• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 43
  • 29
  • 1
  • Tagged with
  • 145
  • 122
  • 92
  • 64
  • 64
  • 64
  • 58
  • 50
  • 36
  • 24
  • 24
  • 24
  • 24
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Nanomembranes Based on Nickel Oxide and Germanium as Anode Materials for Lithium-Ion Batteries

Sun, Xiaolei 08 September 2017 (has links)
Rechargeable lithium-ion batteries are now attracting great attention for applications in portable electronic devices and electrical vehicles, because of their high energy density, long cycle and great convenience. For new generations of rechargeable lithium-ion batteries, they applied not only to consumer electronics but also especially to clean energy storage and hybrid electric vehicles. Therefore, further breakthroughs in electrode materials that open up a new important avenue are essential. Graphite, the most commonly used commercial anode material, has a limited reversible lithium intercalation capacity (372 mAh g-1). In this regard, tremendous efforts have been made towards even further improving high capacity, excellent rate capability, and cycling stability by developing advanced anode materials. This work focuses on the lithium storage properties of nickel oxide (NiO) and germanium (Ge) nanomembranes anodes mainly fabricated by electron-beam evaporation. Specifically, NiO is selected for conversion-type material because of high theoretical specific capacity of 718 mAh g-1 and easily obtained material. The resultant curved NiO nanomembranes anodes exhibit ultrafast power rate of 50 C (1 C = 718 mA g-1) and good capacity retention (721 mAh g-1, 1400 cycles). Remarkably, multifunctional Ni/NiO hybrid nanomembranes were further fabricated and investigated. Benefiting from the advantages of the intrinsic architecture and the electrochemical catalysis of metallic nickel, the hybrid Ni/NiO anodes could be tested at an ultrahigh rate of ~115 C. With Ge as active alloying-type material (1624 mAh g-1), the effect of the incorporated oxygen to the lithium storage properties of amorphous Ge nanomembranes is well studied. The oxygen-enabled Ge (GeOx) nanomembranes exhibit improved electrochemical properties of highly reversible capacity (1200 mAh g-1), and robust cycling performance.
112

Ein neues Konzept zur Modellierung der Positronenemitter-Produktion bei der Partikeltherapie

Priegnitz, Marlen January 2012 (has links)
Eine der drei Säulen der Krebsbehandlung ist die Strahlentherapie. Einer der neuesten Ansätze hierbei ist die Bestrahlung mit Ionen, zurzeit insbesondere Protonen und Kohlenstoffionen. Diese Hochpräzisionstherapie erfordert ein hohes Maß an Kontrolle, da die applizierte Dosisverteilung sehr empfindlich von Dichteveränderungen im durchstrahlten Gewebe abhängt. Das bisher einzige klinisch eingesetzte Verfahren zur in vivo Überwachung der Dosisapplikation bei Ionenbestrahlungen ist die Positronen-Emissions-Tomographie (PET). Sie ermöglicht eine Verifikation der Teilchenreichweite sowie der Lage des Bestrahlungsfeldes. Die mit der PET-Methode gemessene Aktivitätsverteilung lässt sich jedoch nicht direkt mit der geplanten Dosisverteilung vergleichen. Daher ist eine Vorherberechnung der erwarteten Aktivitätsverteilung auf der Grundlage des Bestrahlungsplanes notwendig, welche dann mit der Messung verglichen wird und eine qualitative Beurteilung der Bestrahlung ermöglicht. Die Vorherberechnung der erwarteten Aktivitätsverteilung erfordert bislang die Kenntnis einer Vielzahl von Wirkungsquerschnitten. Nur für wenige dieser Wirkungsquerschnitte liegen jedoch Messdaten im benötigten Energiebereich und mit ausreichender Genauigkeit vor. Daher verwenden viele Monte-Carlo-Simulationen intrinsische Kernmodelle oder semi-empirische Modellierungen, die häufig eine unzureichende Genauigkeit aufweisen. In Fachkreisen ist bisher noch nicht geklärt, welches die optimale Ionensorte für die Tumortherapie ist. Insbesondere Lithiumionen weisen aufgrund ihrer physikalischen und radiobiologischen Eigenschaften ein großes Potenzial auf. Auch für Bestrahlungen mit diesen Ionen ist ein PET-Monitoring der Therapie erstrebenswert. In der vorliegenden Arbeit wird zunächst die Anwendbarkeit der Reichweite-Verifikation mittels PET bei Bestrahlung mit Lithiumionen gezeigt. Des Weiteren wird ein Konzept zur Modellierung der Positronenemitter-Verteilung ohne Kenntnis der Wirkungsquerschnitte entwickelt. Diese Vorhersage beruht auf in Referenzmaterialien (Wasser, Graphit und Polyethylen) gemessenen tiefenabhängigen Positronenemitter-Yields, mit welchen durch geeignete Linearkombination die Verteilung der Positronenemitter in beliebigen Materialien bekannter Stöchiometrie vorausberechnet werden kann. Die Anwendbarkeit des Yield-Konzeptes wird gezeigt für Lithium- und Kohlenstoffbestrahlungen homogener Polymethylmethacrylat (PMMA) Targets sowie verschiedener inhomogener Targets.
113

Polymethacrylat-gebundene chromophore Arylboronsäuren und deren Komplexbildungsverhalten gegenüber Fluorid-Ionen

Friebe, Nadine 04 July 2018 (has links)
Gegenstand der vorliegenden Arbeit ist die polymeranaloge Reaktion von chromophoren Aryl-boronsäuren mit 1,2-Diol-basierenden Methacrylat-Copolymeren. Über die Herstellung der dafür benötigten Ausgangsverbindungen sowie deren Charakterisierung mit Hilfe spektroskopischer und thermischer Analysemethoden wird zunächst umfassend berichtet. Hierbei ist u.a. die Auf-klärung der in den Copolymeren aus n-Butylmethacrylat (BMA) und 2,3-Di-hydroxypropylmethacrylat vorliegenden Polymerkonstitution von Interesse. Als chromophore Grundkörper der Arylboronsäuren wurden Indanon- sowie Tricyanofuran-Derivate, aber auch ausgedehnte Elektronensysteme mit einem Nitro- bzw. Cyano-Akzeptor verwendet. Bei der Synthese immobilisierter Arylboronsäuren wurde einerseits das chromophore Elektronensystem variiert. Andererseits wurden mit einer ausgewählten chromophoren Arylboronsäure verschiedene Funktionalisierungsgrade am Copolymer eingestellt bzw. Copolymere mit unterschiedlichem BMA-Anteil mit einem Funktionalisierungsgrad von 60 % bezogen auf die vorhandenen Diol-Einheiten funktionalisiert. Die optischen Eigenschaften der immobilisierten chromophoren Arylboronsäuren wurden mit der UV/vis-Spektroskopie untersucht. Der Einfluss des Funktionalisierungsgrades sowie des variablen BMA-Anteils auf die thermischen Eigenschaften wurde mittels DSC und TGA studiert. Weiterhin erfolgten an den immobilisierten chromophoren Arylboronsäuren Untersuchungen hinsichtlich des Komplexbildungsverhaltens gegenüber Fluorid-Ionen. Ein besonderes Augenmerk wurde hier auf den Einfluss der BMA-Einheiten auf die Zugänglichkeit der Bor-Atome sowie die Wechselwirkung mit vorhandenen Diol-Einheiten gelegt.
114

Ladungsbrüten mit Raumtemperatur - Elektronenstrahlionenquellen

Thorn, Alexandra 02 March 2012 (has links)
Als Ladungsbrüten wird die Umwandlung niedrig geladener Ionen, welche über ein breites Spektrum von Elementen bis hin zu exotischen, radioaktiven Spezies erzeugt werden können, in hochgeladene Ionen bezeichnet, was beispielsweise für deren effiziente Nachbeschleunigung oder kern- und atomphysikalische Präzisionsmessungen von Bedeutung ist. In dieser Arbeit wird gezeigt, dass es möglich ist, kompakte, bei Raumtemperatur betriebene Elektronenstrahlionenquellen des Dresden EBIS/T - Typs als Ladungsbrüter zu verwenden. Anhand von Simulationen zum Ioneneinfang sowie Experimenten zur Ioneninjektion und -reextraktion wurden die Ionenquellen Dresden EBIT und EBIS-A als Ladungsbrüter charakterisiert. Eigenschaften der Quellen, welche von besonderem Interesse für das Ladungsbrüten sind, wurden untersucht. Hierzu zählen Elektronenstromdichte, Ionisationsfaktor, Akzeptanz sowie Einfangsbeziehungsweise Brütungseffizienz. An einer Dresden EBIS-A wurden weiterhin die Emittanzen des injizierten und reextrahierten Strahls bestimmt. Neben den Untersuchungen zum Ladungsbrüten selbst wurde dieses als experimentelle Technik für die Bestimmung von Elektronenstoß - Ionisationsquerschnitten der Goldionen Au38+ bis Au46+ bei einer Elektronenenergie von 11,5 keV verwendet. Ein Vergleich der Messwerte mit semiempirisch sowie theoretisch berechneten Daten ergab, dass für die Ionisation der 4d - und 4p - Elektronen von Gold in diesem Energiebereich neben der direkten Stoßionisation auch die Autoionisation nach Elektronenstoß - Anregung in die Betrachtung einbezogen werden muss, um eine gute Übereinstimmung von Theorie und Experiment zu erreichen.:1 Einleitung . . . 9 2 Physik hochgeladener Ionen . . . 12 2.1 Atomphysikalische Prozesse . . . 12 2.1.1 Elektron - Ion - Wechselwirkungen . . . 12 2.1.1.1 Elektronenstoßionisation . . . 12 2.1.1.2 Elektronenstoßanregung . . . 14 2.1.1.3 Augerprozess . . . 16 2.1.1.4 Mehrfachionisation . . . 17 2.1.1.5 Strahlende Rekombination und Photoionisation . . . 19 2.1.1.6 Dielektronische Rekombination . . . 21 2.1.2 Ion - Ion - Wechselwirkungen . . . 23 2.1.2.1 Ladungsaustausch . . . 23 2.1.2.2 Transferionisation . . . 24 2.2 Erzeugung hochgeladener Ionen . . . 25 2.2.1 Übersicht - Quellen hochgeladener Ionen . . . 25 2.2.2 Elektronenstrahlionenquellen . . . 28 2.2.2.1 Aufbau . . . 28 2.2.2.2 Elektronenstrahl . . . 29 2.2.2.3 Ioneneinschluss . . . 33 2.2.2.4 Ionisationsdynamik . . . 35 2.3 Ionenstrahlen . . . 38 2.3.1 Strahltransport . . . 39 2.3.2 Trajektorienraum und Emittanz . . . 42 3 Experimentelle Anlagen für die Untersuchungen zum Ladungsbrüten . . . 44 3.1 Elektronenstrahlionenquellen des Dresden EBIS/T - Typs . . . 44 3.2 Teststand für ortsaufgelöste Röntgenspektroskopie an einer Dresden EBIT . . . 45 3.3 Highly Charged Ion TRAP (HITRAP) - Sektion für das Ladungsbrüten mit der Dresden EBIT . . . 46 3.3.1 Aufbau der Anlage . . . 46 3.3.2 Kalium - Ionenquelle . . . 47 3.4 Erweiterung der Micro Beam Facility (MBF) für das Ladungsbrüten mit der Dresden EBIS-A . . . 48 3.4.1 Aufbau der Anlage . . . 48 3.4.2 Flüssigmetallionenquelle . . . 49 3.4.3 Pepper - Pot - Emittanzmeter . . . 50 3.4.3.1 Funktionsweise . . . 50 3.4.3.2 Auswertung von Pepper - Pot - Messungen . . . 52 4 Ladungsbrüten mit Dresden EBIT - Quellen . . . 56 4.1 Optimierung der Eigenschaften des Elektronenstrahls der Dresden EBIT für das Ladungsbrüten . . . 56 4.1.1 Messung des radialen Profils des Elektronenstrahls und Bestimmung der Elektronenstromdichte . . . 56 4.1.2 Variation der Betriebsparameter zur Optimierung der Elektronenstromdichte . . . 60 4.1.2.1 Variation der Elektronenstrahlenergie . . . 60 4.1.2.2 Variation des Elektronenstroms . . . 63 4.1.2.3 Variation der Fallentiefe . . . 64 4.2 Simulationen zum Einschuss einfach geladener Ionen in eine Dresden EBIT . . . 66 4.2.1 Beschreibung des Simulationsprogramms . . . 66 4.2.2 Abschätzung der optimalen Spannung an der EBIT - Extraktionselektrode . . . 68 4.2.3 Abschätzung der optimalen Einschussenergie . . . 69 4.2.4 Abschätzung der Akzeptanz . . . 72 4.3 Röntgenspektroskopische Messungen . . . 75 4.4 A/q - Analyse des extrahierten Strahls . . . 78 5 Ladungsbrüten mit einer Dresden EBIS-A . . . 85 5.1 Vorbereitende Testmessungen . . . 85 5.1.1 Optimierung der Anlagenbetriebsparameter für den Einschuss . . . 85 5.1.2 Analyse der Trajektorienraumverteilung des eingeschossenen Strahls . . . 86 5.2 A/q - Analyse des extrahierten Auq+ - Strahls . . . 89 5.3 Bestimmung der Emittanz des extrahierten Auq+ - Strahls . . . 95 6 Elektronenstoß - Ionisationsquerschnitte hochgeladener Goldionen . . . 97 6.1 Motivation . . . 97 6.2 Atomstrukturrechnungen . . . 99 6.3 Bestimmung der Querschnitte aus der zeitlichen Entwicklung von Ladungszuständen . . . 102 6.4 Experimentelle Ergebnisse . . . 104 6.4.1 Elektronenstrahlradius und Überlappfaktor . . . 104 6.4.2 Elektronenstoßionisationsquerschnitte hochgeladener Goldionen und Vergleich mit theoretischen Berechnungen . . . 107 7 Zusammenfassung und Ausblick . . . 111 Anhang . . . 114 Literaturverzeichnis . . . 118 Liste mit dieser Arbeit verbundener Veröffentlichungen . . . 125 Danksagung . . . 126 Erklärung . . . 128 / The conversion of low charged ions, which can be produced from a broad spectrum of elements up to exotic, radioactive species, to highly charged ions is called charge breeding, which is an important experimental technique for, e.g., efficient post - acceleration or high - precision nuclear and atomic physics experiments. This work demonstrates the feasibility of charge breeding with compact, room - temperature operated electron beam ion sources of the Dresden EBIS/T type. The sources Dresden EBIT and EBIS-A were characterized as charge breeders by simulations of ion capture as well as ion injection and re-extraction experiments. Properties which are critical for charge breeding, such as electron beam density, ionization factor, acceptance, as well as injection and breeding efficiency, were investigated. Further on, in case of the EBIS-A, emittance studies of the injected as well as re-extracted beam were carried out. In addition to the measurements concentrating on charge breeding itself, this experimental technique was used to measure electron impaction ionization cross sections of gold ions from Au38+ up to Au46+ at an electron energy of 11.5 keV. Comparing the measured values to semi - empirical as well as theoretical calculations, it was found that for the ionization of the 4d and 4p electrons of gold ions in this energy region not only direct electron impact ionization but also excitation - autoionization processes have to be considered in order to achieve a good agreement of theory and experiment.:1 Einleitung . . . 9 2 Physik hochgeladener Ionen . . . 12 2.1 Atomphysikalische Prozesse . . . 12 2.1.1 Elektron - Ion - Wechselwirkungen . . . 12 2.1.1.1 Elektronenstoßionisation . . . 12 2.1.1.2 Elektronenstoßanregung . . . 14 2.1.1.3 Augerprozess . . . 16 2.1.1.4 Mehrfachionisation . . . 17 2.1.1.5 Strahlende Rekombination und Photoionisation . . . 19 2.1.1.6 Dielektronische Rekombination . . . 21 2.1.2 Ion - Ion - Wechselwirkungen . . . 23 2.1.2.1 Ladungsaustausch . . . 23 2.1.2.2 Transferionisation . . . 24 2.2 Erzeugung hochgeladener Ionen . . . 25 2.2.1 Übersicht - Quellen hochgeladener Ionen . . . 25 2.2.2 Elektronenstrahlionenquellen . . . 28 2.2.2.1 Aufbau . . . 28 2.2.2.2 Elektronenstrahl . . . 29 2.2.2.3 Ioneneinschluss . . . 33 2.2.2.4 Ionisationsdynamik . . . 35 2.3 Ionenstrahlen . . . 38 2.3.1 Strahltransport . . . 39 2.3.2 Trajektorienraum und Emittanz . . . 42 3 Experimentelle Anlagen für die Untersuchungen zum Ladungsbrüten . . . 44 3.1 Elektronenstrahlionenquellen des Dresden EBIS/T - Typs . . . 44 3.2 Teststand für ortsaufgelöste Röntgenspektroskopie an einer Dresden EBIT . . . 45 3.3 Highly Charged Ion TRAP (HITRAP) - Sektion für das Ladungsbrüten mit der Dresden EBIT . . . 46 3.3.1 Aufbau der Anlage . . . 46 3.3.2 Kalium - Ionenquelle . . . 47 3.4 Erweiterung der Micro Beam Facility (MBF) für das Ladungsbrüten mit der Dresden EBIS-A . . . 48 3.4.1 Aufbau der Anlage . . . 48 3.4.2 Flüssigmetallionenquelle . . . 49 3.4.3 Pepper - Pot - Emittanzmeter . . . 50 3.4.3.1 Funktionsweise . . . 50 3.4.3.2 Auswertung von Pepper - Pot - Messungen . . . 52 4 Ladungsbrüten mit Dresden EBIT - Quellen . . . 56 4.1 Optimierung der Eigenschaften des Elektronenstrahls der Dresden EBIT für das Ladungsbrüten . . . 56 4.1.1 Messung des radialen Profils des Elektronenstrahls und Bestimmung der Elektronenstromdichte . . . 56 4.1.2 Variation der Betriebsparameter zur Optimierung der Elektronenstromdichte . . . 60 4.1.2.1 Variation der Elektronenstrahlenergie . . . 60 4.1.2.2 Variation des Elektronenstroms . . . 63 4.1.2.3 Variation der Fallentiefe . . . 64 4.2 Simulationen zum Einschuss einfach geladener Ionen in eine Dresden EBIT . . . 66 4.2.1 Beschreibung des Simulationsprogramms . . . 66 4.2.2 Abschätzung der optimalen Spannung an der EBIT - Extraktionselektrode . . . 68 4.2.3 Abschätzung der optimalen Einschussenergie . . . 69 4.2.4 Abschätzung der Akzeptanz . . . 72 4.3 Röntgenspektroskopische Messungen . . . 75 4.4 A/q - Analyse des extrahierten Strahls . . . 78 5 Ladungsbrüten mit einer Dresden EBIS-A . . . 85 5.1 Vorbereitende Testmessungen . . . 85 5.1.1 Optimierung der Anlagenbetriebsparameter für den Einschuss . . . 85 5.1.2 Analyse der Trajektorienraumverteilung des eingeschossenen Strahls . . . 86 5.2 A/q - Analyse des extrahierten Auq+ - Strahls . . . 89 5.3 Bestimmung der Emittanz des extrahierten Auq+ - Strahls . . . 95 6 Elektronenstoß - Ionisationsquerschnitte hochgeladener Goldionen . . . 97 6.1 Motivation . . . 97 6.2 Atomstrukturrechnungen . . . 99 6.3 Bestimmung der Querschnitte aus der zeitlichen Entwicklung von Ladungszuständen . . . 102 6.4 Experimentelle Ergebnisse . . . 104 6.4.1 Elektronenstrahlradius und Überlappfaktor . . . 104 6.4.2 Elektronenstoßionisationsquerschnitte hochgeladener Goldionen und Vergleich mit theoretischen Berechnungen . . . 107 7 Zusammenfassung und Ausblick . . . 111 Anhang . . . 114 Literaturverzeichnis . . . 118 Liste mit dieser Arbeit verbundener Veröffentlichungen . . . 125 Danksagung . . . 126 Erklärung . . . 128
115

Enhanced Laser Ion Acceleration from Solids

Kluge, Thomas 06 November 2012 (has links)
This thesis presents results on the theoretical description of ion acceleration using ultra-short ultra-intense laser pulses. It consists of two parts. One deals with the very general and underlying description and theoretic modeling of the laser interaction with the plasma, the other part presents three approaches of optimizing the ion acceleration by target geometry improvements using the results of the first part. In the first part, a novel approach of modeling the electron average energy of an over-critical plasma that is irradiated by a few tens of femtoseconds laser pulse with relativistic intensity is introduced. The first step is the derivation of a general expression of the distribution of accelerated electrons in the laboratory time frame. As is shown, the distribution is homogeneous in the proper time of the accelerated electrons, provided they are at rest and distributed uniformly initially. The average hot electron energy can then be derived in a second step from a weighted average of the single electron energy evolution. This result is applied exemplary for the two important cases of infinite laser contrast and square laser temporal profile, and the case of an experimentally more realistic case of a laser pulse with a temporal profile sufficient to produce a preplasma profile with a scale length of a few hundred nanometers prior to the laser pulse peak. The thus derived electron temperatures are in excellent agreement with recent measurements and simulations, and in particular provide an analytic explanation for the reduced temperatures seen both in experiments and simulations compared to the widely used ponderomotive energy scaling. The implications of this new electron temperature scaling on the ion acceleration, i.e. the maximum proton energy, are then briefly studied in the frame of an isothermal 1D expansion model. Based on this model, two distinct regions of laser pulse duration are identified with respect to the maximum energy scaling. For short laser pulses, compared to a reference time, the maximum ion energy is found to scale linearly with the laser intensity for a simple flat foil, and the most important other parameter is the laser absorption efficiency. In particular the electron temperature is of minor importance. For long laser pulse durations the maximum ion energy scales only proportional to the square root of the laser peak intensity and the electron temperature has a large impact. Consequently, improvements of the ion acceleration beyond the simple flat foil target maximum energies should focus on the increase of the laser absorption in the first case and the increase of the hot electron temperature in the latter case. In the second part, exemplary geometric designs are studied by means of simulations and analytic discussions with respect to their capability for an improvement of the laser absorption efficiency and temperature increase. First, a stack of several foils spaced by a few hundred nanometers is proposed and it is shown that the laser energy absorption for short pulses and therefore the maximum proton energy can be significantly increased. Secondly, mass limited targets, i.e. thin foils with a finite lateral extension, are studied with respect to the increase of the hot electron temperature. An analytical model is provided predicting this temperature based on the lateral foil width. Finally, the important case of bent foils with attached flat top is analyzed. This target geometry resembles hollow cone targets with flat top attached to the tip, as were used in a recent experiment producing world record proton energies. The presented analysis explains the observed increase in proton energy with a new electron acceleration mechanism, the direct acceleration of surface confined electrons by the laser light. This mechanism occurs when the laser is aligned tangentially to the curved cone wall and the laser phase co-moves with the energetic electrons. The resulting electron average energy can exceed the energies from normal or oblique laser incidence by several times. Proton energies are therefore also greatly increased and show a theoretical scaling proportional to the laser intensity, even for long laser pulses.
116

Thermodynamische Untersuchungen an orthorhombischem Lithiumeisen(II)-phosphat und Eisen(III)-phosphat

Thomas, Christian 01 February 2019 (has links)
Lithiumeisen(II)-phosphat ist ein vielversprechendes und umweltfreundliches Kathodenmaterial für den Einsatz in Lithium-Ionen-Batterien (LIB), das eingehend im Hinblick auf seine thermodynamischen- und Oberflächeneigenschaften untersucht wurde. Zur Bestimmung der mittleren molaren Mischungsenthalpie von LiFePO4 und FePO4 wurde die Methode der isothermen Titrationskalorimetrie für die Untersuchung heterogener Stoffsysteme optimiert. Die Ergebnisse konnten mit elektrochemischen Gleichgewichtszellspannungsmessungen validiert werden. Ferner wurde die Oberflächenspannung von reinem LiFePO4 experimentell mit Hilfe der Kapillar-Aufstiegsmethode an Pulvern ermittelt. Ein weiterer Forschungsschwerpunkt stellte experimentelle Bestimmung der Wärmekapazität von phasenreinem orthorhombischen FePO4 dar. Des Weiteren wurde der Ablauf der hydrothermalen LiFePO4-Synthese ausgehend von Li3PO4 und Vivianit anhand von in-situ Messungen der elektrolytischen Leitfähigkeit und thermodynamischen Modellierungen aufgeklärt.
117

Self-organized nanostructures by heavy ion irradiation: defect kinetics and melt pool dynamics

Böttger, Roman 16 January 2014 (has links)
Self-organization is a hot topic as it has the potential to create surface patterns on the nanoscale avoiding cost-intensive top-down approaches. Although chemists have promising results in this area, ion irradiation can create self-organized surface patterns in a more controlled manner. Different regimes of pattern formation under ion irradiation were described so far by 2D models. Here, two new regimes have been studied experimentally, which require modeling in 3D: subsurface point defect kinetics as well as ion impact-induced melt pool formation. This thesis deals with self-organized pattern formation on Ge and Si surfaces under normal incidence irradiation with heavy monatomic and polyatomic ions of energies up to several tens of keV. Irradiation has been performed using liquid metal ion sources in a focused ion beam facility with mass-separation as well as by conventional broad beam ion implantation. Irradiated samples have been analyzed mainly by scanning electron microscopy. Related to the specific irradiation conditions, investigation and discussion of pattern formation has been divided into two parts: (i) formation of Ge morphologies due to point defect kinetics and (ii) formation of Ge and Si morphologies due to melt pool dynamics. Point defect kinetics dominates pattern formation on Ge under irradiation with monatomic ions at room temperature. Irradiation of Ge with Bi and Ge ions at fluences up to 10^17 cm^(-2) has been performed. Comprehensive studies show for the first time that morphologies change from flat surfaces over hole to nanoporous, sponge-like patterns with increasing ion energy. This study is consistent with former irradiations of Ge with a few ion energies. Based on my studies, a consistent, qualitative 3D model of morphology evolution has been developed, which attributes the ion energy dependency of the surface morphology to the depth dependency of point defect creation and relaxation. This model has been proven by atomistic computer experiments, which reproduce the patterns found in real irradiation experiments. At extremely high energy densities deposited by very heavy ions another mechanism dominates pattern formation. The formation of Ge and Si dot patterns by very heavy, monatomic and polyatomic Bi ion irradiation has been studied in detail for the first time. So far, this formation of pronounced dot pattern cannot be explained by any model. Comprehensive, experimental studies have shown that pattern formation on Ge is related to extremely high energy densities deposited by each polyatomic ion locally. The simultaneous impact of several atoms leads to local energy densities sufficient to cause local melting. Heating of Ge substrates under ion irradiation increases the achievable energy density in the collision cascade substantially. This prediction has been confirmed experimentally: it has been found that the threshold for nanomelting can be lowered by substrate heating, which allows pattern formation also under heavy, monatomic ion irradiation. Extensive studies of monatomic Bi irradiation of heated Ge have shown that morphologies change from sponge-like over highly regular dot patterns to smooth surfaces with increasing substrate temperature. The change from sponge-like to dot pattern is correlated to the melting of the ion collision cascade volume, with energy densities sufficient for melt pool formation at the surface. The model of pattern formation on Ge due to extremely high deposited energy densities is not specific to a single element. Therefore, Si has been studied too. Dot patterns have been found for polyatomic Bi ion irradiation of hot Si, which creates sufficiently high energy densities to allow ion impact-induced melt pool formation. This proves that pattern formation by melt pool formation is a novel, general pattern formation mechanism. Using molecular dynamics simulations of project partners, the correlation between dot patterning and ion impact-induced melt pool formation has been proven. The driving force for dot pattern formation due to high deposited energy densities has been identified and approximated in a first continuum description.
118

Energieeintrag langsamer hochgeladener Ionen in Festkörperoberflächen

Kost, Daniel 26 April 2007 (has links)
Motiviert durch die in der Literatur bisher unvollständige Beschreibung der Relaxation hochgeladener Ionen vor Festkörperoberflächen, besonders in Bezug auf den Eintrag potenzieller Energie in Oberflächen und der Aufstellung einer vollständigen Energiebilanz, werden in dieser Arbeit komplementäre Studien präsentiert, die sowohl die Ermittlung des Anteils der deponierten potenziellen Energie als auch die Ermittlung der emittierten potenziellen Energie ermöglichen. Zum Einen wird zur Bestimmung des eingetragenen Anteils der potenziellen Energie eine kalorimetrische Messanordnung verwendet, zum Anderen gelingt die Bestimmung der emittierten potenziellen Energie mittels doppeldifferenzieller Elektronenspektroskopie. Für vertiefende Studien werden Materialien unterschiedlicher elektronischer Strukturen (Cu, n-Si, p-Si und SiO2 ) verwendet. Im Falle der Kalorimetrie wird festgestellt, dass die eingetragene potenzielle Energie linear mit der inneren potenziellen Energie der Ionen wächst. Dabei bleibt das Verhältnis zwischen der eingetragenen potenziellen Energie und der inneren potenziellen Energie nahezu konstant bei etwa (80 ± 10) %. Der Vergleich von Cu, n-Si und p-Si zeigt im Rahmen der Messfehler keine signifikanten Unterschiede in diesem Verhältnis. Es liegen jedoch deutlich unter jenem von SiO2. Die Elektronenspektroskopie liefert ein dazu komplementäres Ergebnis. Für Cu und Si konnte ebenfalls eine lineare Abhängigkeit zwischen emittierter Energie und innerer potenzieller Energie festgestellt werden. Das Verhältnis wurde hierfür bis zum Ladungszustand bis Ar7+ zu etwa (10 ± 5) % unabhängig vom Ladungszustand bestimmt. Im Gegensatz dazu liefert SiO2 eine nahezu verschwindende Elektronenausbeute. Für Ar8+ und Ar9+ steigt die Elektronenausbeute wegen der Beiträge der LMM-Augerelektronen für alle untersuchten Materialien leicht an. Der Anteil der emittierten Energie eines Ar9+ -Ions wird für Cu und Si zu etwa 20 % und für SiO2 zu etwa 10 % angegeben. Diese Ergebnisse sind in guter Übereinstimmung mit den Kalorimetrieexperimenten und erfüllen die Energiebilanz. Zusätzlich werden die experimentellen Ergebnisse mit einer Computersimulation modelliert, welche auf dem erweiterten dynamischen klassischen Barrierenmodell basiert. Aus diesen Rechnungen kann zudem jener Anteil der deponierten potenziellen Energie erhalten werden, welcher durch Bildladungsbeschleunigung vor der Oberfläche in kinetische Energie umgewandelt wurde. / Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the re-emitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO2 . In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 ± 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO2 targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar7+ was also observed. The ratio of the re-emitted energy is about (10 ± 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO2 and for charge states below q=7. For Ar8+ and Ar9+, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO2 .These results are in good agreement with the calorimetric values. In addition, the experimental results are compared with computer simulations based on the extended dynamical over-the-barrier model. From these calculations, the ratio of deposited potential energy that is transformed into kinetic energy before deposition due to the image charge acceleration can be maintained.
119

Amorphe, Al-basierte Anodenmaterialien für Li-Ionen-Batterien

Thoss, Franziska 25 June 2013 (has links)
Hochleistungsfähige Lithium-Ionen-Batterien sind insbesondere von der hohen spezifischen Kapazität ihrer Elektrodenmaterialien abhängig. Intermetallische Phasen sind vielversprechende Kandidaten für alternative Anodenmaterialien mit verbesserten spezifischen Kapazitäten (LiAl: 993 Ah/kg; Li22Si5: 4191 Ah/kg) gegenüber den derzeit vielfach verwendeten Kohlenstoff-Materialien (LiC6: 372 Ah/kg). Nachteilig ist jedoch, dass die kristallinen Phasenumwandlungen während der Lade-Entlade-Prozesse Volumenänderungen von 100-300% verursachen. Durch die Sprödigkeit der intermetallischen Phasen führt dies zum Zerbrechen des Elektrodenmaterials und damit zum Kontaktverlust. Um Lithiierungs- und Delithiierunsprozesse ohne kristalline Phasenumwandlungen zu realisieren und somit große Volumenänderungen zu vermeiden, wurden amorphe Al-Legierungen untersucht. In amorphe, mittels Schmelzspinnen hergestellte Legierungen (Al86Ni8La6 und Al86Ni8Y6) kann beim galvanostatischen Zyklieren nur sehr wenig Li eingelagert werden. Da kristalline Phasenumwandlungen im amorphen Zustand nicht möglich sind, wird für die Diffusion und Einlagerung von Li-Ionen ein ausreichendes freies Volumen im amorphen Atomgerüst benötigt. Die Dichtemessung der Legierungen zeigt, dass dieses freie Volumen für eine signifikante Lithiierung nicht ausreichend ist. Wird Li bereits in die amorphe Ausgangslegierung integriert, können Li-Ionen auf elektrochemischem Wege aus ihr entfernt und auch wieder eingebaut werden. Die neuartige Legierung Al43Li43Ni8Y6, die Li bereits im Ausgangszustand enthält, konnte mittels Hochenergiemahlung als amorphes Pulver hergestellt werden. Verglichen mit den Li-freien amorphen Legierungen Al86Ni8La6 bzw. Al86Ni8Y6 und ihren kristallisierten Pendants zeigt diese neu entwickelte, amorphe Legierung eine signifikant höhere Lithiierungsfähigkeit und erreicht damit eine spezifische Kapazität von ca. 800 Ah/kg bezogen auf den Al-Anteil. Durch den Abrieb des Stahlmahlbechers enthält das Pulver Al43Li43Ni8Y6 einen Fe-Anteil von ca. 15 Masse%. Dieses mit Fe verunreinigte Material zeigt besonders bei niedrigen Laderaten eine bessere Zyklenstabilität als ein im abriebfesten Siliziumnitrid-Becher gemahlenes Pulver der gleichen Zusammensetzung. Mittels Mössbauerspektroskopie wurde nachgewiesen, dass das Pulver z.T. oxidisches Fe enthält. Dieses kann über Konversionsmechanismen einen Beitrag zur spezifischen Kapazität leisten. / High-energy Li-ion batteries exceedingly depend on the high specific capacity of electrode materials. Intermetallic alloys are promising candidates to be alternative anode materials with enhanced specific capacities (LiAl: 993 Ah/kg; Li22Si5: 4191 Ah/kg) in contrast to state-of-the-art techniques, dominated by carbon materials (LiC6: 372 Ah/kg). Disadvantageously the phase transitions during the charge-discharge processes, induced by the lithiation process, cause volume changes of 100-300 %. Due to the brittleness of intermetallic phases, the fracturing of the electrode material leads to the loss of the electrical contact. In order to overcome the huge volume changes amorphous Al-based alloys were investigated with the intension to realize the lithiation process without a phase transformation. Amorphous powders (Al86Ni8La6 and Al86Ni8Y6) produced via melt spinning and subsequent ball milling only show a minor lithiation during the electrochemical cycling process. This is mainly caused by the insufficient free volume, which is necessary to transfer and store Li-ions, since phase transitions are impossible in the amorphous state. If Li is already integrated into the amorphous alloy, Li-ions can easily be removed and inserted electrochemically. The new alloy Al43Li43Ni8Y6 contains Li already in its initial state and could be prepared by high energy milling as an amorphous powder. Compared with the Li-free amorphous alloys Al86Ni8La6 or Al86Ni8Y6 and their crystalline counterparts, this newly developed amorphous alloy achieves a significantly higher lithiation and therefore reaches a specific capacity of 800 Ah/kg, based on the Al-content. By the abrasion of the steel milling vials the powder contains a wear debris of 15 mass% Fe. This contaminated material shows a better cycling stability than a powder of the same composition, milled in a non-abrasive silicon nitride vial. By means of Mössbauer spectroscopy has been shown that the wear debris contains Fe oxides. This may contribute to the enhancement of the specific capacity about conversion mechanisms.
120

Electrolyte for high energy- and power-density zinc batteries and ion capacitors

Chen, Peng, Sun, Xiaohan, Pietsch, Tobias, Plietker, Bernd, Brunner, Eike, Ruck, Michael 22 February 2024 (has links)
Growth of dendrites, limited coulombic efficiency (CE), and the lack of high-voltage electrolytes restrict the commercialization of zinc batteries and capacitors. These issues are resolved by a new electrolyte, based on the zinc(II)–betaine complex [Zn(bet)2][NTf2]2. Solutions in acetonitrile (AN) avoid dendrite formation. A Zn||Zn cell operates stably over 10 110 h (5055 cycles) at 0.2 mA cm−2 or 110 h at 50 mA cm−2, and has an area capacity of 113 mAh cm−2 at 80% depth of discharge. A zinc–graphite battery performs at 2.6 V with a midpoint discharge-voltage of 2.4 V. The capacity-retention at 3 A g−1 (150 C) is 97% after 1000 cycles and 68% after 10 000 cycles. The charge/discharge time is about 24 s at 3.0 A g−1 with an energy density of 49 Wh kg−1 at a power density of 6864 W kg−1 based on the cathode. A zinc||activated-carbon ion-capacitor (coin cell) exhibits an operating-voltage window of 2.5 V, an energy density of 96 Wh kg−1 with a power density of 610 W kg−1 at 0.5 A g−1. At 12 A g−1, 36 Wh kg−1, and 13 600 W kg−1 are achieved with 90% capacity-retention and an average CE of 96% over 10 000 cycles. Quantum-chemical methods and vibrational spectroscopy reveal [Zn(bet)2(AN)2]2+ as the dominant complex in the electrolyte.

Page generated in 0.0512 seconds