• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 38
  • 13
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrochemical Sensors Enhanced by Convection and by 3D Arrays of Vertically Aligned Carbon Nanotubes

Brownlee, Benjamin James 04 June 2020 (has links)
Early and accessible diagnostics are important elements to reducing the negative side-effects of untreated disease. One key advancement in diagnostic monitoring is through the development of highly sensitive sensors that have the capability to detect lower concentrations, while still remaining accessible for point-of-care use. This dissertation characterizes electrochemical sensing platforms that are enhanced by convection and by 3D electrodes made from high surface area, vertically aligned carbon nanotubes (VACNTs). Free-standing VACNTs were patterned into microchannel arrays for flow-through amperometric sensing. Convective mass transfer enhancement was shown to improve sensor performance in amperometric sensing through the use of high surface area to fluid volume structures and concentration boundary layer confinement. Through-flow sensing of hydrogen peroxide produced drastically higher signals than stirred sensing, with over 90% of the hydrogen peroxide being oxidized as it passed through the channels. Non-enzymatic sensing of glucose was achieved by chemical reaction of glucose with methyl viologen to produce on average 3.4 electrons per glucose molecule, significantly higher than that obtained with enzymatic sensing with glucose oxidase. A scaled down sensor enabled detection from 200 μL of glucose by flow injection analysis with a limit of detection of 360 nM and a linear sensing range up to at least 150 μM glucose. Such sensing range offers the potential to measure glucose levels found in saliva. This work demonstrates the utility of high aspect ratio electrodes made of VACNTs. Convection and surface area are shown to enhance the sensitivity of flow-through VACNT amperometric sensors by effectively utilizing the available analyte to increase the measured current density. Advances in nanomaterials, combined with electrochemical impedance spectroscopy, have allowed impedimetric biosensors to have high sensitivity while remaining label-free, pushing towards enabling portable diagnosis at the point-of-care. Porous, 3D VACNT electrodes for impedance-based biosensing were fabricated with different electrode height, gap width, and configuration. Sensitivity was characterized by functionalizing the representative protein streptavidin onto VACNT electrodes for detection of biotin. Tall, closely-spaced VACNT interdigitated electrodes are shown to have the highest electroactive surface area (15x the 2D geometric area) and the highest sensitivity, allowing for a 1 ng/mL limit of detection. Aspect ratio and surface area are shown to be important factors in determining the sensitivity of 3D VACNT interdigitated electrodes for impedimetric sensing of biomolecules bound to electrode surfaces. Although this biosensing platform is shown with streptavidin and biotin, it could be extended to other proteins, antibodies, viruses, and bacteria.
12

AMPEROMETRIC CHARACTERIZATION OF A NANO INTERDIGITATED ARRAY (nIDA) ELECTRODE AS AN ELECTROCHEMICAL SENSOR

SAMARAO, ASHWIN K. 02 October 2006 (has links)
No description available.
13

A DISPOSABLE POLYMER LAB-ON-A-CHIP WITH MICRO/NANO BIOSENSOR FOR MAGNETIC NANO BEAD-BASED IMMUNOASSAY

DO, JAEPHIL January 2006 (has links)
No description available.
14

Electroluminescent devices via soft lithography

Young, Richard James Hendley January 2017 (has links)
This thesis provides a compendium for the use of microcontact printing in fabricating electrical devices. Work has been undertaken to examine the use of soft lithographic techniques for employment in electronic manufacture. This thesis focusses on the use of high electric field generators as a means to producing electroluminescent devices. These devices provide a quantifiable output in the form of light. Analysis of the electrical performance of electrode structures can be determined by their success at producing light. A prospective reduction in driving voltage would deem these devices more efficient, longer lasting and an improvement on current specification. The work focussed on the viability of using relatively crude print techniques to create high resolution structures. This was carried out successfully and demonstrated that lighting structures of 75 μm and 25 μm have been produced. Microcontact printing has been established as a method for patterning gold surfaces with a functionalising self-assembled monolayer using alkanethiol molecules. This layer is then utilised as an etch resist layer to expose gold tracks for use as electric field generator electrode arrays. Through careful analysis of each step of the printing process, techniques were developed and reported to create a robust and repeatable print mechanism for reliability and accuracy. These techniques were employed to optimise the print process culminating in the development of each stage and final electrode structures mounted on a rigid backplate for use as electroluminescent devices for characterisation. These devices were then modelled for their electrical characteristics and investigated for being used in low voltage application. In this case for the development of electroluminescent applications, a driving voltage of 65 V was achieved and represents a significant advance to the field of printed electronics and Electroluminescence.
15

Conductive Nanocrystalline Cellulose Polymer Composite Film as a Novel Mediator in Biosensor Applications

Lee, Andrew Dong-Hyun 14 December 2011 (has links)
Recent biosensors using glucose oxidase enzyme to detect glucose (“blood sugar”) were made with intrinsic conducting polymers such as poly pyrrole (PPY) to mediate the reaction. PPY coated electrodes were difficult to employ via eletropolymerization because PPY is only soluble in solvents potentially damaging to enzymes. Nano crystalline cellulose – poly pyrrole (NCC-PPY) colloid circumvents this by forming natural, enzyme compatible, and hydrophilic films mechanically bound to electrodes using easy-to-disperse colloids. NCC-PPY was studied as mediator to investigate use in biosensor applications. Using NCC-PPY film casted on microfabricated interdigitated electrodes, a glucose biosensor with sensitivity factor of 20 was achieved. NCC-PPY showed enhanced catalysis with no enzyme inactivation and a total current of 2mA. Enhanced sensitivity was attributed to resistance changes of doped PPY, redox mediation, and compatibility of cellulose with enzyme.
16

Conductive Nanocrystalline Cellulose Polymer Composite Film as a Novel Mediator in Biosensor Applications

Lee, Andrew Dong-Hyun 14 December 2011 (has links)
Recent biosensors using glucose oxidase enzyme to detect glucose (“blood sugar”) were made with intrinsic conducting polymers such as poly pyrrole (PPY) to mediate the reaction. PPY coated electrodes were difficult to employ via eletropolymerization because PPY is only soluble in solvents potentially damaging to enzymes. Nano crystalline cellulose – poly pyrrole (NCC-PPY) colloid circumvents this by forming natural, enzyme compatible, and hydrophilic films mechanically bound to electrodes using easy-to-disperse colloids. NCC-PPY was studied as mediator to investigate use in biosensor applications. Using NCC-PPY film casted on microfabricated interdigitated electrodes, a glucose biosensor with sensitivity factor of 20 was achieved. NCC-PPY showed enhanced catalysis with no enzyme inactivation and a total current of 2mA. Enhanced sensitivity was attributed to resistance changes of doped PPY, redox mediation, and compatibility of cellulose with enzyme.
17

Redox cycling for an in-situ enzyme labeled immunoassay on interdigitated array electrodes

Kim, Sangkyung 20 August 2004 (has links)
This research is directed towards developing a more sensitive and rapid electrochemical sensor for enzyme labeled immunoassays by coupling redox cycling at interdigitated electrode arrays (IDA) with the enzyme label b-galactosidase. Coplanar and comb IDA electrodes with a 2.4 mm gap were fabricated and their redox cycling currents were measured. ANSYS was used to model steady state currents for electrodes with different geometries. Comb IDA electrodes enhanced the signal about 3 times more than the coplanar IDAs, which agreed with the results of the simulation. Magnetic microbead-based enzyme assay, as a typical example of biochemical detection, was done using the comb and coplanar IDAs. The enzymes could be placed close to the sensing electrodes (~10 mm for the comb IDAs) and detection took less than 1 min with a limit of detection of 70 amole of b-galactosidase. We conclude that faster and more sensitive assays can be achieved with the comb IDA. A paramagnetic bead assay has also been demonstrated for detection of bacteriophage MS2, used as a simulant for biothreat viruses, such as small pox. The immunoassay was carried out in a microfluidic format with the IDA, reference and counter electrodes integrated on the same chip. Detection of 90 ng/mL MS2 or 1.5x1010 MS2 particles/mL was demonstrated.
18

Design and fabrication of PVDF electrospun piezo- energy harvester with interdigital electrode

Tsai, Cheng-Hsien 01 September 2011 (has links)
This study used electrospinning to fabricate a polyvinylidene fluoride (PVDF) piezoelectric nanofiber harvesting device with interdigitated electrode to capture ambient energy. According to d33 mechanical-electric energy conversion mode, the energy harvesting device can be applied on the low frequency ambient vibration and impact abilities for the transformation mechanical energy into electrical energy effectively. First, the PVDF powder was mixed in acetone solution uniformly and the dimethyl sulfoxide (DMSO) was mixed with multi-walled carbon nanotube (MWCNT) to prepare PVDF macromolecular solution. The mixed solution was filled in a metals needle injector and contacted hundreds of voltage. After the PVDF drop in the needle was subjected to high electric field, the drop overcame surface tension of the solution itself, then extremely fine PVDF fiber was formed and spun out. The electrospun was collected orderly using X-Y digital control stage and the linear diameter of electrospun can be controlled easily by adjusting the travelling speed of the stage. In the spinning process, as affected by stretching strain and electric field at the same time, the PVDF piezoelectric fiber resulted in electric polarization and transformed £] piezoelectric crystal phase, in which the dipoles are oriented in the same direction. Furthermore, MWCNT was added to improve the mechanical properties of fiber and increase £] phase, to enhance the tensile strength and piezoelectric property of PVDF fiber effectively. Finally, the photolithography was used to fabricate interdigitated electrodes with 100£gm gap on the flexible PI substrate. The PVDF fibers, with a length and diameter of approximately 1cm and 700-1000nm, were aligned on interdigitated electrodes and packaged with the PI film. In order to increase the conversion efficiency of piezoelectric fiber in d33 mode, the PVDF fibers were repolarized in a high electric field. The results showed that the PVDF fiber energy harvesting device can generate 15mV open-circuit voltage under low frequency vibration of 4Hz and generate above 30mV open-circuit voltage under 6Hz vibrations. As compared with the piezoelectric fiber not repolarized by interdigitated electrode, its output voltage was increased by1- 2 times.
19

Application of enzymatic catalysis and galvanic processes for biosensor development

Zaccheo, Brian Andrew 03 January 2013 (has links)
Methods for integrating enzyme systems with electrochemical reactions having applications to diagnostic sensing are described. Diagnostic tests that include biological molecules can be classified as biosensors. Existing testing methods often require trained technicians to perform, and laboratory settings with complex infrastructure. The theme of this dissertation is the development of methods that are faster, easier to use, and more applicable for non-laboratory environments. These goals are accomplished in systems using enzymatic catalysis and galvanic processes. Two biosensors with specific model pathologies have been designed and demonstrated in this study. The first assay senses a DNA fragment representing the Epstein Barr virus and uses enzyme-mediated Ag deposition over a v microfabricated chip. The chip contains a specially designed pair of electrodes in an interdigitated array (IDA). Detection is signaled by a change in the resistance between the two electrodes. The second biosensor discussed in this study is targeted towards the digestive enzyme trypsin. It is selfpowered due to its construction within an open-circuit galvanic cell. In this system, a small volume of blood serum is introduced onto the device over barriers made of protein and Al that block the anode from solution. In the presence of trypsin, the protein gel is rendered more permeable to sodium hydroxide. Adding hydroxide initiates the dissolution of the Al layer, closing the cell circuit and illuminating a light-emitting diode (LED). A relationship was observed between LED illumination time and trypsin concentration. Biosensors that utilize enzymes to generate or amplify a detectable signal are widely used, and the final project of this study uses a nanoparticle based approach to protect the catalytic activity of alkaline phosphatase (AlkP) from hostile chemicals. By incubating Au colloid with AlkP overnight and adding Ag+, core@shell nanoparticles of Au@Ag2O can be isolated that show AlkP activity. The resulting enzyme-metal composite material was analytically characterized and demonstrated greater activity in the presence of organic inhibitors relative to either wild type vi or Au colloid-associated AlkP without the Ag2O shell. The stabilization procedure is complete in one day using a onepot synthesis. This method may provide opportunities to carry out biosensing chemistry in previously incompatible chemical environments. / text
20

Passive inductively coupled wireless sensor for dielectric constant sensing

Zhang, Sheng, active 2013 24 October 2013 (has links)
In order to address the challenges of capacitive sensing in harsh environment, self resonant passive wireless sensors are studied. The capacitive sensing elements based on interdigitated capacitor (IDC) sensor are used. A semi-empirical model providing accurate capacitance calculation for IDCs over a wide range of dimensions and dielectric constants is developed. An equivalent circuit model based on electric field distribution is proposed, leading to a closed form approximation for IDC capacitance calculation. The conductivity of the material under test is also considered and a model is proposed to calculate effective capacitance as a function of conductivity and measurement frequency. The model is used to study the design optimization of IDC sensor and suggested design procedure is proposed. To wirelessly interrogate the capacitive sensor, it is connected to an inductive element to form a resonant circuit, while the measurement is made at remote reader coil. Advantages and disadvantages of different type of resonant structure design are analyzed. In order to assist the design process, a SPICE circuit model is developed to estimate the resonant frequency of the self resonant sensor. Miniaturized sensors with different dimensions are designed, fabricated and tested. The sensor is integrated with silicon nanowire fabric coated with polymer. Measurements are made to illustrate the enhancement in sensing capability by integrating chemical selective material. / text

Page generated in 0.0834 seconds