Spelling suggestions: "subject:"inteligência artificial."" "subject:"inteligentes artificial.""
341 |
Indução automática de árvores de decisãoPaula, Maurício Braga de January 2002 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação. / Made available in DSpace on 2012-10-19T15:18:20Z (GMT). No. of bitstreams: 1
189971.pdf: 2034846 bytes, checksum: 12551d00f3a2124b06b35ed26fba2a5b (MD5) / Com o considerável aumento da quantidade de informações disponíveis, as capacidades de aquisição automática de conhecimento têm se tornado muito importante. A capacidade de aprendizagem e de aplicação do conhecimento é uma das características da inteligência humana e uma das principais áreas de análise da Inteligência Artificial. As atividades humanas mais comuns exibem a aplicação do conhecimento adquirido pelo homem, podendo ser consideradas tarefas de classificação; termo no qual decorre da necessidade de uma tomada de decisão ou da realização de uma previsão com base em informações disponíveis. O Aprendizado de Máquina (AM), um dos nichos da Inteligência Artificial, é uma das eficazes maneiras de adquirir inteligência de qualquer sistema computacional. Este trabalho consiste na construção de um procedimento de indução automática de árvores de decisão simbólica a partir de amostras de dados com atributos não binários. O objetivo deste, é extrair informações de um conjunto de treinamento de instâncias possivelmente conhecidas do problema e subseqüentemente classificar novas instâncias em suas respectivas classes.
|
342 |
Interações tutor-aluno analisadas através de seus estados mentais / Tutor/student interactions analyzed through their mental statesMoussalle, Neila Maria January 1996 (has links)
Este trabalho aborda um estudo sobre os STI - Sistemas Tutores Inteligentes - dando uma visão geral do que esta sendo feito nesta área e quais são as tendências futuras que direcionam os STI a trabalhar com arquiteturas de agentes. Para simular as mudanças que ocorrem em certos estados mentais dos agentes, fizemos uma unido dos STI com a IAD - Inteligência Artificial Distribuída - e construímos os modelos dos agentes com base no ambiente dos STI e na arquitetura SEM - Sociedade dos Estados Mentais - [CORM que baseia seu formalismo na Teoria das Situações. Exploramos e adotamos a ideia da arquitetura aberta dos STI [OLI92], pois, através dela, foi possível criar um ambiente cooperativo de aprendizagem no qual o tutor e o aluno podem ensinar e aprender. Trabalhamos com dois agentes globais, a saber, o tutor e o aluno, sendo cada um deles composto por quatro agentes locais associados a determinados estados mentais do agente. Os agentes locais correspondem aos estados mentais: crença, desejo, intenção e expectativa, definidos na arquitetura SEM como agentes locais, e tratados individualmente nesta, que se preocupa com o comportamento particular de cada um. Optamos por usar a arquitetura SEM, que é uma arquitetura de agentes, no lugar de uma funcional tradicional, ou seja, composta por módulos, que é característica dos STI, porque nela podemos tratar os estados mentais como agentes locais, e assim é possível modelar o comportamento individual de cada estado e as mudanças que a interação entre os agentes provoca em cada um Abordamos três situações de ensino/aprendizagem com peculiaridades diferentes nas quais os agentes globais interagem cooperativamente com o objetivo de um ensinar o outro. Para cada dialogo, estabelecemos objetivos específicos: no primeiro, nosso interesse é na maneira como o aluno ensina uma nova estratégia ao tutor; no segundo, analisamos as mudanças das crenças do tutor sobre o conhecimento do aluno; no terceiro, nos preocupamos com as estratégias de ensino utilizadas pelo tutor. O processo de ensino/aprendizagem que acontece no desenrolar da interação entre os agentes é realizado usando o método de aprendizagem simbólica automática EBL - Explanation-Based Learning - [MIT86],[COS90] Este método proporciona a generalização do exemplo de treinamento que é incorporado as crenças e as estratégias do agente que desempenha o papel daquele que aprende, enriquecendo-as. As estratégias, que são fundamentais para os STI, são tratadas como pianos de ensino, utilizadas para promover a aprendizagem, pois definem a maneira como determinado conteúdo deve ser ensinado. Tratamos aqui as estratégias de uma maneira inovadora e diferente da tratada anteriormente [COR94]. Elas são um conjunto de ações e possuem armazenados procedimentos que são usados pelos agentes durante a interação. São determinadas e controladas conforme a intenção e usadas de acordo com as crenças, no sentido de selecionar a mais adequada para cada situação. / This study focuses on the Intelligent Tutoring System (ITS) and aims at presenting a general view concerning what has been developed in this field as well as the coming trends which lead the ITS to deal with agents' architecture. In order to simulate the changes which occur in certain mental states of the agents, we linked ITS with Distributed Artificial Intelligence (DAI) and then we built the agents' modules based on ITS environment and on SEM - Sociedade dos Estados Mentais that means Mental States Society - architecture [COR94]. Such an architecture bases its formalism on the Situation Theory. We explored and adopted the idea of the ITS open architecture [OLI92] for, through it, it has been possible to create a cooperative learning environment in which both the tutor and the student are able to teach and learn. The two global agents we worked on - tutor and student - both of them are made up of four local agents which are their mental states. The mental states involved are: belief, desire, intention, and expectation. These mental states are treated individually and defined as local agents according to SEM architecture. Instead of using a functional architecture - characteristic of ITS - we chose an agent architecture, for this latter makes it possible to treat the mental states as subagents. It is possible, therefore, to model the individual behavior of each state as well as the changes resulted from the agents' interaction. We focused on three teaching/learning situations that present different situations in which the global agents interact co-operatively in such a way that they teach each other. Specific aims were meant to each dialogue, as follows: the first dialogue concern has to do with the way the student teaches the tutor a new strategy; the second dialogue aim is to explore the tutor's "belief revision" about the student's knowledge; the third dialo gue goal has to do with the teaching strategies used by the tutor. The teaching/learning process brought about as the interaction between the agents happens is applied by using the Explanation-Based Learning (EBL) method [MIT86],[COS 90]. This method makes it possible to generalize the test example which is added to the learning agent's beliefs and strategies, making them more complete. The strategies, which are vital to the ITS, are treated as teaching plans and used to bring about learning, for they define the way in which a certain content is supposed to be taught. The strategies are treated here in a new manner, differently from the way they had formerly been [COR94]. They are a set of actions and present procedures on file that are used by the agents during the interaction. Also, the strategies are chosen and controlled by the intention and consulted by the beliefs so as to select the most suitable one, according to the situation.
|
343 |
Sistema especialista para automação do processo de aeração de grãos de milho em pequenas propriedadesDias, Ariangelo Hauer [UNESP] 05 February 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:33Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-02-05Bitstream added on 2014-06-13T20:41:59Z : No. of bitstreams: 1
dias_ah_dr_botfca.pdf: 1966877 bytes, checksum: 4c586f8027be01af9f09dd9982bb4b23 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O Brasil tem dificuldade para armazenar excedentes de produção de grãos visando um melhor momento de comercialização. O uso intensivo da mecanização nos processos de produção diminuiu a duração da operação de colheita e aumentou a produtividade, porém, apenas cerca de 9% das propriedades rurais possuem capacidade de armazenagem. Para evitar uma crise ainda maior no setor, o governo federal na gestão 2003- 2006 implementou uma nova política de investimentos para a armazenagem de produtos agropecuários incentivando as atividades armazenadoras, principalmente dentro das propriedades, permitindo assim, a exploração de um novo mercado formado por pequenos e médios produtores com unidades de armazenamento próprias. Desta forma, o presente trabalho tem por objetivo desenvolver um sistema automático de baixo custo para aeração de grãos de milho, utilizando o modelo matemático baseado na Teoria Fuzzy, visando atender as necessidades de pequenos e médios agricultores, tendo em vista critérios técnicos, energéticos e econômicos. Para tanto, foi desenvolvido um equipamento eletrônico responsável pela aquisição dos dados ambientais necessários ao controle do processo de aeração de grãos de milho e um programa de computador responsável pelo processamento, controle e armazenamento dos dados coletados pelo sistema de aquisição de dados criado. O sistema como um todo tem por finalidade conduzir a aeração de forma racional, determinando o tempo de aeração necessário, com a conseqüente redução do consumo de energia elétrica. Os resultados obtidos mostraram que o sistema desenvolvido baseado na Teoria Fuzzy mostrou-se eficiente e confiável na tarefa de controle da aeração. Também foi possível verificar que em relação aos sistemas de aeração já existentes no mercado, a nova proposta de desenvolvimento mostrou-se adequada às condições... / Brazil has difficulty to store production excesses waiting for a better moment for commercialization. The intensive use of mechanization, in the processes of grains production, reduces the harvest duration and increases the productivity, however, about only 9% of the farms have storage capacity. To prevent a bigger crisis in the sector, the government implemented a new politics of investments for the farming products storage stimulating the storing activities, mainly inside of the farms, allowing the exploration of a new market formed by the small and mediums producers with storage units in their own farms. In this way, the present work has the objective to develop a low cost automatic system for maize grains aeration, using the mathematical model based in the Fuzzy Theory, aiming at to fill small and mediums producers necessities, observing technician, energetic and economic criteria. In this way, was developed an electronic equipment for the data acquisition to collect the ambient data to the control of the maize grains aeration process and a computer program for processing and control the data collected for the acquisition system. The system will be able to lead the aeration of rational form determining the necessary aeration period allowing the reduction of the electric energy consumption. The results had shown the model of the aeration control based on the Fuzzy Theory revealed efficient and trustworthy in the task of aeration control. Also, it was possible to observe that in relation to the existing aeration systems already in the market the new proposal of development revealed adequate to the conditions preset of to create... (Complete abstract click electronic access below)
|
344 |
Aplicação de redes neurais artificiais na análise de dados de molhamento foliar por orvalhoMathias, Ivo Mário [UNESP] 11 December 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:34Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-12-11Bitstream added on 2014-06-13T20:42:01Z : No. of bitstreams: 1
mathias_im_dr_botfca.pdf: 1186171 bytes, checksum: a99a3192900af068caf82ad18c373cfa (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / O trabalho descrito nesta tese apresenta o desenvolvimento de um sistema computacional denominado PMNeural, baseado em Redes Neurais Artificiais (RNAs). A finalidade do sistema é o tratamento de dados climáticos e de molhamento foliar por orvalho, visando reconhecer padrões de comportamento de variáveis meteorológicas em relação ao molhamento foliar por orvalho. Para determinar as melhores arquiteturas e algoritmos de treinamento de RNAs, bem como, definir quais as variáveis climáticas que influenciam significativamente na ocorrência do molhamento foliar, foram utilizados dois simuladores: o simulador SNNS (Stuttgart Neural Network Simulator) versão 4.2, que utiliza plataforma operacional Linux e o simulador JavaNNS - Java Neural Network Simulator 1.1, com ambiente de execução Windows, o qual é baseado no SNNS. Foram utilizados dados climáticos de três estudos de caso, dois destes referentes à cultura do trigo, oriundos de locais e datas diferentes. Base de Dados 1 - Fazenda Capão do Cipó, em Castro - PR, safra de inverno de 2003. Base de Dados 2 - Campo Demonstrativo e Experimental da Fundação ABC - Fazenda Palmeirinha, em Piraí do Sul - PR., safra de inverno de 2005. Base de Dados 3 - Posto Agrometeorológico ESALQ/USP em Piracicaba - SP, período entre julho e setembro de 2005. Um quarto estudo de caso foi elaborado a partir dos arquivos dos estudos de casos 1, 2 e 3, utilizando-se as variáveis climáticas comuns, juntamente com seus respectivos índices de molhamento. Dentre os algoritmos de treinamento testados nos simuladores, o Resilient 2 Propagation (Rprop) foi o que apresentou as menores taxas de erro em relação aos outros... / The work described in this thesis presents the development of a computational system named PMNeural based on Artificial Neural Networks (ANNs). The system has for purpose the handle of climatic and leaf wetness data, aiming to recognize patterns of behavior of meteorological variables in relation to the wetness from dew. Two simulators were used in order to determine the best architecture and ANNs training algorithms, as well as, to define which the climatic variables that influence significantly in the leaf wetness occurrence: the SNNS (Stuttgart Neural Network Simulator) version 4.2 for Linux platform, and the JavaNNS - Java Neural Network Simulator 1.1, for Windows platform, which is based on the SNNS. Climatic data of three case studies were used, two related to wheat culture, obtained from different places and dates. Dataset 1 - Capão do Cipó Farm, in Castro - PR, 2003. Dataset 2 - Palmeirinha Farm in Piraí do Sul - PR, 2005 winter crop. Dataset 3 - Meteorological Station of ESALQ/USP in Piracicaba - SP, from July to September, 2005. A fourth case study was elaborated from datasets of the case studies 1, 2 and 3, using the common climatic variables together with their respective wetness indexes. After testing the training algorithms in the simulators, the Resilient Propagation (Rprop) presented lower training errors than the others evaluated methods: Backpropagation Standard, Backpropagation for batch training, Backpropagation with momentum term, Backpropagation with chunkwise update, Backpropagation with Weight Decay and Quickprop. It was verified 4 also that, among the climatic variables used for classification of leaf wetness from dew, the inclusion of the schedule had influenced in the obtaining better ANNs results... (Complete abstract, click electronic access below)
|
345 |
Sistema de supervisão e controle de irrigação utilizando técnicas de inteligência artificialFontes, Ivo Reis [UNESP] 18 December 2003 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:35Z (GMT). No. of bitstreams: 0
Previous issue date: 2003-12-18Bitstream added on 2014-06-13T19:41:53Z : No. of bitstreams: 1
fontes_ir_dr_botfca.pdf: 6105136 bytes, checksum: 23e89a651c99005b7465ec2d3aae3e9b (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O presente trabalho teve como objetivo a configuração de um sistema de supervisão e controle de irrigação utilizando técnicas de inteligência artificial. De acordo com metodologia adotada, o seu desenvolvimento foi realizado em três fases distintas. Inicialmente foram construídos os seguintes módulos de hardware: Unidade de Sensores, Unidade Concentradora de Dados e Sensor de Umidade do Solo do tipo Capacitivo. Em seguida foi criada uma aplicação através do programa de supervisão e controle do tipo SCADA, Elipse PRO, dedicada à supervisão e controle de uma casa de vegetação. Na fase final foram coletados os dados necessários para o treinamento de uma rede neural artificial que é parte integrante do sensor de umidade de solo do tipo capacitivo. Os resultados obtidos através de um conjunto de teste de medidas demonstraram que o sensor capacitivo apresenta comportamento e desempenho similares ao do sensor de do tipo TDR, o que permite concluir que esta solução pode representar uma significativa contribuição, viabilizando a implantação de sistemas de supervisão e controle em processos de irrigação com uma relação custo/benefício em níveis aceitáveis. / The present work had as objective the configuration of a supervisory and control system for irrigation using artificial intelligence techniques. In agreement with adopted methodology, its development was accomplished in three different phases. Initially the following hardware modules were built: Sensors Unit, Data Concentrator Unit and a Capacitive type Soil Moisture Sensor. Soon afterwards an application was created through the supervisory and control program of the type SCADA, Ellipse PRO, dedicated to the supervision and control of a green house. In the final phase the necessary data were collected for the training of an artificial neural network that is integral part of the capacitive type soil moisture sensor. With the application developed in the Ellipse PRO a database was created for the training of the artificial neural network, containing a group of 2440 measures of soil moisture obtained through a capacitive type sensor and a TDR type sensor. The results obtained through a group of test of measures demonstrated that the capacitive sensor presents a similar behavior to the of the TDR type sensor, the one that allows conclude that this solution can represent a significant contribution, making possible the implantation of supervisory and control systems in irrigation processes with a cost/benefit relationship in acceptable levels.
|
346 |
Aplicação da rede neural MLP (Multilayer Perceptron) em indústria de pisos e revestimentos do Pólo Cerâmico de Santa Gertrudes - SPFerro, Luciano [UNESP] 25 April 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:18Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-04-25Bitstream added on 2014-06-13T19:21:52Z : No. of bitstreams: 1
ferro_l_dr_rcla.pdf: 507040 bytes, checksum: 8569d113b387622fd192e005a1bbf02b (MD5) / As Redes Neurais Artificiais se constituem numa alternativa à computação programada tradicional e foram aplicadas em quase todos os ramos do conhecimento humano. Em Geotecnologia, no entanto, ainda são escassas as aplicações de maneira que, com este trabalho, procura-se mostrar que elas também podem ser aplicadas em indústrias de pisos e revestimentos cerâmicos do Pólo Cerâmico de Santa Gertrudes, Estado de São Paulo. Para isso, foram utilizados corpos-de-prova elaborados, testados e analisados nas indústrias Triunfo Cerâmica e Rochaforte Cerâmica, com argilas oriundas de nove minas da região que constitui o Pólo Cerâmico de Santa Gertrudes, dentre aquelas que representavam toda a coluna estratigráfica da Formação Corumbataí com amostras bem diferenciadas. Os dados obtidos relativos às variáveis físicas foram gentilmente cedidos pelo proprietário das indústrias acima citadas e as variáveis físicas usadas neste estudo são a Densidade de Prensagem (DP), a Densidade Aparente de Corpos-de-Prova Secos (DAS), a Retração Linear de Secagem (RLS), a Retração Linear de Queima (RLQ), a Perda ao Fogo (PF), a Carga de Ruptura (CR), a Absorção de Água (Abs) e o Módulo de Resistência à Flexão (MRF). Para a análise, os corpos-de-prova foram submetidos a quatro temperaturas de queima 1000°C, 1020°C, 1040°C e 1060°C, onde cada um destes valores deu origem a uma rede neural MLP (Multilayer Perceptron) de três camadas, para as quais foi usada a Regra do Aprendizado de Retropropagação do Erro (Backpropagation, do original em inglês) / Artificial Neural Networks constitute an alternative to traditional programmed computation and have been applied in almost all branches of human knowledge. However, they are rarely applied in Geotechnology, so this work aims to show that they can be applied in the flooring and ceramic tile industries in the Principial Ceramic Region of Saint Gertrudes, São Paulo State. For this purpose, proof specimens elaborated, tested and analyzed in the industries of Triunfo Cerâmica and Rochaforte Cerâmica were used. These proof specimens were composed of well differentiated clays from nine mines in the Principial Ceramic Region of Saint Gertrudes, and these mines are representative of all the stratigraphic column of the Corumbataí Formation. The data relative to physical variables were graciously provided by the owner of the above mentioned industries, and the physical variables used in this study are Pressing Density (DP), Bulk Density of Dry Specimens (DAS), Linear Shrinkage Drying (RLS), Linear Shrinkage Firing (RLQ), Loss on Ignition (PF), Tensile Strength (CR), Water Absorption (Abs) and Flexural Modulus of Resistance (MRF). For analysis, the proof specimens were subjected to four firing temperatures, 1000° C, 1020° C, 1040° C and 1060°C. Each one of these values gave rise to a neural network MLP (Multilayer Perceptron) of three tiers for which the Backpropagation rule of learning was used
|
347 |
Desenvolvimento e validação de sistema de apoio à decisão em urinálise com inteligência artificial utilizando redes neuronaisVolanski, Waldemar January 2011 (has links)
Orientador: Prof. Dr. Geraldo Picheth / Co-orientador: Prof. Dr. Roberto Tadeu Raittz / Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Educação Profissional e Tecnológica, Programa de Pós-Graduação em Bioinformática. Defesa: Curitiba, 03/02/2011 / Inclui referências / Área de concentração : Bioinformática / Resumo: A urinálise contempla uma avaliação semi-quantitativa de analitos e contagem diferencial de células presentes na urina. A análise fornece informações diagnósticas relevantes principalmente sobre o sistema urinário e renal. Neste trabalho, foi estudada a aplicação de redes neuronais aplicadas a tomada de decisão sobre a liberação do ensaio de urinálise, comparada ao processo de decisão realizados por profissionais do laboratório clínico. Registros de resultados de urinálise (n=140.482), anô imos, foram obtidos no Laboratório Municipal de Curitiba, após a aprovação da pesquisa pelo Comitê de Ética em Pesquisa com Seres Humanos da UFPR (CAE: 0106.0.091.000-09). Os pacientes em estudo apresentaram idade média de 38 anos, com amplitude de variação de 0 a 101 anos. A predominância do sexo feminino foi superior a 65% na amostra. Quando os elementos do ensaio foram analisados individualmente, alterações nas concentrações de esterase leucocitária e hemoglobina, bem como as contagens de leucócitos e eritrócitos estão presentes em cerca de 95% de todos os pacientes com alterações na urinálise. Aplicando-se classificação da amostra baseada em valores de referência, cerca de 65% dos registros mostraram no mínimo um parâmetro urinário fora dos valores de referência. Quando a mesma amostra foi classificada por profissionais, que consideram além dos valores de referência, a consistência entre ensaios relacionados (esterase leucocitária-contagem de leucócitos; hemoglobina-contagem de eritrócitos) para a liberação dos ensaios, cerca de 30% dos resultados ficaram "retidos" para análises posteriores de verificação devido a inconsistência nos resultados. Duas redes neuronais (MLP, multilayer perceptron e FAN, free associative neurons) foram treinadas, testadas e validadas, utilizando como critérios de grupos os resultados dos profissionais designados "liberados" e "retidos". O treinamento das redes mostrou que para a rede MLP o banco de dados deve ser "balanceado", números equilibrados de registros "liberados" e "retidos" para a obtenção do melhor desempenho. Para permitir o acesso ao banco de dados e facilitar a obtenção de resultados um software de apoio foi desenvolvido e utilizado em todo o trabalho. As redes neuronais em estudo foram avaliadas com uma amostra de 484 pacientes da rotina, avaliado por dois profissionais. A rede MLP apresentou uma divergência de cerca de 9 a 12% (sensibilidade 100%; especificidade 90,1%) e om os profissionais, significativamente menor que a rede FAN, 17 a 19% (sensibilidade 39,0% e especificidade 86,9%), respectivamente. A comparação entre o desempenho das redes neuronais com o banco de dados, superior a 100.000 registros, mostrou que a rede MLP apresentou desempenho compatível ao dos profissionais (29,5% vs 21,6%, respectivamente) na classificação dos ensaios retidos. A rede FAN reteve menos amostras (18,2%) sugerindo a maior divergência com a resposta dos profissionais. Em síntese, é possível afirmar que a rede neuronal MLP (Multilayer Percetrons) validada com uma base de dados "balanceada" permite identificar padrões liberação e retenção de resultados de forma a mimetizar os critérios de profissionais para o ensaio de urinálise. Também o programa computacional em linguagem Python, tilizando a rede MLP, desenvolvido para acessar o banco de dados e classificar a amostra apresentou bom desempenho e segurança, sendo recomendado para uso no laboratório clínico. / Abstract: The urinalysis assay represents a combination of semi-quantitative analysis of the differential cells counts in urine. This analysis provides relevant information mainly on the renal and urinary systems. The aim of the work was to compare the study of neural networks associated with laboratory decision support systems, against the process of clinical laboratory professionals’ decisions. A de-identified clinical database (140.482 records) was obtained from Laboratório Municipal de Curitiba. The research was approved by UFPR Ethical Committee for Research with Humans (CAE: 0106.0.091.000-09). The sample population showed mean age of 38 years with an age range of 0-101 years. Females predominated at more than 65%. When individual urinalysis components were quantified the concentration of leucocytes esterase and haemoglobin, as well as the count of leucocytes and erythrocytes occurred in about 95% of all pathologic cases. When reference value was appliedto the sample classification, about 65% of all cases were outside the reference values by at least one parameter. Laboratory clinical professionals often consider beyond the reference values: the consistency of the associated parameters (leucocytes esterase concentration vs. leucocytes count; haemoglobin concentration vs. erythrocyte count) on the criteria for the "release" or "hold" of the result. When the sample was analyzed by professionals about 30% was "held" for additional nvestigation due to inconsistency in results. Two neural networks Multi Layer Perceptron (MLP) and Free Associative Neurons (FAN) were trained, tested and validated, applying the laboratory professional’s criteria for result "release" or "hold". The MLP network showed that the training with a "balanced" data set (characterized by the some number of groups "release" and "hold") improved performance . To access the atabase and facilitate the work software was developed and utilized throughout the entire project. The two studied networks were evaluated with a sample of 484 routine patients, previously screened by the professionals. The MLP network showed a discrepancy of about 9- 12% (sensitivity 100%; specificity 91.1%) when compared to professionals. These results were significantly lower that those obtained using the network FAN (17-19%) which showed a sensitivity of 39% and a specificity of 89.9%. The comparison of the performance of the studied neural networks with a large data set (n>100.000 registers) revealed that the MLP network produced a performance closer to those of professionals (21.6% vs. 29.5%, respectively) for the detection of "hold" samples. In summary we can highlight that MLP neural network, validated with a "balanced" data set, was able to identify the pattern of urinalysis results released, comparably with the laboratory professionals .Also, the software developed (written in Python) for the MLP network showed a good performance and safety and thus we recommended it’s application. in the clinical laboratory.
|
348 |
Estimativa do volume e da forma do fuste utilizando técnicas de aprendizado de máquinaSchikowski, Ana Beatriz January 2016 (has links)
Orientadora : Profª. Drª. Ana Paula Dalla Corte / Coorientador : Prof. Dr. Carlos Roberto Sanquetta / Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Agrárias, Programa de Pós-Graduação em Engenharia Florestal. Defesa: Curitiba, 11/03/2016 / Inclui referências : f. 59-71 / Área de concentração : Tecnologia e utilização de produtos florestais / Resumo: A acurácia e precisão na avaliação quantitativa de povoamentos para fins comerciais são fundamentais, especialmente a estimativa do volume individual. Nesse contexto, as equações de volume e funções de afilamento são importantes ferramentas para a estimativa do volume individual, ambos com métodos tradicionalmente aplicados e sólida teoria. Por outro lado, a inovação matemática é muito dinâmica, com diversos outros recursos disponíveis para o estudo de aproximação de função (regressão), métodos esses que ainda carecem de estudos de base, podendo potencialmente melhorar as estimativas no campo de modelagem florestal. Assim, o trabalho tem como objetivo principal analisar a acurácia de técnicas de aprendizado de máquina em relação a um modelo volumétrico e a uma função de afilamento, para a espécie Acacia mearnsii De Wild. Foram utilizados dados de cubagem Acacia mearnsii, variando de 1 a 10 anos. A base de dados foi dividida em 60% para ajuste e o restante para validação. Foram ajustadas equações com o modelo volumétrico de Schumacher e Hall e com a função de afilamento de Hradetzky, comparados com três algoritmos de aprendizado de máquina: k-vizinho mais próximo (k-NN), Random Forest (RF) e Redes Neurais Artificiais (RNA) para a estimativa do volume total e diâmetro referente à altura relativa. Os modelos foram ranqueados conforme estatísticas de erros, bem como observadas as distribuições destes. Para a estimativa do volume em função do dap e altura, a RNA e o modelo de Schumacher e Hall apresentaram melhores resultados no ranqueamento do que o k-NN e RF. Os métodos de aprendizado de máquina aplicados se mostraram mais acurados que o polinômio de Hradetzky para estimativas da forma da árvore, tais como o diâmetro ao longo do fuste e volume total. Os modelos de AM se mostraram adequados como alternativa na modelagem tradicionalmente aplicada na mensuração florestal, contudo a sua utilização deve ser cuidadosa devida a maior possibilidade de supertreinamento a base de ajuste. Palavras-chave: Modelagem. Inteligência Artificial. Mineração de dados. / Abstract: Accuracy and precision are essential topics when it comes to the quantitative evaluation of a forest stand with commercial purposes, especially in regards to the estimation of individual volume. In one hand, due to its solid theory, volume equations and taper functions are important tools for estimating individual volume. On the other hand, the mathematical breakthrough is dynamic, having several resources for the study of approximation functions (regression). However, these new methods still lack baseline studies and may potentially improve estimates in the forest modeling field. Under this circumstances, this study aims to analyze the accuracy of machine learning techniques in regards to a volumetric model and a taper function for the species Acacia mearnsii De Wild. Acacia mearnsii scaling data, from 1 to10 years, were used in order to achieve the objective of this work. The database was divided into 60% for adjustment and the remainder for validation. Equations were adjusted with the volume model of Schumacher and Hall and the taper function Hradetzky and were compared to three machine learning algorithms: nearest neighbor models (k-NN), Random Forest (RF) and Artificial Neural Networks (ANN) to estimate of the total volume and diameter concerning relative height. The models were ranked according to its statistics errors and distributions. ANN and Schumacher and Hall model showed better results in regards to the estimation of volume as a function of dbh and height. The applied machine learning methods were more accurate than Hradetzky polynomial to estimates of tree shape, such as the diameter along the stem and total volume. The machine learning models were satisfactory as an alternative to the traditional methods in forest measurement. However, due to its higher possibility of overtraining the adjustment basis, it should be carefully used. Keywords: Modelling. Artificial Intelligence. Data mining.t
|
349 |
An analysis of ensemble empirical mode decomposition applied to trend prediction on financial time seriesFurlaneto, Dennis Carnelossi January 2017 (has links)
Orientador : Luiz Eduardo S. Oliveira / Coorientador : David Menotti / Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 20/07/2017 / Inclui referências : f. 63-72 / Resumo: As séries temporais financeiras são notoriamente difíceis de analisar e prever dada sua natureza não estacionária e altamente oscilatória. Nesta tese, a eficácia da técnica de decomposição não-paramétrica Ensemble Empirical Mode Decomposition (EEMD) é avaliada como uma técnica de extração de característica de séries temporais provenientes de índices de mercado e taxas de câmbio, características estas usadas na classificação, juntamente com diferentes modelos de aprendizado de máquina, de tendências de curto prazo. Os resultados obtidos em dois datasets de dados financeiros distintos sugerem que os resultados promissores relatados na literatura foram obtidos com a adição, inadvertida, de lookahead bias (viés) proveniente da aplicação desta técnica como parte do pré-processamento das séries temporais. Em contraste com as conclusões encontradas na literatura, nossos resultados indicam que a aplicação do EEMD com o objetivo de gerar uma melhor representação dos dados financeiração, por si só, não é suficiente para melhorar substancialmente a precisão e retorno cumulativo obtidos por modelos preditivos em comparação aos resultados obtidos com a utilização de series temporais de mudanças percentuais. Palavras-chave: Predição de Tendencias, Aprendizado de Máquina, Séries Temporais Financeiras. / Abstract: Financial time series are notoriously difficult to analyse and predict, given their nonstationary, highly oscillatory nature. In this thesis, the effectiveness of the Ensemble Empirical Mode Decomposition (EEMD) is evaluated at generating a representation for market indexes and exchange rates that improves short-term trend prediction for these financial instruments. The results obtained in two different financial datasets suggest that the promising results reported using EEMD on financial time series in other studies were obtained by inadvertently adding look-ahead bias to the testing protocol via pre-processing the entire series with EEMD, which do affect the predictive results. In contrast to conclusions found in the literature, our results indicate that the application of EEMD with the objective of generating a better representation for financial time series is not sufficient, by itself, to substantially improve the accuracy and cumulative return obtained by the same models using the raw data. Keywords: Trend Prediction, Machine Learning, Financial Time Series.
|
350 |
Classificação de tábuas de madeira usando processamento de imagens digitais e aprendizado de máquina / Classification of wooden boards using digital image processing and machine learningAlmeida, Osvaldo Cesar Pinheiro de [UNESP] 02 December 2014 (has links) (PDF)
Made available in DSpace on 2015-03-03T11:52:21Z (GMT). No. of bitstreams: 0
Previous issue date: 2014-12-02Bitstream added on 2015-03-03T12:07:27Z : No. of bitstreams: 1
000813821.pdf: 2890163 bytes, checksum: d7753452252d8dec8820b3813fd3c697 (MD5) / O setor madeireiro no Brasil representa um forte componente da economia nacional, participando significativamente no Produto Interno Bruto (PIB) brasileiro. O segmento de madeira processada mecanicamente faz parte desse setor e tem a madeira de Pinus como principal espécie florestal plantada destinada ao seu processo produtivo. A madeira serrada desse gênero é usada em larga escala pela indústria madeireira e, devido à presença de defeitos, pode ser classificada em diferentes escalas de qualidade. A Associação Brasileira de Normas Técnicas (ABNT) define um padrão para a classificação visual de tábuas de madeira serrada de coníferas. Contudo, a graduação manual em um processo produtivo pode se tornar exaustivo, elevando a falha de classificação. Por essa razão, a automatização do processo de classificação de tábuas de madeira têm um papel importante na evolução tecnológica dos processos produtivos de serrarias. O objetivo desse trabalho foi o desenvolvimento de um sistema de classificação de tábuas de madeira de coníferas usando técnicas de processamento de imagens e aprendizado de máquinas. A partir de imagens de tábuas de madeira de Pinus foram realizados pré-processamentos, de maneira que as imagens fossem subdivididas em imagens menores. Em seguida foram extraídas as principais informações da imagem por meio de técnicas de análise de cor, usando o percentil das bandas de cor, e de textura, usando wavelet de Gabor. Essas informações foram usadas para criar modelos de classificação dos defeitos da tábua a partir do aprendizado de máquinas SVM – Support Vector Machine e redes neurais, onde cada imagem foi classificada como sendo madeira limpa (com ausência de defeitos) ou com nó ... / The Brazilian timber sector is a strong national economy component, participating significantly in the Brazilian Gross Domestic Product (GDP). The mechanically processed wood segment is part of this sector and has Pinus wood as the main tree species intended for their production process. The Pinus timber is extensively used by the industry and can be classified in different quality scales, depending on the presence of defects. The Brazilian Association of Technical Standards (ABNT) defines a standard for the visual grading of sawn wood of softwood. However, manual degree in a productive process can become exhausting, bringing the fault classification. For this reason, automation of the classification process of wooden boards plays an important role in the technological development in sawmill production process. The aim of this study was to develop a classification system of boards of softwood using techniques of image processing and machine learning. The boards images of wood planks preprocessing were performed so that the images were subdivided into smaller images. Then we extracted the main image information through color analysis techniques, using the percentiles of bands of color, and texture, using Gabor wavelet. This information was used to create a classification model of the board defects from the machine learning SVM - Support Vector Machine and neural networks, where each image was classified as clean wood (no defects) and with knot. The consolidation of defects identified on board served as the basis for creating models of quality grade board through the learning SVM, neural networks and the C5.0 algorithm. The machine learning SVM and neural network applied to 32x32 images showed an ...
|
Page generated in 0.1041 seconds