• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 21
  • 19
  • 17
  • 14
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

AXOTOMIZED SPINAL COMMISSURAL INTERNEURONS OF THE ADULT FELINE: A study of axonal growth from dendrites and cut axons

Fenrich, Keith 07 December 2009 (has links)
Acquiring knowledge of the morphological, molecular, and functional changes that occur to neurons following axotomy is a key step for a comprehensive understanding of the nervous system and how it reacts to injury. Propriospinal commissural interneurons (PCIs or CINs) are a class of neuron with axons that project through the ventral commissure to the contralateral spinal cord. My goal was to examine the morphological, molecular, and functional changes that occur to adult feline PCIs following a proximal axotomy. We first determined whether proximally axotomized PCIs develop de novo axons from their dendrites. C3 PCIs were proximally axotomized and several weeks later we stained PCIs and prepared the tissue for histological evaluation. Two primary classes of axotomized PCI were identified: those with a very short axon (called permanently axotomized) and those with an axon that projected across the injury site. Permanently axotomized PCIs had processes with morphological features typical of axons that emerged from their distal dendrites. These axonal processes of the distal dendrites also had GAP-43 (an axonal marker) and lacked MAP2a/b (a dendritic marker). We concluded that permanently axotomized PCIs develop de novo axons from distal dendrites. We then determined whether the axons that crossed the lesion site were representative of spontaneous functional regeneration. First, we showed that PCI axons regenerate through an environment that is typically highly inhibitory to regenerating axons. Second, we established that the regenerated axons conduct action potentials. Finally, we found that regenerated PCI axons form functional synaptic connections with neurons in the contralateral spinal cord. Collectively, these data indicated that spinal interneurons are capable of spontaneous functional regeneration through an injured spinal cord. PCI growth cones are complex and unlike growth cones previously described in the literature. The final study of the thesis examines the morphologies of PCI growth cones within spinal cord injury sites. We found that PCI growth cones have a wide range of morphologies that is independent of their location within the lesion site. Taken together, these data indicate that PCIs have a remarkable capacity for axonal elongation and contribute to remodelling of spinal circuitry following spinal injury. / Thesis (Ph.D, Physiology) -- Queen's University, 2009-12-07 11:21:47.036
52

The Role of the Neuronal gap Junction Protein Connexin36 in Kainic Acid Induced Hippocampal Excitotoxicity

Akins, Mark S. January 2014 (has links)
Kainic acid induced excitotoxicity causes pyramidal cell death in the CA3a/b region of the hippocampus. Electrical synapses, gap junctional communication, and single membrane channels in non-junctional membranes (hemichannels) composed of connexin36 (Cx36) have been implicated in both seizure propagation and the spread of excitotoxic cell death. In rats, Cx36 protein is expressed by pyramidal neurons. Localization of protein in mouse, however, is highly controversial. Expression is reported to be restricted to hippocampal interneurons yet the same excitotoxic mechanisms (electrical and metabolic coupling between pyramidal neurons) are invoked to explain the role of Cx36 in excitotoxic pyramidal loss in murine brain. To address this controversy, I show by confocal immunofluorescence and in situ hybridization that Cx36 protein expression is restricted to interneurons and microglia in murine hippocampus and is not expressed by, or is below level of detection in pyramidal neurons. Using behavioural and electrophysiological measures, seizure propagation was found to be moderately enhanced in the absence of Cx36 likely due to the loss of interneuron-mediated synchronous inhibition of the pyramidal cells. Further, CA3a/b neurons die post kainic acid injury in the presence of Cx36 but are protected in Cx36-/- mice. When delayed excitotoxic cell death is maximal, Cx36 is primarily expressed by activated microglia as demonstrated by confocal immunofluorescence, in situ hybridization, and Western blotting. These activated microglia are located in the direct vicinity of, and surrounding cells in the damaged Ca3a/b region. Finally, I show that loss of Cx36 from activated microglia in mice is sufficient to prevent excitotoxic cell death in the CA3a/b with surviving neurons functional as assessed by both electrophysiological and behavioural measures. Together, these data identify a new mechanism of excitotoxic injury, mediated by neuronal-glial interactions, and dependent on microglial Cx36 expression.
53

Characterization of RIS presynaptic circuits for sleep regulation in Caenorhabditis elegans

Maluck, Elisabeth 24 May 2019 (has links)
No description available.
54

Understanding the Role of Prdm12b in Zebrafish Development

Yildiz, Ozge 07 March 2019 (has links)
Function of the adult nervous system relies on the appropriate establishment of neural circuits during embryogenesis. In vertebrates, the neurons that make up motor circuits form in distinct domains along the dorsoventral (DV) axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing the fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. We used CRISPR/Cas9 genome editing technology to generate the first germline mutants for the prdm12 gene and used this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal Mauthner cell-dependent escape response. Using cell culture-based luciferase reporter assays, we demonstrate that Prdm12b acts as transcriptional repressor, most likely by recruiting EHMT2/G9a. We also show that the Bhlhe22 TF binds to the Prdm12b zinc finger domain to form a Bhlhe22:Prdm12b complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1. We conclude that prdm12b germline mutations produce a phenotype that is indistinguishable from that of morpholino-mediated loss of prdm12 function. In terms of prdm12b function, our results indicate that Prdm12b acts as transcriptional repressor and interacts with both EHMT2/G9a and Bhlhe22. However, bhlhe22 function is not required for eng1b expression in vivo, perhaps indicating that other bhlh genes can compensate for its loss during embryogenesis. Lastly, we do not find evidence for nkx6.1 and prdm12b acting as a repressive pair in the formation of the p1 domain – suggesting that prdm12b is not solely required to repress non-p1 fates, but is also needed to promote p1 fates.
55

Dysfonction synaptique des interneurones GABAergiques corticaux : implications des mutations du gène Cacna1a dans le développement de l’épilepsie et des déficits cognitifs

Lupien-Meilleur, Alexis 12 1900 (has links)
Les mutations héréditaires causant une perte de fonction du gène CACNA1A, encodant la sous-unité α1 du canal CaV2.1, entraînent chez l’humain le développement d’une ataxie épisodique s’accompagnant parfois d’épilepsie et d’atteintes cognitives. Également, des mutations de novo de CACNA1A ont été rapportées chez près de 1 % des enfants souffrant d’encéphalopathies épileptogènes, ainsi que chez des enfants présentant un trouble du spectre de l’autisme isolé. Ensemble, ces données suggèrent que les altérations de CACNA1A peuvent jouer un rôle central dans la pathogenèse de divers troubles neurodéveloppementaux avec atteintes cognitives et développementales. D’ailleurs, notre évaluation de 16 patients, issus de quatre familles non consanguines, porteurs de différentes mutations induisant une perte de fonction de CACNA1A a révélé l’existence de déficits neurocognitifs modérés à sévères chez la majorité des individus atteints, allant de déficits d’attention avec difficultés d’apprentissage à une déficience intellectuelle avec ou sans trouble du spectre de l’autisme. Alors que les mécanismes pathologiques exacts par lesquels l’haploinsuffisance de CACNA1A induit de tels troubles cognitifs sont encore indéterminés, les mécanismes conduisant à l’épilepsie ont été mieux étudiés. La délétion embryonnaire du canal CaV2.1 dans les interneurones (IN) émanant de l’éminence ganglionnaire médiale (MGE), incluant les IN exprimant la parvalbumine (IN PV) et ceux exprimant la somatostatine (IN SOM), entraîne une épilepsie avec crises tonico-cloniques ainsi que des crises de type absences résultant en une mortalité précoce chez la souris Nkx2.1Cre; Cacna1ac/c. Cependant, la perte du canal dans les IN SOM, chez le modèle SOMCre; Cacna1ac/c, n’induit pas d’épilepsie et la perte ciblée aux IN PV, chez le modèle PVCre; Cacna1ac/c, entraîne une épilepsie caractérisée par des crises d’absence et de rares crises motrices. L’objectif de cette thèse consistait donc, dans un premier temps, de comprendre les mécanismes sous-jacents aux différences épileptiques entre les modèles Nkx2.1Cre; Cacna1ac/c et PVCre; Cacna1ac/c. Les techniques combinées d’imagerie immunohistochimique, d’imagerie 2-photon, d’électrophysiologie, d’analyse d’électroencéphalogramme et de croisement de modèles conditionnels nous ont permis d’identifier les conséquences cellulaires et électrophysiologiques de la délétion de Cacna1a de manière précoce ou tardive dans les IN PV. Elles ont dévoilé, chez le modèle PVCre; Cacna1ac/c, un gain d’inhibition dendritique dans les cellules pyramidales (CP) résultant d’une arborescence axonale accrue des IN SOM. Ce remodelage, dépendant de mTORC1, suffit à prévenir l’apparition de crises motrices et l’inhibition de cette croissance axonale à l’aide de rapamycine renverse l’effet protecteur observé chez la souris PVCre; Cacna1ac/c. Enfin, nous démontrons que l’activation chémogénétique des IN SOM corticaux prévient l’apparition de crises motrices dans un modèle d’épilepsie induite à l’acide kaïnique. Puisque les IN PV en panier du cortex sont essentiels à plusieurs processus cognitifs, telles la flexibilité cognitive et l’attention, qu’ils sont affectés par la perte de fonction homozygote de CaV2.1 et afin de reproduire une condition semblable à celle de nos patients, nous avons exploré dans un deuxième temps l’implication pathologique de ces neurones dans les troubles cognitifs associés à l’haploinsuffisance de Cacna1a. À l’aide du modèle murin portant une délétion hétérozygote de Cacna1a ciblée aux populations neuronales exprimant la PV (PVCre; Cacna1ac/+), nous démontrons par électrophysiologie que la perte du canal CaV2.1 dans ces neurones suffit à réduire l’inhibition corticale. Les tests comportementaux incluant l’Openfield, l’Elevated Plus Maze, le Morris Water Maze, une tâche testant la rigidité cognitive ainsi qu’une tâche évaluant l’attention, ont démontré que les mutants PVCre; Cacna1ac/+ présentent de l’impulsivité, de la rigidité cognitive ainsi qu’un déficit d’attention sélective. Bien que l’ablation homozygote du canal réduise la relâche synaptique des CP chez le mutant homozygote Emx1Cre; Cacna1ac/c, aucun déficit de relâche synaptique, comportemental ou cognitif n’a été observé chez les souris Emx1Cre; Cacna1ac/+ suggérant qu’au niveau cortical, la délétion hétérozygote de Cacna1a affecte sélectivement les IN PV. De plus, à l’aide de délétions ciblées au cortex orbito-frontal (OFC) et au cortex préfrontal médial (mPFC), nous démontrons que l’haploinsuffisance de Cacna1a dans ces régions entraîne de la rigidité cognitive et des troubles de l’attention, respectivement. Enfin, nous révélons que ces deux atteintes peuvent être corrigées via une activation chémogénétique locale des IN PV. Dans son ensemble, ce travail contribue au développement des connaissances portant sur les délétions de Cacna1a. Il présente également de nouvelles avenues pour le traitement de crises épileptiques motrices et pour la prise en charge des atteintes cognitives chez les patients souffrant d’haploinsuffisance de CACNA1A. / Loss-of-function mutations in the CACNA1A gene, encoding the α1 subunit of voltage-gated CaV2.1 channels, result in epilepsy and neurocognitive impairments, including attention deficits, intellectual deficiency and autism. Also, de novo mutations in CACNA1A have been reported in nearly 1% of children with epileptogenic encephalopathies, as well as in children with isolated autism spectrum problems. Taken together, these data suggest that alterations in CACNA1A may play a central role in the pathogenesis of various neurodevelopmental disorders with cognitive and developmental impairment. Moreover, our evaluation of 16 patients, from four non-consanguineous families, carriers of different mutations inducing a loss of function of CACNA1A have shown the existence of moderate to severe neurocognitive deficits in the majority of affected individuals, ranging from deficits from attention with learning difficulties to intellectual disabilities with or without an autism spectrum problem. While the exact pathological mechanisms by which CACNA1A haploinsufficiency induces such cognitive impairment are still unknown, the mechanisms leading to epilepsy have been better studied. Embryonic deletion of CaV2.1 in interneurons (IN) emanating from the medial ganglionic eminence (MGE), including INs expressing parvalbumin (PV IN) and those expressing somatostatin (SOM IN), causes epilepsy with tonic-clonic seizures and absence seizures resulting in early mortality in the Nkx2.1Cre; Cacna1ac/c mice model. However, loss of the channel in SOM IN (SOMCre; Cacna1ac/c) does not induce epilepsy whereas targeted loss in PV IN (PVCre; Cacna1ac/c) causes epilepsy with absence and rare motor seizures. The objective of this thesis was therefore, first of all, to understand the mechanisms underlying the epileptic differences between the Nkx2.1Cre ;Cacna1ac/c and the PVCre; Cacna1ac/c mice. The combined techniques of immunohistochemistry, 2-photon imaging, electrophysiology, electroencephalogram analysis and the crossing of different conditional models identified the cellular and electrophysiological consequences of the deletion of Cacna1a in the IN PV. Compared to Nkx2.1Cre; Cacna1ac/c mice, PVCre; Cacna1ac/c mice have a net increase in cortical inhibition, with a gain of dendritic inhibition through sprouting of SOM IN axons, largely preventing motor seizures. This beneficial compensatory remodeling of cortical GABAergic innervation is mTORC1-dependent and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures. Cortical PV IN basket cells are essential for several cognitive processes, such as cognitive flexibility and attention and they are affected by CaV2.1 knock-out. CACNA1A haploinsufficiency also causes cause epilepsy, ataxia, and a range of neurocognitive deficits, including inattention, impulsivity, intellectual deficiency and autism. Therefore, this thesis had for second objective to clarify the consequences of Cacna1a haploinsufficiency in PV IN. Using the mice model carrying a heterozygous deletion of Cacna1a targeted at neuronal populations expressing PV (PVCre; Cacna1ac/+), we demonstrated by electrophysiology that the loss of the CaV2.1 in this neuronal population is sufficient to reduce cortical inhibition. Behavioral tests including the OpenField, the Elevated Plus Maze, the Morris Water Maze, a cognitive rigidity task as well as an attention set-shifting task have shown that PVCre; Cacna1ac/+ exhibit impulsivity, cognitive rigidity, and selective attention deficit. Although Cacna1a homozygous ablation reduced synaptic release of PC in the Emx1Cre; Cacna1ac/c mice mutant, no synaptic, behavioural or cognitive relaxation deficits were observed in the Emx1Cre; Cacna1ac/+ mice suggesting that, at the cortical level, the heterozygous deletion of Cacna1a selectively affects PV IN. These findings have enabled us to determine, using targeted deletions within the orbitofrontal cortex (OFC) and the medial prefrontal cortex (mPFC), that the haploinsufficiency of Cacna1a in PV IN results in reversal learning deficits and impairs selective attention, respectively. These deficits can be rescued by the selective chemogenetic activation of cortical PV IN respectively in the OFC or mPFC of PVCre; Cacna1ac/+ mutants As a whole, this work contributes to the development of knowledge on Cacna1a deletions. It also presents new avenues for the treatment of motor epileptic seizures and for the management of cognitive impairment in patients with CACNA1A haploinsufficiency.
56

Mécanismes moléculaires impliqués dans la régulation de l’acide polysialique (PSA) dans le néocortex visuel des souris durant la maturation des synapses GABAergiques

Bélanger, Marie-Claude 08 1900 (has links)
Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle i et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des ii polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale. / The functioning of the cerebral cortex requires coordinated action of two major neuronal subtypes - the glutamatergic projection neurons and the GABAergic interneurons. GABAergic interneurons represent 20 to 30% of all cortical cells. Even though they are a minor cell population in the cerebral cortex compared to glutamatergic neurons, they are key modulators of network dynamics and plasticity of neocortical circuits. It is therefore not surprising that aberrant development of GABAergic circuits is implicated in many neurodevelopmental disorders including epilepsy, Rett syndrome and schizophrenia. Understanding the molecular mechanisms governing the development of GABAergic inhibitory synapses in neocortex is important towards a better comprehension of how abnormalities in this developmental process can occur. Therefore, we focus specifically on the role of polysialic acid (PSA) in the development of GABAergic synapses. PSA is a α-2,8 polysialylated homopolymer, which is exclusively linked to the Neural Cell Adhesion Molecule (NCAM) in the mammalian brain. It is involved in several developmental processes including formation and plasticity of glutamatergic synapses; however its role in GABAergic circuit formation has not been explored so far. Previously in Dr Di Cristo’s lab, we showed that PSA is strongly expressed post-natally and its expression steadily declines during development in mice neocortex. We also showed that the developmental and activity-dependant regulation of PSA expression is inversely correlated with the maturation of perisomatic GABAergic innervation. Our aim is to characterize the molecular mechanisms regulating PSA expression in mouse iv visual cortex during post-natal development. Two polysialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), are responsible for PSA attachment to NCAM. By controlling the amount of PSA on NCAM, they can influence GABAergic synapses development. The mechanisms regulating STX and PST expression is crucial but remain still unknown. My research project focused on the mechanisms regulating STX and PST transcription in the mouse postnatal cortex. We used an organotypic culture system, which recapitulates many aspects of GABAergic synapse maturation as observed in vivo. Polysialyltransferases transcript levels were measured by qPCR and showed that STX and PST mRNA levels steadily decline during post-natal development in the mouse cortex; the sharpest reduction in the expression of both enzymes correlate with eye opening. We further demonstrate for the first time that STX mRNA levels is activity-dependant, requires the activation of NMDA receptors, an increase in intracellular Calcium levels and is PKC-dependent. Altogether, we show that the regulation of the expression of STX is the main mechanism responsible for PSA expression levels in the cortex around eyes opening. We next investigated whether epigenetic mechanisms regulate STX transcription and preliminary data suggest that histone acetylation and DNA methylation may contribute to STX expression during development. However, further experiments are required to confirm this hypothesis. In summary, understanding the mechanisms modulating STX and PST expression in the neocortex is essential for the comprehension of their precise role in GABAergic synapse maturation. This knowledge could allow us to modulate pharmacologically the expression of these enzymes; in turn overexpression of STX and PST may re-induce PSA expression, thereby destabilizing GABAergic synapses, and ultimately facilitating cortical plasticity in the adult.
57

Role of cortical parvalbumin interneurons in fear behaviour / Rôle des interneurones corticaux parvalbuminergiques dans les comportements de peur

Courtin, Julien 13 December 2013 (has links)
Les processus d'apprentissage et de mémoire sont contrôlés par des circuits et éléments neuronaux spécifiques. De nombreuses études ont récemment mis en évidence que les circuits corticaux jouent un rôle important dans la régulation des comportements de peur, cependant, leurs caractéristiques anatomiques et fonctionnelles restent encore largement inconnues. Au cours de ma thèse, en utilisant des enregistrements unitaires et des approches optogénétiques chez la souris libre de se comporter, nous avons pu montrer que les interneurones inhibiteurs du cortex auditif et du cortex préfrontal médian forment un microcircuit désinhibiteur permettant respectivement l'acquisition et l'expression de la mémoire de peur conditionnée. Dans les deux cas, les interneurones parvalbuminergiques constituent l'élément central du circuit et sont inhibés de façon phasique. D’un point de vue fonctionnel, nous avons démontré que cette inhibition était associée à la désinhibition des neurones pyramidaux par un mécanisme de réduction de l'inhibition continue exercée par les interneurones parvalbuminergiques. Ainsi, les interneurones parvalbuminergiques peuvent contrôler temporellement l'excitabilité des neurones pyramidaux. En particulier, nous avons montré que l'acquisition de la mémoire de peur conditionnée dépend du recrutement d'un microcircuit désinhibiteur localisé dans le cortex auditif. En effet, au cours du conditionnement de peur, la présentation du choc électrique induit l'inhibition des interneurones parvalbuminergiques, ce qui a pour conséquence de désinhiber les neurones pyramidaux du cortex auditif et de permettre l’apprentissage du conditionnement de peur. Dans leur ensemble, ces données suggèrent que la désinhibition est un mécanisme important dans l'apprentissage et le traitement de l'information dans les circuits corticaux. Dans un second temps, nous avons montré que l'expression de la peur conditionnée requière l'inhibition phasique des interneurones parvalbuminergiques du cortex préfrontal médian. En effet, leur inhibition désinhibe les cellules pyramidales préfrontales et synchronise leur activité en réinitialisant les oscillations thêta locales. Ces résultats mettent en évidence deux mécanismes neuronaux complémentaires induits par les interneurones parvalbuminergiques qui coordonnent et organisent avec précision l’activité neuronale des neurones pyramidaux du cortex préfrontal pour contrôler l'expression de la peur conditionnée. Ensemble, nos données montrent que la désinhibition joue un rôle important dans les comportements de peur en permettant l’association entre des informations comportementalement pertinentes, en sélectionnant les éléments spécifiques du circuit et en orchestrant l'activité neuronale des cellules pyramidales. / Learning and memory processes are controlled by specific neuronal circuits and elements. Numerous recent reports highlighted the important role of cortical circuits in the regulation of fear behaviour, however, the anatomical and functional characteristics of their neuronal components remain largely unknown. During my thesis, we used single unit recordings and optogenetic manipulations of specific neuronal elements in behaving mice, to show that both the auditory cortex and the medial prefrontal cortex contain a disinhibitory microcircuit required respectively for the acquisition and the expression of conditioned fear memory. In both cases, parvalbumin-expressing interneurons constitute the central element of the circuit and are phasically inhibited during the presentation of the conditioned tone. From a functional point of view, we demonstrated that this inhibition induced the disinhibition of cortical pyramidal neurons by releasing the ongoing perisomatic inhibition mediated by parvalbumin-expressing interneurons onto pyramidal neurons. Thereby, this disinhibition allows the precise temporal regulation of pyramidal neurons excitability. In particular, we showed that the acquisition of associative fear memories depend on the recruitment of a disinhibitory microcircuit in the auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated inhibition of parvalbumin-expressing interneurons. Importantly, pharmacological or optogenetic blockade of pyramidal neuron disinhibition abolishes fear learning. Together, these data suggest that disinhibition is an important mechanism underlying learning and information processing in cortical circuits. Secondly, in the medial prefrontal cortex, we demonstrated that expression of fear behaviour is causally related to the phasic inhibition of prefrontal parvalbumin-expressing interneurons. Inhibition of parvalbumin-expressing interneuron activity disinhibits prefrontal pyramidal neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. These results identify two complementary neuronal mechanisms both mediated by prefrontal parvalbumin-expressing interneurons that precisely coordinate and enhance the neuronal efficiency of prefrontal pyramidal neurons to drive fear expression. Together these data highlighted the important role played by neuronal disinhibition in fear behaviour by binding behavioural relevant information, selecting specific circuit elements and orchestrating pyramidal neurons activity.
58

Protéine kinase C γ et hypersensibilité mécanique trigéminale chez le rat / Protein kinase C γ and trigeminal mechanical hypersensitivity in rats

Pham Dang, Nathalie 19 December 2014 (has links)
Les syndromes douloureux chroniques, inflammatoires ou neuropathiques, se caractérisent par une hypersensiblitité douloureuse, sous forme de douleurs spontanées et d’allodynie et d’hyperalgésie. L’isoforme γ de la protein kinase C (PKCγ), concentrée dans un type spécifique d’interneurones de la couche II interne (IIi) de la corne dorsale de la moelle ou du sous-noyau caudal du trijumeau (Sp5C) est impliqué dans mécanismes centraux de l’allodynie mécanique, une condition dans laquelle le toucher provoque une douleur. Nous avons utilisé des techniques comportementales et immunohistochimiques dans le système trigéminal.Le rôle de la PKCγ dans le développement de l’allodynie mécanique est bien établi après lésion nerveuse périphérique. Par contre, il l’est beaucoup moins dans l’allodynie d’origine inflammatoire. Nous avons testé l’hypothèse que l’allodynie mécanique persistante à la suite d’une inflammation périphérique provoquée par l’adjuvent complet de Freund (‘complete Freund’s adjuvant’ ou CFA) est bien due à une activation de la PKCγ. L’injection sous-cutanée de CFA au niveau de la zone d’insertion des vibrisses induit une allodynie persistante spécifiquement statique. L’immunomarquage phopho-ERK1/2 montre que l’expression de cette allodynie s’accompagne d’une activation d’interneurones des couches I-IIe et IIi-IIIe, dont des interneurones PKCγ de la couche IIi. Cette allodynie statique est supprimée par l’application intracisternale de l’antagoniste PKCγ, KIG31-1, avant l’injection de CFA, mais pas 3 jours après l’injection de CFA. Ainsi, comme pour l’allodynie mécanique neuropathique, l’activation de la PKCγ est nécessaire au développement de l’allodynie mécanique inflammatoire.Nous avons aussi examiné si l’activation de la PKCγ est suffisante pour le développement de l’allodynie mécanique. L’injection intracisternale de phorbol ester, 12,13-dibutyrate (PDBu), un activateur de la PKCγ, induit simultanément une allodynie mécanique statique et dynamique de la face. L’immunoréactivité phospho-ERK1/2 révèle que l’expression de ces deux allodynies mécaniques s’accompagne de la même activation d’interneurones des couches I-IIe et IIi-IIIe, dont des interneurones PKCγ de la couche IIi . Les effets de l’application de PDBu sont bloqués par l’application simultanée de KIG31-1.L’activation de la PKCγ seule est suffisante pour que se développe une allodynie mécanique, à la fois statique et dynamique. On sait que les interneurones PKCγ de la couche IIi sont directement activés par des afférences myélinisées mécaniques non nociceptives. Le niveau d’activation de la PKCγ contrôlerait la transmission de cette information vers les neurones de projection de la couche I, et donc la transformation du toucher en douleur. / Inflammatory and neuropathic chronic pain syndromes are characterized by pain hypersensitivy, manifest as spontaneous pain, allodynia and hyperalgesia. The γ isoform of protein kinase C (PKCγ), which is concentrated in a specific class of interneurons within inner lamina II (IIi) of the spinal (SDH) and medullary (MDH) dorsal horns, has been implicated in the central mechanisms underlying mechanical allodynia, a condition wherein touch produces pain. We used behavioral and immunohistochemical techniques in the trigeminal system.Whereas there is clear evidence for the involvement of PKCγ in neuropathic mechanical allodynia, that for the involvement of PKCγ in inflammatory mechanical allodynia is still controversial. We investigated the involvement of PKCγ into the persistent mechanical allodynia induced by complete Freund’s adjuvant (CFA) inflammation. Subcutaneous injection of CFA into the vibrissa pad of rats induced a persistent selectively static mechanical allodynia. Monitoring neuronal activity within medullary dorsal horn (MDH) with phospho-ERK1/2 immunoreactivity showed that activation of both laminae I-IIo and IIi-IIIo neurons, including lamina IIi PKCγ-expressing interneurons, was associated with the expression of static mechanical allodynia. Intracisternal injection of the selective PKCγ antagonist, KIG31-1, prevented CFA-induced static mechanical allodynia only when it was injected before, but not 3 days after, CFA injection. These results show that, as for neuropathic mechanical allodynias, PKCγ activation is necessary for inflammatory mechanical allodynia.We also examined whether PKCγ activation in naïve animals is sufficient for the establishment of mechanical allodynia. Intracisternal injection of the phorbol ester, 12,13-dibutyrate (PDBu), concomitantly induced static and dynamic facial mechanical allodynias Monitoring neuronal activity within MDH with phospho-ERK1/2 immunoreactivity revealed that the same activation of both laminae I-IIo and IIi-IIIo neurons, including lamina IIi PKCγ-expressing interneurons, was associated with the manifestation of both mechanical allodynias. PDBu-induced mechanical allodynias and associated neuronal activations were all prevented by intracisternal KIG31-1.Our findings reveal that PKCγ activation is sufficient for the development of static and dynamic mechanical allodynias. Lamina IIi PKCγ interneurons have been shown to be directly activated by low-threshold mechanical inputs carried by myelinated afferents. The level of PKCγ activation might thus gate the transmission of innocuous mechanical inputs to lamina I, nociceptive output neurons, thus turning touch into pain.
59

Mécanismes moléculaires impliqués dans la régulation de l’acide polysialique (PSA) dans le néocortex visuel des souris durant la maturation des synapses GABAergiques

Bélanger, Marie-Claude 08 1900 (has links)
Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle i et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des ii polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale. / The functioning of the cerebral cortex requires coordinated action of two major neuronal subtypes - the glutamatergic projection neurons and the GABAergic interneurons. GABAergic interneurons represent 20 to 30% of all cortical cells. Even though they are a minor cell population in the cerebral cortex compared to glutamatergic neurons, they are key modulators of network dynamics and plasticity of neocortical circuits. It is therefore not surprising that aberrant development of GABAergic circuits is implicated in many neurodevelopmental disorders including epilepsy, Rett syndrome and schizophrenia. Understanding the molecular mechanisms governing the development of GABAergic inhibitory synapses in neocortex is important towards a better comprehension of how abnormalities in this developmental process can occur. Therefore, we focus specifically on the role of polysialic acid (PSA) in the development of GABAergic synapses. PSA is a α-2,8 polysialylated homopolymer, which is exclusively linked to the Neural Cell Adhesion Molecule (NCAM) in the mammalian brain. It is involved in several developmental processes including formation and plasticity of glutamatergic synapses; however its role in GABAergic circuit formation has not been explored so far. Previously in Dr Di Cristo’s lab, we showed that PSA is strongly expressed post-natally and its expression steadily declines during development in mice neocortex. We also showed that the developmental and activity-dependant regulation of PSA expression is inversely correlated with the maturation of perisomatic GABAergic innervation. Our aim is to characterize the molecular mechanisms regulating PSA expression in mouse iv visual cortex during post-natal development. Two polysialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), are responsible for PSA attachment to NCAM. By controlling the amount of PSA on NCAM, they can influence GABAergic synapses development. The mechanisms regulating STX and PST expression is crucial but remain still unknown. My research project focused on the mechanisms regulating STX and PST transcription in the mouse postnatal cortex. We used an organotypic culture system, which recapitulates many aspects of GABAergic synapse maturation as observed in vivo. Polysialyltransferases transcript levels were measured by qPCR and showed that STX and PST mRNA levels steadily decline during post-natal development in the mouse cortex; the sharpest reduction in the expression of both enzymes correlate with eye opening. We further demonstrate for the first time that STX mRNA levels is activity-dependant, requires the activation of NMDA receptors, an increase in intracellular Calcium levels and is PKC-dependent. Altogether, we show that the regulation of the expression of STX is the main mechanism responsible for PSA expression levels in the cortex around eyes opening. We next investigated whether epigenetic mechanisms regulate STX transcription and preliminary data suggest that histone acetylation and DNA methylation may contribute to STX expression during development. However, further experiments are required to confirm this hypothesis. In summary, understanding the mechanisms modulating STX and PST expression in the neocortex is essential for the comprehension of their precise role in GABAergic synapse maturation. This knowledge could allow us to modulate pharmacologically the expression of these enzymes; in turn overexpression of STX and PST may re-induce PSA expression, thereby destabilizing GABAergic synapses, and ultimately facilitating cortical plasticity in the adult.
60

Rôles de Trio dans la migration des interneurones GABAergiques corticaux

Charron-Ligez, François 08 1900 (has links)
No description available.

Page generated in 0.0775 seconds