• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling Of Asymmetric Intermodulation Distortion And Memory Effects Of Power Amplifiers

Yuzer, Ahmet Hayrettin 01 May 2011 (has links) (PDF)
This dissertation is focused on developing a new passband behavioral model in order to account for asymmetric intermodulation distortion resulted from memory effect. First, a measurement setup is prepared to measure the AM/AM, AM/PM distortion, magnitudes and the phases of intermodulation (IMD) and fundamental (FUND) components which are created by the amplifier where phase is calculated only by measuring magnitudes. Then, responses of a sample amplifier are measured for different excitation situations (center frequency and tone spacing are swept). A new modeling technique, namely Odd Order Modeling (OOM), is proposed which has unequal time delay terms. The reason of unequal time delay addition is the change of effective channel length according to the average power passing through that channel. These unequal delays create asymmetry in the IMD components. General Power Series Expansion (GPSE) model is also extracted, OOM and GPSE model performances are compared by using NMSE metric. In order to improve model performance, even order terms with envelope of input are added. It is mathematically proven that even order terms with envelope of the input have contribution to IMD and FUND components&rsquo / . This improved version of modeling is named as Even Order modeling (EOM). EOM model performance is compared with the others&rsquo / performance for two-tone excitation measurement results. It is shown that EOM gives the most accurate result. Model performance is checked for unequal four-tone signal as well. EOM model is applied to baseband DPD circuit after making some modifications. Model linearization performance is compared with the performances of the other memory polynomial modeling techniques.
12

Operating voltage constraints and dynamic range in advanced silicon-germanium HBTs for high-frequency transceivers

Grens, Curtis Morrow 04 May 2009 (has links)
This work investigates the fundamental device limits related to operational voltage constraints and linearity in state-of-the-art silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) in order to support the design of robust next-generation high-frequency transceivers. This objective requires a broad understanding of how much "usable" voltage exists compared to conventionally defined breakdown voltage specifications, so the role of avalanche-induced current-crowding (or "pinch-in") effects on transistor performance and reliability are carefully studied. Also, the effects of intermodulation distortion are examined at the transistor-level for new and better understanding of the limits and trade-offs associated with achieving enhanced dynamic range and linearity performance on existing and future SiGe HBT technology platforms. Based on these investigations, circuits designed for superior dynamic range performance are presented.
13

Effect of the voltage dependency of the device-level gate-source capacitance in the linearity of a common-gate amplifier

Eduardo A. Garcia (5929682) 19 July 2022 (has links)
<p>Most work on amplifier linearity has focused on the transconductance (gm) linearity, but there is increasing evidence that the voltage-dependence of the gate-source capacitance (Cgs) plays an important role in the linearity of emerging devices. This work addresses the capacitance contribution by incorporating the nonlinearities attributed to the voltage dependency of Cgs of a general FET on a circuit-level Cg amplifier model.</p> <p>An amplifier model including a voltage-dependent Cgs, and a voltage-dependent gm is studied using harmonic analysis and Volterra series. A closed form expression for the  third-order intercept point (IP3) of the amplifier, which depends on the nonlinear coefficients of Cgs, is obtained. A simple design rule, and a formula for the reduction of the IP3 due to the voltage-dependent Cgs are also presented. </p> <p>As application examples, the linearity of an amplifier based on a specific device is analyzed for two cases by extracting the nonlinear circuit parameters of the device. First for an analytic model of a bulk mosfet. Second for a one-dimensional, ballistic, coaxially gated Si nanowire. For low frequencies of design, the distortion introduced by gm is predominant, but for high frequencies it is obscured by the distortion coming from Cgs.</p> <p>We conclude that taking into account the voltage-dependence of Cgs is crucial when predicting the linearity behavior of a Cg amplifier, either designed for high-frequency operation, or based on a device operating near the quantum capacitance limit. </p>
14

Novel RF MEMS Devices Enabled by Three-Dimensional Micromachining

Shah, Umer January 2014 (has links)
This thesis presents novel radio frequency microelectromechanical (RF MEMS) circuits based on the three-dimensional (3-D) micromachined coplanar transmission lines whose geometry is re-configured by integrated microelectromechanical actuators. Two types of novel RF MEMS devices are proposed. The first is a concept of MEMS capacitors tuneable in multiple discrete and well-defined steps, implemented by in-plane moving of the ground side-walls of a 3-D micromachined coplanar waveguide transmission line. The MEMS actuators are completely embedded in the ground layer of the transmission line, and fabricated using a single-mask silicon-on-insulator (SOI) RF MEMS fabrication process. The resulting device achieves low insertion loss, a very high quality factor, high reliability, high linearity and high self actuation robustness. The second type introduces two novel concepts of area efficient, ultra-wideband, MEMS-reconfigurable coupled line directional couplers, whose coupling is tuned by mechanically changing the geometry of 3-D micromachined coupled transmission lines, utilizing integrated MEMS electrostatic actuators. The coupling is achieved by tuning both the ground and the signal line coupling, obtaining a large tuneable coupling ratio while maintaining an excellent impedance match, along with high isolation and a very high directivity over a very large bandwidth. This thesis also presents for the first time on RF nonlinearity analysis of complex multi-device RF MEMS circuits. Closed-form analytical formulas for the IIP3 of MEMS multi-device circuit concepts are derived. A nonlinearity analysis, based on these formulas and on  measured device parameters, is performed for different circuit concepts and compared to the simulation results of multi-device  conlinear electromechanical circuit models. The degradation of the overall circuit nonlinearity with increasing number of device stages is investigated. Design rules are presented so that the mechanical parameters and thus the IIP3 of the individual device stages can be optimized to achieve a highest overall IIP3 for the whole circuit.The thesis further investigates un-patterned ferromagnetic NiFe/AlN multilayer composites used as advanced magnetic core materials for on-chip inductances. The approach used is to increase the thickness of the ferromagnetic material without increasing its conductivity, by using multilayer NiFe and AlN sandwich structure. This suppresses the induced currents very effectively and at the same time increases the ferromagnetic resonance, which is by a factor of 7.1 higher than for homogeneous NiFe layers of same thickness. The so far highest permeability values above 1 GHz for on-chip integrated un-patterned NiFe layers were achieved. / <p>QC 20140328</p>
15

Adaptive Suppression of Interfering Signals in Communication Systems

Pelteku, Altin E. 21 April 2013 (has links)
The growth in the number of wireless devices and applications underscores the need for characterizing and mitigating interference induced problems such as distortion and blocking. A typical interference scenario involves the detection of a small amplitude signal of interest (SOI) in the presence of a large amplitude interfering signal; it is desirable to attenuate the interfering signal while preserving the integrity of SOI and an appropriate dynamic range. If the frequency of the interfering signal varies or is unknown, an adaptive notch function must be applied in order to maintain adequate attenuation. This work explores the performance space of a phase cancellation technique used in implementing the desired notch function for communication systems in the 1-3 GHz frequency range. A system level model constructed with MATLAB and related simulation results assist in building the theoretical foundation for setting performance bounds on the implemented solution and deriving hardware specifications for the RF notch subsystem devices. Simulations and measurements are presented for a Low Noise Amplifer (LNA), voltage variable attenuators, bandpass filters and phase shifters. Ultimately, full system tests provide a measure of merit for this work as well as invaluable lessons learned. The emphasis of this project is the on-wafer LNA measurements, dependence of IC system performance on mismatches and overall system performance tests. Where possible, predictions are plotted alongside measured data. The reasonable match between the two validates system and component models and more than compensates for the painstaking modeling efforts. Most importantly, using the signal to interferer ratio (SIR) as a figure of merit, experimental results demonstrate up to 58 dB of SIR improvement. This number represents a remarkable advancement in interference rejection at RF or microwave frequencies.
16

Improved frequency domain measurement techniques for characterizing power amplifier and multipath environments

McKinley, Michael Dean 19 August 2008 (has links)
This work focuses on fixing measurement inaccuracies to which models and figures of merit are susceptible in two wireless communication environments: power amplifier and multipath. To emulate or rate the performance of these environments, models and figures of merit, respectively, are often used. The usefulness of a model depends on how accurately and efficiently it emulates its real-world counterpart. The usefulness of a figure of merit depends on how accurately it represents system behavior. Most discussions on the challenges and trade-offs faced in modeling nearly always focus on the complexity of the device or channel of interest and the resultant difficulty in describing it. Similarly, figures of merit are meant only to summarize the performance of the device or channel. At some point, either in generation or verification of a model or figure of merit, there is a dependence on measured data. Though the complexity and performance of the device or channel are challenges by themselves, there are other significant sources of distortion that must be minimized to avoid errors in the measured data. For this work, the unique distortion of power amplifier and multipath environments is considered, and then errors in measurement which would obscure these distortions are eliminated. Specifically, three measurement issues are addressed: 1) identifying measurement setup artifacts, 2) achieving consistent measurement results and 3) reducing variations in the environment. This work contributes to increasing the accuracy of microwave measurements used in the modeling of nonlinear high-power amplifiers and used in figures of merit for power amplifiers and multipath channels.

Page generated in 0.1587 seconds