Spelling suggestions: "subject:"inverse gaussian"" "subject:"inverse maussian""
21 |
On the calibration of Lévy option pricing models / Izak Jacobus Henning VisagieVisagie, Izak Jacobus Henning January 2015 (has links)
In this thesis we consider the calibration of models based on Lévy processes to option
prices observed in some market. This means that we choose the parameters of the option
pricing models such that the prices calculated using the models correspond as closely as
possible to these option prices. We demonstrate the ability of relatively simple Lévy option
pricing models to nearly perfectly replicate option prices observed in nancial markets.
We speci cally consider calibrating option pricing models to barrier option prices and
we demonstrate that the option prices obtained under one model can be very accurately
replicated using another. Various types of calibration are considered in the thesis.
We calibrate a wide range of Lévy option pricing models to option price data. We con-
sider exponential Lévy models under which the log-return process of the stock is assumed
to follow a Lévy process. We also consider linear Lévy models; under these models the
stock price itself follows a Lévy process. Further, we consider time changed models. Under
these models time does not pass at a constant rate, but follows some non-decreasing Lévy
process. We model the passage of time using the lognormal, Pareto and gamma processes.
In the context of time changed models we consider linear as well as exponential models.
The normal inverse Gaussian (N IG) model plays an important role in the thesis.
The numerical problems associated with the N IG distribution are explored and we
propose ways of circumventing these problems. Parameter estimation for this distribution
is discussed in detail.
Changes of measure play a central role in option pricing. We discuss two well-known
changes of measure; the Esscher transform and the mean correcting martingale measure.
We also propose a generalisation of the latter and we consider the use of the resulting
measure in the calculation of arbitrage free option prices under exponential Lévy models. / PhD (Risk Analysis), North-West University, Potchefstroom Campus, 2015
|
22 |
Calibration and Model Risk in the Pricing of Exotic Options Under Pure-Jump Lévy DynamicsMboussa Anga, Gael 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015 / AFRIKAANSE OPSOMMING : Die groeiende belangstelling in kalibrering en modelrisiko is ’n redelik resente ontwikkeling
in finansiële wiskunde. Hierdie proefskrif fokusseer op hierdie sake, veral in
verband met die prysbepaling van vanielje-en eksotiese opsies, en vergelyk die prestasie
van verskeie Lévy modelle. ’n Nuwe metode om modelrisiko te meet word ook voorgestel
(hoofstuk 6). Ons kalibreer eers verskeie Lévy modelle aan die log-opbrengs van die
S&P500 indeks. Statistiese toetse en grafieke voorstellings toon albei aan dat suiwer
sprongmodelle (VG, NIG en CGMY) die verdeling van die opbrengs beter beskryf as
die Black-Scholes model. Daarna kalibreer ons hierdie vier modelle aan S&P500 indeks
opsie data en ook aan "CGMY-wˆ ereld" data (’n gesimuleerde wÃłreld wat beskryf word
deur die CGMY-model) met behulp van die wortel van gemiddelde kwadraat fout. Die
CGMY model vaar beter as die VG, NIG en Black-Scholes modelle. Ons waarneem
ook ’n effense verskil tussen die nuwe parameters van CGMY model en sy wisselende
parameters, ten spyte van die feit dat CGMY model gekalibreer is aan die "CGMYwêreld"
data. Versperrings-en terugblik opsies word daarna geprys, deur gebruik te
maak van die gekalibreerde parameters vir ons modelle. Hierdie pryse word dan vergelyk
met die "ware" pryse (bereken met die ware parameters van die "CGMY-wêreld), en
’n beduidende verskil tussen die modelpryse en die "ware" pryse word waargeneem.
Ons eindig met ’n poging om hierdie modelrisiko te kwantiseer / ENGLISH ABSTRACT : The growing interest in calibration and model risk is a fairly recent development in
financial mathematics. This thesis focussing on these issues, particularly in relation to
the pricing of vanilla and exotic options, and compare the performance of various Lévy
models. A new method to measure model risk is also proposed (Chapter 6). We calibrate
only several Lévy models to the log-return of S&P500 index data. Statistical tests
and graphs representations both show that pure jump models (VG, NIG and CGMY) the
distribution of the proceeds better described as the Black-Scholes model. Then we calibrate
these four models to the S&P500 index option data and also to "CGMY-world" data
(a simulated world described by the CGMY model) using the root mean square error.
Which CGMY model outperform VG, NIG and Black-Scholes models. We observe also a
slight difference between the new parameters of CGMY model and its varying parameters,
despite the fact that CGMY model is calibrated to the "CGMY-world" data. Barriers
and lookback options are then priced, making use of the calibrated parameters for our
models. These prices are then compared with the "real" prices (calculated with the true
parameters of the "CGMY world), and a significant difference between the model prices
and the "real" rates are observed. We end with an attempt to quantization this model
risk.
|
23 |
Generating Generalized Inverse Gaussian Random VariatesHörmann, Wolfgang, Leydold, Josef January 2013 (has links) (PDF)
The generalized inverse Gaussian distribution has become quite popular in financial engineering. The most popular random variate generator is due to Dagpunar (1989). It is an acceptance-rejection algorithm method based on the Ratio-of-uniforms method. However, it is not uniformly fast as it has a prohibitive large rejection constant when the distribution is close to the gamma distribution. Recently some papers have discussed universal methods that are suitable for this distribution. However, these methods require an expensive setup and are therefore not suitable for the varying parameter case which occurs in, e.g., Gibbs sampling. In this paper we analyze the performance of Dagpunar's algorithm and combine it with a new rejection method which ensures a uniformly fast generator. As its setup is rather short it is in particular suitable for the varying parameter case. (authors' abstract) / Series: Research Report Series / Department of Statistics and Mathematics
|
24 |
Defective models for cure rate modelingRocha, Ricardo Ferreira da 01 April 2016 (has links)
Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-10-03T11:30:55Z
No. of bitstreams: 1
TeseRFR.pdf: 5229141 bytes, checksum: 6f0e842f89ed4a41892f27532248ba4a (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T17:37:43Z (GMT) No. of bitstreams: 1
TeseRFR.pdf: 5229141 bytes, checksum: 6f0e842f89ed4a41892f27532248ba4a (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T17:37:50Z (GMT) No. of bitstreams: 1
TeseRFR.pdf: 5229141 bytes, checksum: 6f0e842f89ed4a41892f27532248ba4a (MD5) / Made available in DSpace on 2016-10-10T17:37:59Z (GMT). No. of bitstreams: 1
TeseRFR.pdf: 5229141 bytes, checksum: 6f0e842f89ed4a41892f27532248ba4a (MD5)
Previous issue date: 2016-04-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Modeling of a cure fraction, also known as long-term survivors, is a part of survival analysis. It studies cases where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical treatment, in a way that the modeling assumes the existence of such observations. We need to use some strategy to make the survival function converge to a value p 2 (0; 1), representing the cure rate. A way to model cure rates is to use defective distributions. These distributions are characterized by having probability density functions which integrate to values less than one when the
domain of some of their parameters is di erent from that usually de ned. There is not so much literature about these distributions. There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse Gaussian distribution. The defective models have the advantage of not need the assumption of the presence of immune individuals in the data set. In order to use the defective distributions theory in a competitive way, we need a larger variety of these distributions. Therefore, the main objective of this work is to increase the number of defective distributions that can be used in the cure rate modeling. We investigate how to extend baseline models using some family of distributions. In addition, we derive a property of the Marshall-Olkin family of distributions that allows one to generate new defective models. / A modelagem da fração de cura e uma parte importante da an álise de sobrevivência. Essa área estuda os casos em que, supostamente, existem observa ções não suscetíveis ao evento de interesse. Tais casos requerem um tratamento teórico especial, de forma que a modelagem pressuponha a existência de tais observações. E necessário usar alguma
estratégia para tornar a função de sobrevivência convergente para um valor p 2 (0; 1), que represente a taxa de cura. Uma forma de modelar tais frações e por meio de distribui ções defeituosas. Essas distribuições são caracterizadas por possuirem
funções de densidade de probabilidade que integram em valores inferiores a um quando o domínio de alguns dos seus parâmetros e diferente daquele em que e usualmente definido. Existem, pelo menos, duas distribuições defeituosas na literatura: a Gompertz e a inversa Gaussiana. Os modelos defeituosos têm a vantagem de não precisar pressupor a presença de indivíduos imunes no conjunto de dados. Para utilizar a teoria de d
istribuições defeituosas de forma competitiva e necessário uma maior variedade dessas distribuições. Portanto, o principal objetivo deste trabalho e aumentar o n úmero de distribuições defeituosas que podem ser utilizadas na modelagem de frações de curas. Nós investigamos como estender os modelos defeituosos básicos utilizando certas famílias de distribuições. Além disso, derivamos uma propriedade da famí lia Marshall-Olkin de distribuições que permite gerar uma nova classe de modelos defeituosos.
|
25 |
Uma extensão da distribuição Birnbaum-Saunders baseada na distribuição gaussiana inversa / An extension of the Birnbaum-Saunders distribution based on the inverse gaussian distributionRamos Quispe, Luz Marina, 1985- 27 August 2018 (has links)
Orientador: Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T16:25:27Z (GMT). No. of bitstreams: 1
RamosQuispe_LuzMarina_M.pdf: 6411257 bytes, checksum: 6e1e798cf8f6d7586fe5d9a057492a77 (MD5)
Previous issue date: 2015 / Resumo: Vários trabalhos têm sido feitos sobre a distribuição Birnbaum-Saunders (BS) univariada e suas extensões. A distribuição bivariada Birnbaum-Saunders (BS) foi apresentada apenas recentemente por Kundu et al. (2010) e algumas extensões já foram discutidas por Vilca et al. (2014) e Kundu et al. (2013). Eles propuseram uma distribuição BS bivariada com estrutura de dependência e estabeleceram várias propriedades atraentes. Este trabalho fornece extensões, univariada e bivariada, da distribuição BS. Estas extensões são baseadas na distribuição Gaussiana Inversa (IG) que é usada como uma distribuição de mistura no contexto de misturas de escala normal. As distribuições resultantes são distribuições absolutamente contínuas e muitas propriedades da distribuição BS são preservadas. Sob caso bivariado, as marginais e condicionais são do tipo Birnbaum-Saunders univariada. Para a obtenção da estimativa de máxima verossimilhança (EMV) é desenvolvido um algoritmo EM. Ilustramos os resultados obtidos com dados reais e simulados / Abstract: Several works have been done on the univariate Birnbaum-Saunders (BS) distribution and its extensions. The bivariate Birnbaum-Saunders (BS) distribution was presented only recently by Kundu et al. (2010) and some extensions have already been discussed by Vilca et al. (2014) and Kundu et al. (2013). They proposed a bivariate BS distribution with dependence structure and established several attractive properties. This work provides extensions, univariate and bivariate, of the BS distribution. These extensions are based on the Inverse Gaussian (IG) distribution that is used as a mixing distribution in the context of scale mixtures of normal. The resulting distributions are absolutely continuous distributions and many properties of the BS distribution are preserved. Under bivariate case, the marginals and conditionals are of type univariate Birnbaum-Saunders. For obtaining the maximum likelihood estimates (MLE) of the model parameters is developed an algorithm EM. We illustrate the obtained results with real and simulated dataset / Mestrado / Estatistica / Mestra em Estatística
|
26 |
Parameter Stability in Additive Normal Tempered Stable Processes for Equity DerivativesAlcantara Martinez, Eduardo Alberto January 2023 (has links)
This thesis focuses on the parameter stability of additive normal tempered stable processes when calibrating a volatility surface. The studied processes arise as a generalization of Lévy normal tempered stable processes, and their main characteristic are their time-dependent parameters. The theoretical background of the subject is presented, where its construction is discussed taking as a starting point the definition of Lévy processes. The implementation of an option valuation model using Fourier techniques and the calibration process of the model are described. The thesis analyzes the parameter stability of the model when it calibrates the volatility surface of a market index (EURO STOXX 50) during three time spans. The time spans consist of the periods from Dec 2016 to Dec 2017 (after the Brexit and the US presidential elections), from Nov 2019 to Nov 2020 (during the pandemic caused by COVID-19) and a more recent time period, April 2023. The findings contribute to the understanding of the model itself and the behavior of the parameters under particular economic conditions.
|
27 |
Statistical Models for Count Data from Multiple Sclerosis Clinical Trials and their ApplicationsRettiganti, Mallikarjuna Rao 17 December 2010 (has links)
No description available.
|
28 |
事故傾向服從Inverse Gaussian分配時混合Weibull模式之研究黃(糸秀)琪, Huang,Hsiu-Chi Unknown Date (has links)
本篇論文主要考慮成群資料的存活分析,其特點為群內個體間具有相關性,並假定群內個體具有相同但無法觀測到的事故傾向。首先,探討事故傾向服從任一連續分配時混合Weibull迴歸模式的特性,接著,推導出事故傾向服從血Inverse Gaussian吧時之混合Weibull模式,並介紹參數的估計問題。然後,推導出群內個體是否獨立之分數檢定統計量,以分別就兩種最常見的存活資料型態一完整型態與右設限型態:檢定模式中事故傾向的效應是否存在。最後,並以實例說明分數檢定之程序。 / In this paper, we study survival analysis for grouped data, where the within group correlations are considered. It is also assumed that individuals within the same group share a common but unobservable random frailty. First, we discuss the properties of the Weibull regression model mixed by any continuous distribution. Next, we derive an Inverse Gaussan mixture of Weibull regression model, and discuss the estimation problem. Then, we derive the score test for testing independence between components within the same group, where the two most common cases are discussed the complete data case and the right censoring case. Finally, the testing procedures are illustrated by two examples.
|
29 |
Univariate GARCH models with realized varianceBörjesson, Carl, Löhnn, Ossian January 2019 (has links)
This essay investigates how realized variance affects the GARCH-models (GARCH, EGARCH, GJRGARCH) when added as an external regressor. The GARCH models are estimated with three different distributions; Normal-, Student’s t- and Normal inverse gaussian distribution. The results are ambiguous - the models with realized variance improves the model fit, but when applied to forecasting, the models with realized variance are performing similar Value at Risk predictions compared to the models without realized variance.
|
30 |
Συμβολή στη στατιστική συμπερασματολογία για τις κατανομές γάμα και αντίστροφη κανονική με χρήση της εμπειρικής ροπογεννήτριας συνάρτησης / Contribution to statistical inference for the Gamma distributions and the Inverse Gaussian distributions using the empirical moment generating functionΚαλλιώρας, Αθανάσιος Γ. 01 September 2008 (has links)
Το αντικείμενο της παρούσας διατριβής είναι η διερεύνηση μεθόδων στατιστικής συμπερασματολογίας για την προσαρμογή και έλεγχο της κατανομής γάμα και της αντίστροφης κανονικής (inverse Gaussian) κατανομής σε δεδομένα με θετική λοξότητα. Τα πρότυπα αυτά χρησιμοποιούνται ευρέως στην ανάλυση αξιοπιστίας και ελέγχου μακροβιότητας καθώς και σε άλλες εφαρμογές.
Αρχικά γίνεται μια περιγραφή εναλλακτικών μεθόδων στατιστικής συμπερασματολογίας για τις διπαραμετρικές και τις τριπαραμετρικές οικογένειες κατανομών γάμα και αντίστροφης κανονικής. Στη συνέχεια διερευνάται η χρήση μεθόδων στατιστικής συμπερασματολογίας για την εκτίμηση των παραμέτρων της διπαραμετρικής γάμα κατανομής με χρήση της εμπειρικής ροπογεννήτριας συνάρτησης. Μέθοδοι εκτιμητικής, όπως είναι η μέθοδος των μικτών ροπών και των γενικευμένων ελαχίστων τετραγώνων, εφαρμόζονται και συγκρίνονται με την μέθοδο της μέγιστης πιθανοφάνειας μέσω πειραμάτων προσομοίωσης Monte Carlo. Επίσης, διερευνώνται έλεγχοι καλής προσαρμογής για τη διπαραμετρική γάμα κατανομή. Οι έλεγχοι αυτοί περιλαμβάνουν τους κλασικούς ελέγχους και έναν έλεγχο που χρησιμοποιεί την εμπειρική ροπογεννήτρια συνάρτηση. Με χρήση πειραμάτων προσομοίωσης Monte Carlo, γίνεται σύγκριση των ελέγχων ως προς το πραγματικό επίπεδο σημαντικότητας και την ισχύ έναντι άλλων λοξών προς τα δεξιά κατανομών. Στη συνέχεια εφαρμόζονται έλεγχοι καλής προσαρμογής γάμα κατανομών σε πραγματικά δεδομένα, τα οποία έχουν αναλυθεί νωρίτερα από άλλους ερευνητές. Για τον έλεγχο της τριπαραμετρικής γάμα κατανομής εφαρμόζεται μόνο ο έλεγχος με χρήση της εμπειρικής ροπογεννήτριας συνάρτησης, αφού δεν είναι γνωστοί κλασικοί έλεγχοι που χρησιμοποιούν την εμπειρική συνάρτηση κατανομής.
Τέλος, γίνεται εκτίμηση ποσοστιαίων σημείων της αντίστροφης κανονικής κατανομής. Αρχικά, εκτιμώνται ποσοστιαία σημεία για την τριπαραμετρική κατανομή και στη συνέχεια εφαρμόζονται δύο μέθοδοι υπολογισμού ποσοστιαίων σημείων για την περίπτωση της διπαραμετρικής κατανομής. Η εκτίμηση των ποσοστιαίων σημείων σε κάθε οικογένεια κατανομών χρησιμοποιεί δύο μεθόδους ενδιάμεσης εκτίμησης των παραμέτρων της κατανομής. Οι μέθοδοι συγκρίνονται ως προς το μέσο τετραγωνικό σφάλμα και τη σχετική μεροληψία με τη βοήθεια πειραμάτων προσομοίωσης. / The subject of the present dissertation is the investigation of procedures of statistical inference for fitting and testing the gamma distribution and inverse Gaussian distribution, with data having positive skewness. These distributions are used widely in reliability analysis and lifetime models as well as in other applications.
In the beginning, we describe alternative methods of statistical inference for the two and three-parameter families of gamma and inverse Gaussian distributions. Then, we examine methods of statistical inference in order to estimate the parameters of the two-parameter gamma distribution using the empirical moment generating function. Estimation procedures, like the method of mixed moments and the method of generalized least squares, are applied and compared with the method of maximum likelihood through Monte Carlo simulations. Also, we investigate goodness of fit tests for the two-parameter gamma distribution. These tests include the classical tests and a test based on the empirical moment generating function. Using Monte Carlo simulations, we compare the actual level of the tests and the power of the tests against skewed to the right distributions. We apply goodness of fit tests of gamma distributions to real life data, which have been examined earlier by other researchers. For the three-parameter gamma distribution we apply only one test using the empirical moment generating function since there are no classical tests using the empirical distribution function.
Finally, we estimate quantiles of the inverse Gaussian distribution. We start estimating quantiles for the three-parameter distribution and then we apply two procedures which estimate quantiles for the two-parameter distribution. The estimates of the quantiles for each family of distributions use two procedures for estimating intermediary the parameters of the distribution. The procedures are compared with respect to the normalized mean square error and the relative bias using simulations.
|
Page generated in 0.0838 seconds