111 |
Fusion de connaissances : Applications aux relevés photogrammétriques de fouilles archéologiques sous-marinesSeinturier, Julien 11 December 2007 (has links) (PDF)
Nous proposons dans ce travail une étude de la fusion de connaissances et ses applications aux relevés de fouilles archéologiques sous‐marines. Le cadre de ce travail est la mesure fondée sur la connaissance, pouvant être décrite comme la synthèse entre des modèles théoriques élaborés par des experts du domaine étudié et d'un ensemble d'observations effectuées sur les objets à relever. Lors de l'étude d'un site archéologique, les relevés peuvent être effectués par des opérateurs différents et à des moments différents. Cette multiplication des observations induit des risques d'incohérence lors de l'agrégation de tous les résultats (objets mesurés deux fois, objets mal identifiés, ...). La construction d'un résultat final nécessite la mise en place d'un processus de fusion piloté par le responsable de l'étude. Un tel pilotage doit être automatisé tout en laissant à l'opérateur le choix des méthodes de rétablissement de la cohérence. Ce travail est divisé en trois parties : une étude théorique des méthodes de fusion connues, la mise en place de méthodes de fusion dans le cadre de la mesure fondée sur la connaissance et l'expérimentation des solutions proposées lors de relevés dans des applications grandeur nature. Dans la première partie, nous proposons une étude théorique des techniques de fusion de croyances existantes et nous proposons un nouveau cadre de fusion réversible permettant d'exprimer de manière équivalente ces méthodes de fusion d'un point de vue sémantique et syntaxique. Ce cadre est basé sur des pondérations par des polynômes qui permettent de représenter à la fois les priorités entre les croyances mais aussi l'historique des changements de ces priorités. Dans la deuxième partie, nous détaillons la mesure fondée sur la connaissance en décrivant une représentation des connaissances basée sur la notion d'entité. Cette représentation est exprimée dans le modèle Objet ainsi que sous forme semi‐structurée en XML. Nous proposons ensuite des techniques de fusion adaptées à cette représentation. Ces techniques sont basées sur la logique propositionnelle et la logique des prédicats instanciés. Des algorithmes de fusion sont décrits et étudiés. Dans la dernière partie, nous présentons les expérimentations des techniques de fusion mises en place. Nous proposons une description des outils développés et utilisés dans le cadre du projet Européen VENUS (http://www.venus‐project.eu) mais aussi leurs extensions à l'archéologie du bâti et à la biologie sous‐marine.
|
112 |
Contributions to generative models and their applicationsChe, Tong 10 1900 (has links)
Generative models are a large class of machine learning models for unsupervised learning. They have various applications in machine learning and artificial intelligence. In this thesis, we discuss many aspects of generative models and their applications to other machine learning problems. In particular, we discuss several important topics in generative models, including how to stabilize discrete GAN training with importance sampling, how to do better sampling from GANs using a connection with energy-based models, how to better train auto-regressive models with the help of an energy-based model formulation, as well as two applications of generative models to other machine learning problems, one about residual networks, the other about safety verification. / Les modèles génératifs sont une grande classe de modèles d’apprentissage automatique pour
l’apprentissage non supervisé. Ils ont diverses applications dans l’apprentissage automatique
et l’intelligence artificielle. Dans cette thèse, nous discutons de nombreux aspects des modèles
génératifs et de leurs applications à d’autres problèmes d’apprentissage automatique. En
particulier, nous discutons de plusieurs sujets importants dans les modèles génératifs, y
compris comment stabiliser la formation GAN discrète avec un échantillonnage d’importance,
comment faire un meilleur échantillonnage à partir de GAN en utilisant une connexion avec
des modèles basés sur l’énergie, comment mieux former des modèles auto-régressifs avec
l’aide d’une formulation de modèle basée sur l’énergie, ainsi que deux applications de modèles
génératifs à d’autres problèmes d’apprentissage automatique, l’une sur les réseaux résiduels,
l’autre sur la vérification de la sécurité.
|
113 |
Un Mécanisme Constructiviste d'Apprentissage Automatique d'Anticipations pour des Agents Artificiels SituésStudzinski Perotto, Filipo 01 July 2010 (has links) (PDF)
Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. À partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentés. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes basés sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. L'agent, à son tour, est composé de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativité et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fondé sur l'approche constructiviste de l'Intelligence Artificielle. Il permet à un agent situé de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorisé (FPOMDP). Le modèle du monde construit est ensuite utilisé pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance.
|
114 |
Composition de Services Web: Une Approche basée Liens SémantiquesLécué, Freddy 08 October 2008 (has links) (PDF)
La composition automatisée de services Web ou le processus de formation de nouveaux services Web à plus forte valeure ajoutée est l'un des plus grand défis auxquels le Web sémantique est face aujourd'hui. La sémantique permet d'un côte de décrire les capacités des services Web mais aussi leurs processus d'exécution, d'où un élément clé pour la composition automatique de services Web. Dans cette étude de doctorat, nous nous concentrons sur la description fonctionnelle des services Web c'est-à-dire, les services sont vus comme une fonction ayant des paramètres i) d'entrée, de sortie sémantiquement annotés par des concepts d'une ontologie de domaine et ii) des conditions préalables et effets conditionnels sur le monde. La composition de services Web est alors considérée comme une composition des liens sémantiques où les lois de cause à effets ont aussi un rôle prépondérant. L'idée maîtresse est que les liens sémantiques et les lois causales permettent, au moment de l'exécution, de trouver des compatibilités sémantiques, indépendamment des descriptions des services Web. En considérant un tel niveau de composition, nous étudions tout d'abord les liens sémantiques, et plus particulièrement leurs propriétés liées à la validité et la robustesse. A partir de là et dépendant de l'expressivité des services Web, nous nous concentrons sur deux approches différentes pour effectuer la composition de services Web. Lors de la première approche, un modèle formel pour effectuer la composition automatique de services Web par le biais de liens sémantiques i.e., Matrice de liens sémantiques est introduite. Cette matrice est nécessaire comme point de départ pour appliquer des approches de recherche basées sur la régression (ou progression). Le modèle prend en charge un contexte sémantique et met l'accent sur les liens sémantiques afin de trouver des plans corrects, complets, cohérents et robustes comme solutions au problème de composition de services Web. Dans cette partie un modèle formel pour la planification et composition de services Web est présenté. Dans la seconde approche, en plus de liens sémantiques, nous considérons les lois de causalité entre effets et pré-conditions de services Web pour obtenir les compositions valides de services Web. Pour ceci, une version étendue et adaptée du langage de programmation logique Golog (ici sslGolog) est présentée comme un formalisme naturel non seulement pour le raisonnement sur les liens sémantiques et les lois causales, mais aussi pour composer automatiquement les services Web. sslGolog fonctionne comme un interprète qui prend en charge les paramètres de sortie de services pour calculer les compositions conditionnelles de services. Cette approche (beaucoup plus restrictive) suppose plus d'expressivité sur la description de service Web. Enfin, nous considérons la qualité des liens sémantiques impliqués dans la composition comme critère novateur et distinctif pour estimer la qualité sémantique des compositions calculées. Ainsi les critères non fonctionnels tels que la qualité de service(QoS) ne sont plus considérés comme les seuls critères permettant de classer les compositions satisfaisant le même objectif. Dans cette partie, nous nous concentrons sur la qualité des liens sémantiques appartenant à la composition de service Web. Pour ceci, nous présentons un modèle extensible permettant d'évaluer la qualité des liens sémantiques ainsi que leur composition. De ce fait, nous introduisons une approche fondée sur la sélection de liens sémantiques afin de calculer la composition optimale. Ce problème est formulé comme un problème d'optimisation qui est résolu à l'aide de la méthode par programmation linéaire entière. Notre système est mis en œuvre et interagit avec des services Web portant sur de scénarios de télécommunications. Les résultats de l'évaluation a montré une grande efficacité des différentes approches proposées.
|
115 |
Découverte de motifs n-aires utilisant la programmation par contraintesKhiari, Medhi 19 June 2012 (has links) (PDF)
La fouille de données et la Programmation Par Contraintes (PPC) sont deux domaines de l'informatique qui ont eu, jusqu'à très récemment, des destins séparés. Cette thèse est l'une des toutes premières à s'intéresser aux liens entre la fouille de données et la PPC, et notamment aux apports de cette dernière à l'extraction de motifs sous contraintes. Différentes méthodes génériques pour la découverte de motifs locaux ont été proposées. Mais, ces méthodes ne prennent pas en considération le fait que l'intérêt d'un motif dépend souvent d'autres motifs. Un tel motif est appelé motif n-aire. Très peu de travaux concernant l'extraction de motifs n-aires ont été menés et les méthodes développées sont toutes ad hoc. Cette thèse propose un cadre unifié pour modéliser et résoudre les contraintes n-aires en fouille de données. Tout d'abord, l'extraction de motifs n-aires est modélisée sous forme de problème de satisfaction de contraintes (CSP). Puis, un langage de requêtes à base de contraintes de haut niveau est proposé. Ce langage permet d'exprimer une large panoplie de contraintes n-aires. Plusieurs méthodes de résolution sont développées et comparées. Les apports principaux de ce cadre sont sa déclarativité et sa généricité. Il s'agit du premier cadre générique et flexible permettant la modélisation et la résolution de contraintes n-aires en fouille de données.
|
116 |
Learning to sample from noise with deep generative modelsBordes, Florian 08 1900 (has links)
L’apprentissage automatique et spécialement l’apprentissage profond se sont imposés ces
dernières années pour résoudre une large variété de tâches. Une des applications les plus
remarquables concerne la vision par ordinateur. Les systèmes de détection ou de classification ont connu des avancées majeurs grâce a l’apprentissage profond. Cependant, il reste de
nombreux obstacles à une compréhension du monde similaire aux être vivants. Ces derniers
n’ont pas besoin de labels pour classifier, pour extraire des caractéristiques du monde réel.
L’apprentissage non supervisé est un des axes de recherche qui se concentre sur la résolution
de ce problème.
Dans ce mémoire, je présente un nouveau moyen d’entrainer des réseaux de neurones de
manière non supervisée. Je présente une méthode permettant d’échantillonner de manière
itérative a partir de bruit afin de générer des données qui se rapprochent des données
d’entrainement. Cette procédure itérative s’appelle l’entrainement par infusion qui est une
nouvelle approche permettant d’apprendre l’opérateur de transition d’une chaine de Markov.
Dans le premier chapitre, j’introduis des bases concernant l’apprentissage automatique et la
théorie des probabilités. Dans le second chapitre, j’expose les modèles génératifs qui ont
inspiré ce travail. Dans le troisième et dernier chapitre, je présente comment améliorer
l’échantillonnage dans les modèles génératifs avec l’entrainement par infusion. / Machine learning and specifically deep learning has made significant breakthroughs in recent
years concerning different tasks. One well known application of deep learning is computer vision. Tasks such as detection or classification are nearly considered solved by the community.
However, training state-of-the-art models for such tasks requires to have labels associated
to the data we want to classify. A more general goal is, similarly to animal brains, to be
able to design algorithms that can extract meaningful features from data that aren’t labeled.
Unsupervised learning is one of the axes that try to solve this problem.
In this thesis, I present a new way to train a neural network as a generative model capable of
generating quality samples (a task akin to imagining). I explain how by starting from noise,
it is possible to get samples which are close to the training data. This iterative procedure
is called Infusion training and is a novel approach to learning the transition operator of a
generative Markov chain.
In the first chapter, I present some background about machine learning and probabilistic
models. The second chapter presents generative models that inspired this work. The third
and last chapter presents and investigates our novel approach to learn a generative model
with Infusion training.
|
117 |
Fear prediction for training robust RL agentsGauthier, Charlie 03 1900 (has links)
Les algorithmes d’apprentissage par renforcement conditionné par les buts apprennent à
accomplir des tâches en interagissant avec leur environnement. Ce faisant, ils apprennent à
propos du monde qui les entourent de façon graduelle et adaptive. Parmi d’autres raisons,
c’est pourquoi cette branche de l’intelligence artificielle est une des avenues les plus promet-
teuses pour le contrôle des robots généralistes de demain. Cependant, la sûreté de ces algo-
rithmes de contrôle restent un champ de recherche actif. La majorité des algorithmes “d’ap-
prentissage par renforcement sûr” tâchent d’assurer la sécurité de la politique de contrôle
tant durant l’apprentissage que pendant le déploiement ou l’évaluation. Dans ce travail, nous
proposons une stratégie complémentaire.
Puisque la majorité des algorithmes de contrôle pour la robotique sont développés, entraî-
nés, et testés en simulation pour éviter d’endommager les vrais robots, nous pouvons nous
permettre d’agir de façon dangereuse dans l’environnement simulé. Nous démontrons qu’en
donnant des buts dangereux à effectuer à l’algorithme d’apprentissage durant l’apprentissage,
nous pouvons produire des populations de politiques de contrôle plus sûres au déploiement
ou à l’évaluation qu’en sélectionnant les buts avec des techniques de l’état de l’art. Pour
ce faire, nous introduisons un nouvel agent à l’entraînement de la politique de contrôle, le
“Directeur”. Le rôle du Directeur est de sélectionner des buts qui sont assez difficiles pour
aider la politique à apprendre à les résoudre sans être trop difficiles ou trop faciles. Pour
aider le Directeur dans sa tâche, nous entraînons un réseau de neurones en ligne pour prédire
sur quels buts la politique de contrôle échouera. Armé de ce “réseau de la peur” (nommé
d’après la peur de la politique de contrôle), le Directeur parviens à sélectionner les buts de
façon à ce que les politiques de contrôles finales sont plus sûres et plus performantes que
les politiques entraînées à l’aide de méthodes de l’état de l’art, ou obtiennent des métriques
semblables. De plus, les populations de politiques entraînées par le Directeur ont moins de
variance dans leur comportement, et sont plus résistantes contre des attaques d’adversaires
sur les buts qui leur sont issus. / By learning from experience, goal-conditioned reinforcement learning methods learn from
their environments gradually and adaptively. Among other reasons, this makes them a
promising direction for the generalist robots of the future. However, the safety of these goal-
conditioned RL policies is still an active area of research. The majority of “Safe Reinforce-
ment Learning” methods seek to enforce safety both during training and during deployment
and/or evaluation. In this work, we propose a complementary strategy.
Because the majority of control algorithms for robots are developed, trained, and tested in
simulation to avoid damaging the real hardware, we can afford to let the policy act in unsafe
ways in the simulated environment. We show that by tasking the learning algorithm with
unsafe goals during its training, we can produce populations of final policies that are safer at
evaluation or deployment than when trained with state-of-the-art goal-selection methods. To
do so, we introduce a new agent to the training of the policy that we call the “Director”. The
Director’s role is to select goals that are hard enough to aid the policy’s training, without
being too hard or too easy. To help the Director in its task, we train a neural network online
to predict which goals are unsafe for the current policy. Armed with this “fear network”
(named after the policy’s own fear of violating its safety conditions), the Director is able
to select training goals such that the final trained policies are safer and more performant
than policies trained on state-of-the-art goal-selection methods (or just as safe/performant).
Additionally, the populations of policies trained by the Director show decreased variance in
their behaviour, along with increased resistance to adversarial attacks on the goals issued to
them.
|
118 |
Brain decoding of the Human Connectome Project Tasks in a Dense Individual fMRI DatasetRastegarnia, Shima 11 1900 (has links)
Les études de décodage cérébral visent à entrainer un modèle d'activité cérébrale qui reflète l'état cognitif du participant. Des variations interindividuelles substantielles dans l'organisation fonctionnelle du cerveau représentent un défi pour un décodage cérébral précis. Dans cette thèse, nous évaluons si des modèles de décodage cérébral précis peuvent être entrainés avec succès entièrement au niveau individuel.
Nous avons utilisé un ensemble de données individuel dense d'imagerie par résonance magnétique fonctionnelle (IRMf) pour lequel six participants ont terminé l'ensemble de la batterie de tâches du “Human Connectome Project” > 13 fois sur dix sessions d'IRMf distinctes. Nous avons implémenté plusieurs méthodes de décodage, des simples machines à vecteurs de support aux réseaux complexes de neurones à convolution de graphes. Tous les décodeurs spécifiques à l'individu ont été entrainés pour classifier simultanément les volumes d'IRMf simples (TR = 1,49) entre 21 conditions expérimentales, en utilisant environ sept heures de données d'IRMf par participant.
Les meilleurs résultats de prédiction ont été obtenus avec notre modèle de machine à vecteurs de support avec une précision de test allant de 64 à 79 % (niveau de la chance environ 7%). Les perceptrons multiniveaux et les réseaux convolutionnels de graphes ont également obtenu de très bons résultats (63-78% et 63-77%, respectivement). Les cartes d'importance des caractéristiques dérivées du meilleur modèle (SVM) ont révélé que la classification utilise des régions pertinentes pour des domaines cognitifs particuliers, sur la base d’a priori neuro-anatomique. En appliquant un modèle individuel aux données d’un autre sujet (classification inter-sujets), on observe une précision nettement inférieure à celle des modèles spécifiques au sujet, ce qui indique que les décodeurs cérébraux individuels ont appris des caractéristiques spécifiques à chaque individu.
Nos résultats indiquent que des ensembles de données de neuroimagerie profonde peuvent être utilisés pour former des modèles de décodage cérébral précis au niveau individuel. Les données de cette étude sont partagées librement avec la communauté (https://cneuromod.ca), et pourront servir de benchmark de référence, pour l’entrainement de modèles de décodage cérébral individuel, ou bien des études de “transfert learning” à partir de l’échantillon collecté par le human connectome project. / Brain decoding studies aim to train a pattern of brain activity that reflects the cognitive state of the participant. Substantial inter-individual variations in functional organization represent a challenge to accurate brain decoding. In this thesis, we assess whether accurate brain decoding models can be successfully trained entirely at the individual level.
We used a dense individual functional magnetic resonance imaging (fMRI) dataset for which six participants completed the entire Human Connectome Project (HCP) task battery>13 times across ten separate fMRI sessions. We assessed several decoding methods, from simple support vector machines to complex graph convolution neural networks. All individual-specific decoders were trained to classify single fMRI volumes (TR = 1.49) between 21 experimental conditions simultaneously, using around seven hours of fMRI data per participant.
The best prediction accuracy results were achieved with our support vector machine model with test accuracy ranging from 64 to 79% (chance level of about 7%). Multilevel perceptrons and graph convolutional networks also performed very well (63-78% and 63-77%, respectively). Best Model Derived Feature Importance Maps (SVM) revealed that the classification uses regions relevant to particular cognitive domains, based on neuroanatomical priors. Applying an individual model to another subject's data (across-subject classification) yields significantly lower accuracy than subject-specific models, indicating that individual brain decoders have learned characteristics specific to each individual.
Our results indicate that deep neuroimaging datasets can be used to train accurate brain decoding models at the individual level. The data from this study is shared freely with the community (https://cneuromod.ca) and can be used as a reference benchmark, for training individual brain decoding models, or for “transfer learning” studies from the sample collected by the human connectome project.
|
119 |
La métaheuristique CAT pour le design de réseaux logistiques déterministes et stochastiquesCarle, Marc-André 19 April 2018 (has links)
De nos jours, les entreprises d’ici et d’ailleurs sont confrontées à une concurrence mondiale sans cesse plus féroce. Afin de survivre et de développer des avantages concurrentiels, elles doivent s’approvisionner et vendre leurs produits sur les marchés mondiaux. Elles doivent aussi offrir simultanément à leurs clients des produits d’excellente qualité à prix concurrentiels et assortis d’un service impeccable. Ainsi, les activités d’approvisionnement, de production et de marketing ne peuvent plus être planifiées et gérées indépendamment. Dans ce contexte, les grandes entreprises manufacturières se doivent de réorganiser et reconfigurer sans cesse leur réseau logistique pour faire face aux pressions financières et environnementales ainsi qu’aux exigences de leurs clients. Tout doit être révisé et planifié de façon intégrée : sélection des fournisseurs, choix d’investissements, planification du transport et préparation d’une proposition de valeur incluant souvent produits et services au fournisseur. Au niveau stratégique, ce problème est fréquemment désigné par le vocable « design de réseau logistique ». Une approche intéressante pour résoudre ces problématiques décisionnelles complexes consiste à formuler et résoudre un modèle mathématique en nombres entiers représentant la problématique. Plusieurs modèles ont ainsi été récemment proposés pour traiter différentes catégories de décision en matière de design de réseau logistique. Cependant, ces modèles sont très complexes et difficiles à résoudre, et même les solveurs les plus performants échouent parfois à fournir une solution de qualité. Les travaux développés dans cette thèse proposent plusieurs contributions. Tout d’abord, un modèle de design de réseau logistique incorporant plusieurs innovations proposées récemment dans la littérature a été développé; celui-ci intègre les dimensions du choix des fournisseurs, la localisation, la configuration et l’assignation de mission aux installations (usines, entrepôts, etc.) de l’entreprise, la planification stratégique du transport et la sélection de politiques de marketing et d’offre de valeur au consommateur. Des innovations sont proposées au niveau de la modélisation des inventaires ainsi que de la sélection des options de transport. En deuxième lieu, une méthode de résolution distribuée inspirée du paradigme des systèmes multi-agents a été développée afin de résoudre des problèmes d’optimisation de grande taille incorporant plusieurs catégories de décisions. Cette approche, appelée CAT (pour collaborative agent teams), consiste à diviser le problème en un ensemble de sous-problèmes, et assigner chacun de ces sous-problèmes à un agent qui devra le résoudre. Par la suite, les solutions à chacun de ces sous-problèmes sont combinées par d’autres agents afin d’obtenir une solution de qualité au problème initial. Des mécanismes efficaces sont conçus pour la division du problème, pour la résolution des sous-problèmes et pour l’intégration des solutions. L’approche CAT ainsi développée est utilisée pour résoudre le problème de design de réseaux logistiques en univers certain (déterministe). Finalement, des adaptations sont proposées à CAT permettant de résoudre des problèmes de design de réseaux logistiques en univers incertain (stochastique).
|
120 |
La reconnaissance de plan des adversairesBisson, Francis January 2012 (has links)
Ce mémoire propose une approche pour la reconnaissance de plan qui a été conçue pour les environnements avec des adversaires, c'est-à-dire des agents qui veulent empêcher que leurs plans soient reconnus. Bien qu'il existe d'autres algorithmes de reconnaissance de plan dans la littérature, peu sont adaptés pour de tels environnements. L'algorithme que nous avons conçu et implémenté (PROBE, Provocation for the Recognition of Opponent BEhaviours ) est aussi capable de choisir comment provoquer l'adversaire, en espérant que la réaction de ce dernier à la provocation permette de donner des indices quant à sa véritable intention. De plus, PROBE utilise des machines à états finis comme représentation des plans, un formalisme différent de celui utilisé par les autres approches et qui est selon nous mieux adapté pour nos domaines d'intérêt. Les résultats obtenus suite à différentes expérimentations indiquent que notre algorithme réussit généralement à obtenir une bonne estimation des intentions de l'adversaire dès le départ et que cette estimation s'améliore lorsque de nouvelles actions sont observées. Une comparaison avec un autre algorithme de reconnaissance de plan démontre aussi que PROBE est plus efficace en temps de calcul et en utilisation de la mémoire, sans pourtant sacrifier la qualité de la reconnaissance. Enfin, les résultats montrent que notre algorithme de provocation permet de réduire l'ambiguïté sur les intentions de l'adversaire et ainsi améliorer la justesse du processus de reconnaissance de plan en sélectionnant une provocation qui force l'adversaire, d'une certaine façon, à révéler son intention.
|
Page generated in 0.0839 seconds