and a central spin Hamiltonian. We learn that the dynamics of these systems, relaxing from an initial state to a stationary state, leads to a superradiant-like state for certain initial states
37

Modelos integráveis e supersimétricos / Integrable and supersymmetric models

Ferreira, Jogean Matheus Carvalho 26 February 2018 (has links)
Submitted by JOGEAN MATHEUS CARVALHO FERREIRA (jogeanmcf@gmail.com) on 2018-04-13T15:33:45Z No. of bitstreams: 1 Dissertação-Jogean.pdf: 463408 bytes, checksum: d2ae1ba2ff2f5b812d60078e1735eff9 (MD5) / Approved for entry into archive by Hellen Sayuri Sato null (hellen@ift.unesp.br) on 2018-04-13T17:16:56Z (GMT) No. of bitstreams: 1 ferreira_jmc_me_ift.pdf: 463408 bytes, checksum: d2ae1ba2ff2f5b812d60078e1735eff9 (MD5) / Made available in DSpace on 2018-04-13T17:16:56Z (GMT). No. of bitstreams: 1 ferreira_jmc_me_ift.pdf: 463408 bytes, checksum: d2ae1ba2ff2f5b812d60078e1735eff9 (MD5) Previous issue date: 2018-02-26 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Supersimetria é um tema de bastante interesse na física, em particular na física de partículas, existem dezenas de modelos supersimétricos e diversos estudos sobre o assunto. Outra área de bastante interesse na física, e na matemática, é a integrabilidade de equações diferenciais, que as vezes é uma propriedade exigida em modelos físicos. Este trabalho é dedicado ao estudo de modelos tanto integráveis quanto supersimétricos para campos clássicos. No primeiro capítulo nós falamos sobre todos os conhecimentos necessários para o entendimento dos capítulos subsequentes; introduzimos conceitos sobre grupos, álgebra de Lie, loop algebra, álgebra de Kac-Moody e propriedades requeridas para construção dos modelos. No capítulo três nós apresentamos dois modelos supersimétricos e integráveis que são obtidos por vias diferentes. No capítulo três nós propomos transformações para eliminar redundâncias e discutimos as principais diferenças entres esses três modelos. / Supersymmetry is a well studied branch of physics having promising physical models applied to theoretical physics and we still are looking forward experimental evidences for such phenomenon. Integrability is another great interesting theme on physics, and mathematics, that is sometimes required for physical models. This works put together supersymmetry and integrability of models based on standard principles. However, we treat of classical point of view, just looking for supersymmetry transformations and integrability of motion equations for fields. In chapter one we speak about groups, Lie algebra, loop algebra, superalgebra and others property needed to constructions of our models, introducing all knowledge for understanding the follows chapters. In chapter two we develop three supersymmetric and integrable models by different ways. In chapter three we discus the correspondence of this three models, proposing transformations with aim of to eliminate redundancies, and discuss the main differences between them. / 131664/2016-6
38

Estudos sobre teorias quânticas de campos integráveis em duas dimensões / Studies in two-dimensional integrable quantum field theories

Carlos Bercini Vargas 21 June 2018 (has links)
Esta dissertação de mestrado consiste de uma revisão sobre teorias quânticas de campos integráveis em duas dimensões, explorando tanto aspectos clássicos como aspectos quânticos dessas teorias munidas de infinitas cargas conservadas. Em nível clássico, consideramos uma teoria de supercampos escalares em duas dimensões com superpotencial arbitrário. Através da imposição da não produção de partículas a nível-árvore, restringimos a forma das interações adimissíveis, recuperando uma extensão supersimétrica do modelo de sinh-Gordon, o qual é provado ser integrável não somente através da obtenção do conjunto infinito de cargas conservadas, mas também através de S-matrix bootstrap. Ainda no nível clássico também mostramos uma profunda relação entre as Toda theories e os conformal minimal models, a qual se estende para nível quântico onde obtemos uma família de fluxos de renormalização entre os unitary conformal minimal models conhecida como staircase model. / This master thesis is an overview of integrability in two-dimensional field theories. We explore both classical and quantum aspects of these theories which are characterized by infinitely many conserved charges. At the classical level, we consider a theory of scalar superfields in two dimensions with arbitrary superpotential. By imposing no particle production in tree-level scattering, we constrain the form of the admissible interactions, recovering a supersymmetric extension of the sinh-Gordon model. This model is proven to be integrable not only by explicitly finding the infinite set of conserved charges but also via the S-matrix bootstrap. We also show a deep relation between Affine Toda theories and conformal minimal models, that extends to the quantum level, where we find a family of integrable renormalization group flows between the unitary conformal minimal models, known as the staircase model.
39

Second order quasilinear PDEs in 3D : integrability, classification and geometric aspects

Burovskiy, Pavel Andreevich January 2009 (has links)
In this work we apply the method of hydrodynamic reductions to study the integrability of the class of second order quasilinear equations.
40

Hamiltonian Formulations and Symmetry Constraints of Soliton Hierarchies of (1+1)-Dimensional Nonlinear Evolution Equations

Manukure, Solomon 20 June 2016 (has links)
We derive two hierarchies of 1+1 dimensional soliton-type integrable systems from two spectral problems associated with the Lie algebra of the special orthogonal Lie group SO(3,R). By using the trace identity, we formulate Hamiltonian structures for the resulting equations. Further, we show that each of these equations can be written in Hamiltonian form in two distinct ways, leading to the integrability of the equations in the sense of Liouville. We also present finite-dimensional Hamiltonian systems by means of symmetry constraints and discuss their integrability based on the existence of sufficiently many integrals of motion.

Page generated in 0.1098 seconds