• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 43
  • 29
  • 1
  • Tagged with
  • 145
  • 122
  • 92
  • 64
  • 64
  • 64
  • 58
  • 50
  • 36
  • 24
  • 24
  • 24
  • 24
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Einfluss von Beschichtungsparametern auf den Teilchen- und Energiestrom zum Substrat und Auswirkungen auf ausgewählte Eigenschaften von Titanoxidschichten beim reaktiven Puls-Magnetron-Sputtern

Glöß, Daniel 12 July 2007 (has links)
Diese Dissertation befasst sich mit den Plasmaeigenschaften und dem Schichtbildungsprozess bei der Titanoxidbeschichtung mit dem reaktiven Puls-Magnetron-Sputterverfahren. Insbesondere werden die Vorgänge, die zu einer vermehrt oder vermindert starken Kristallinität und photokatalytischen Aktivität der Schichten führen, untersucht und die Verflechtungen mit den Beschichtungsbedingungen analysiert. Es werden Untersuchungen zur Messung der sich während der Beschichtung einstellenden Substrattemperatur, zur Messung des auf das Substrat einfallenden integralen Ionenstroms sowie zur Energieverteilung positiver und negativer Ionen vorgestellt. Zu den wichtigsten Erkenntnissen dieser Untersuchungen zählt, dass bei Nutzung des Pulspaket- bzw. des Bipolar-Pulsmodus bei Rechteck-Magnetrons eine um etwa Faktor zwei stärkere Substraterwärmung auftritt als bei Nutzung des Unipolar-Pulsmodus. Das ist auf einen höheren Ionenstrom auf das Substrat bei gleichzeitig höherer Selbstbiasspannung zurückzuführen, was insgesamt zu einem deutlich intensiveren Bombardement des Substrats mit Ionen führt. Durch Vergleich mit den Eigenschaften von DC-Plasmen konnte gezeigt werden, dass die unterschiedliche Lage der Anode relativ zum Magnetron-Magnetfeld die primäre Ursache für die gefundenen Unterschiede ist. Der Titanoxid-Beschichtungsprozess wurde umfassend untersucht und dabei die Abhängigkeiten der Kristallinität und der Schichteigenschaften von Substrattemperatur, Beschichtungsrate und von dem während der Beschichtung auftretenden Ionenbombardement aufgezeigt. Eine wichtiges Resultat ist, dass durch Anwendung eines intensiven Ionenbombardements des Beschichtungsplasmas die für kristallines Schichtwachstum erforderliche Substrattemperatur sinkt. Das wird durch Nutzung des Pulspaket- bzw. des Bipolar-Pulsmodus anstatt des Unipolar-Pulsmodus sowie durch Wahl eines reaktiveren Arbeitspunkts erreicht. Insgesamt konnte anhand der Untersuchungen der Parameterbereich, in dem die Abscheidung polykristalliner Titanoxidschichten möglich ist, in Richtung niedriger Substrattemperaturen und dünner Schichten ermittelt werden. / In this dissertation, the plasma characteristics and the layer forming process during the titanium oxide deposition with the reactive pulse magnetron sputtering method are investigated. In particular, the procedures which lead to a higher or lower crystallinity and photocatalytic activity are examined and the connections with the coating conditions are analyzed. Investigations are presented concerning the maximum substrate temperature during deposition, the integral ion current onto the substrate as well as the ion energy distribution function of positive and negative ions. One of the most important findings is that when using rectangular magnetrons in the pulse packet mode or in the bipolar pulse about to factor two stronger substrate heating arises in comparison to the unipolar pulse mode. That is due to a higher ion current onto the substrate and a higher self bias potential which leads altogether to a significantly higher ion bombardment of the substrate. It could be shown by comparison with the characteristics of DC plasmas that the different configuration of the anode relative to the magnetic field of the magnetrons is the primary cause for the differences. The titanium oxide coating process was comprehensively examined. Layer crystallinity and layer properties could be related to substrate temperature, deposition rate and ion bombardment during deposition. An important result is that by application of an intensive ion bombardment the substrate temperature necessary for crystalline layer growth decreases. This can be achieved by using the pulse packet or the bipolar pulse mode instead of the unipolar pulse mode as well as by choice of a more reactive working point. All in all, the parameter range in which is it possible to deposit polycrystalline titanium oxide layers could be determined toward low substrate temperatures and small layer thickness.
72

Hierarchical TiO₂–SnO₂–graphene aerogels for enhanced lithium storage

Han, Sheng, Jiang, Jianzhong, Huang, Yanshan, Tang, Yanping, Cao, Jing, Wu, Dongqing, Feng, Xinliang 13 January 2020 (has links)
Three-dimensional (3D) TiO₂–SnO₂–graphene aerogels (TTGs)were built up from the graphene oxide nanosheets supported with both TiO₂ and SnO₂ nanoparticles (NPs) via a facile hydrothermal assembly process. The resulting TTGs exhibit a 3D hierarchical porous architecture with uniform distribution of SnO₂ and TiO₂ NPs on the graphene surface, which not only effectively prevents the agglomeration of SnO₂ NPs, but also facilitates the fast ion/electron transport in 3D pathways. As the anode materials in lithium ion batteries (LIBs), TTGs manifest a high reversible capacity of 750 mA h g⁻¹ at 0.1 A g⁻¹ for 100 cycles. Even at a high current density of 1 A g⁻¹, a reversible capacity of 470mA h g⁻¹ can still be achieved from the TTG based LIB anode over 150 cycles.
73

Nickel-Iron Oxide-based Nanomembranes as Anodes for Micro-Lithium-Ion Batteries

Liu, Lixiang 29 September 2020 (has links)
Development of microsized batteries plays an important role in the design of in-situ electrochemical investigation systems and portable/wearable electronics. This emerging field intimately correlates with the topics of rechargeable batteries, nanomaterials, on-chip microfabrication, flexibility with reliable mechanical properties etc. Among the various energy materials, conversion-type materials have been proposed as high-energy-density alternatives to traditional intercalation-based materials. However, these materials usually show complex reaction processes accompanied by multi-reaction intermediates, which poses a great challenge to understand the chemical mechanisms. Benefiting from the merits of microsized battery devices, we develop a novel strategy to investigate and then optimize the electrochemical performance of a specific conversion-type material: nickel-iron oxide (NFO). Subsequently, this kind of materials are employed for flexible minimized energy storage systems. Unlike traditional characterization methods based on slurry-coated electrodes, micro-platforms directly probe the intrinsic electrochemical properties of a single active material in real-time due to the elimination of other additives. In this thesis, we firstly design a micro-lithium batteries (MLBs), based on a single “Swiss-roll” microtubular nanomembrane electrode. This platform enables us to investigate the electrochemical mechanisms of electrode materials in lithium batteries by in-situ Raman spectroscopy, electrical conductivity measurements, and electrochemistry characterization. With this designed MLBs, we systematically studied NFO nanomembranes. Using in-situ Raman spectroscopy during the delithiation/lithiation process, we monitored the transition of the chemical component directly. Guided by our investigations of micro-batteries, composite NFO nanomembrane electrodes were fabricated and tested in coin cells, which showed an excellent rate performance: 440 mAh g-1 at a high rate of 20 A g-1 and a long-term stable cycling performance over 1600 cycles. One step further, a flexible energy storage micro-device is achieved using such optimized materials. We demonstrate a thin, lightweight, and flexible micro-full lithium-ion battery based on nickel-iron oxide with a high-rate performance and energy density that can be repeatedly bent to 180° without structural failure and performance loss. It delivers a stable output capacity of 140 mAh g-1 over 1000 charge/discharge cycles. Meanwhile, the excellent rate performance guarantees high energy output up to 255 W h kg-1 at a high power density of 12000 W kg-1 at the microscale.
74

Beyond Activated Carbon: Graphite‐Cathode‐Derived Li‐Ion Pseudocapacitors with High Energy and High Power Densities

Wang, Gang, Oswald, Steffen, Löffler, Markus, Müllen, Klaus, Feng, Xinliang 17 July 2019 (has links)
Supercapacitors have aroused considerable attention due to their high power capability, which enables charge storage/output in minutes or even seconds. However, to achieve a high energy density in a supercapacitor has been a long‐standing challenge. Here, graphite is reported as a high‐energy alternative to the frequently used activated carbon (AC) cathode for supercapacitor application due to its unique Faradaic pseudocapacitive anion intercalation behavior. The graphite cathode manifests both higher gravimetric and volumetric energy density (498 Wh kg−1 and 431.2 Wh l−1) than an AC cathode (234 Wh kg−1 and 83.5 Wh l−1) with peak power densities of 43.6 kW kg−1 and 37.75 kW l−1. A new type of Li‐ion pseudocapacitor (LIpC) is thus proposed and demonstrated with graphite as cathode and prelithiated graphite or Li4Ti5O12 (LTO) as anode. The resultant graphite–graphite LIpCs deliver high energy densities of 167–233 Wh kg−1 at power densities of 0.22–21.0 kW kg−1 (based on active mass in both electrodes), much higher than 20–146 Wh kg−1 of AC‐derived Li‐ion capacitors and 23–67 Wh kg−1 of state‐of‐the‐art metal oxide pseudocapacitors. Excellent rate capability and cycling stability are further demonstrated for LTO‐graphite LIpCs.
75

Electrochemistry and magnetism of lithium doped transition metal oxides

Popa, Andreia Ioana 16 December 2009 (has links)
The physics of transition metal oxides is controlled by the combination and competition of several degrees of freedom, in particular the charge, the spin and the orbital state of the electrons. One important parameter responsible for the physical properties is the density of charge carriers which determines the oxidization state of the transition metal ions. The central objective in this work is the study of transition metal oxides in which the charge carrier density is adjusted and controlled via lithium intercalation/deintercalation using electrochemical methods. Lithium exchange can be achieved with a high degree of accuracy by electrochemical methods. The magnetic properties of various intermediate compounds are studied. Among the materials under study the mixed valent vanadium-oxide multiwall nanotubes represent a potentially technologically relevant material for lithium-ion batteries. Upon electron doping of VOx-NTs, the data confirm a higher number of magnetic V4+ sites. Interestingly, room temperature ferromagnetism evolves after electrochemical intercalation of Li, making VOx-NTs a novel type of self-assembled nanoscaled ferromagnets. The high temperature ferromagnetism was attributed to formation of nanosize interacting ferromagnetic spin clusters around the intercalated Li ions. This behavior was established by a complex experimental study with three different local spin probe techniques, namely, electron spin resonance (ESR), nuclear magnetic resonance (NMR) and muon spin relaxation spectroscopies. Sr2CuO2Br2 was another compound studied in this work. The material exhibits CuO4 layers isostructural to the hole-doped high-Tc superconductor La2-xSr2CuO4. Electron doping is realized by Li-intercalation and superconductivity was found below 9K. Electrochemical treatment hence allows the possibility of studying the electronic phase diagram of LixSr2CuO2Br2, a new electron doped superconductor. The effect of electrochemical lithium doping on the magnetic properties was also studied in tunnel-like alpha-MnO2 nanostructures. Upon lithium intercalation, Mn4+ present in alpha-MnO2 will be reduced to Mn3+, resulting in a Mn mixed valency in this compound. The mixed valency and different possible interactions arising between magnetic spins give a complexity to the magnetic properties of doped alpha-MnO2.
76

Solvothermale und mikrowellenunterstützte Synthesen von Zeolithen und Kathodenmaterialien: Solvothermale und mikrowellenunterstützte Synthesen von Zeolithen und Kathodenmaterialien

Grigas, Anett 26 September 2012 (has links)
Die wachsende Weltbevölkerung und die stetigen Entwicklungen in der Industrie benötigen einerseits immer größere Mengen an Grundchemikalien und führen andererseits zu einem ständig steigenden Energiebedarf. Die Dissertation behandelt daher die Themen Zeolithe und Kathodenmaterialien, welche zwei aktuelle Forschungsschwerpunkte der chemischen Industrie darstellen. Der Fokus der Arbeit lag in der Steuerung der Partikelgröße durch die hydrothermale und mikrowellenunterstützte Kristallisation.
77

Relaxationsprozesse in stark gekoppelten ultrakalten Plasmen

Bannasch, Georg 01 March 2013 (has links)
Typischerweise sind Plasmen extrem heiß - diese hohen Energien sind nötig, um die Ionisationsschwelle der Atome zu überwinden und damit einen stabilen Plasmazustand zu gewährleisten. Folglich werden die physikalischen Eigenschaften dieser Plasmen für gewöhnlich durch die thermischen Energie der Plasmateilchen bestimmt, während Korrelationen zwischen den Ladungen eine untergeordnete Rolle spielen. Durch die rasanten Fortschritte auf dem Gebiet der ultrakalten Gase ist es jedoch ebenso möglich, Plasmen bei extrem tiefen Temperaturen zu erzeugen, indem lasergekühlte Atome photoionisiert werden. In diesen ultrakalten Plasmen (UKP) lassen sich aufgrund der niedrigen Temperaturen bereits deutliche Auswirkungen von Korrelationen beobachten, die zu gänzlich anderer Dynamik führen können als aus dem Bereich der heißen schwach gekoppelten Plasmen bekannt. Ähnliche Prozesse werden auch in dichten Plasmen beobachtet, in denen durch extrem kurzen Teilchenabstände die Wechselwirkungsenergie auch bei Temperaturen von über 10000 Kelvin die kinetische Energie dominiert. Dichte Plasmen spielen eine wichtige Rolle für technische Anwendungen wie die Trägheitsfusion. Im Gegensatz zu diesen dichten Plasmen realisieren UKP starke Korrelationen jedoch bei sehr viel geringen Dichten von ρ ∼ 10^9 cm^{−3} . Die daraus resultierende langsame Dynamik ist experimentell wesentlich besser zugänglich und macht diese System deshalb besonders interessant, um Korrelationseffekte in stark gekoppelten Plasmen zu studieren. Diese Arbeit beschäftigt sich mit Effekten von starken Korrelationen auf verschiedene Relaxationsprozesse, die insbesondere, aber nicht ausschließlich in UKP eine bedeutende Rolle spielen. Neben dem fundamentalen Interesse an diesen Prozessen gilt ein Augenmerk auch möglichen experimentellen Tests der getroffenen Vorhersagen. Da die Theorie der schwach gekoppelten Plasmen Korrelationen größtenteils vernachlässigt, ist sie im Regime der UKP nur eingeschränkt anwendbar. Zur Berücksichtigung der starken Korrelationen werden in dieser Arbeit umfangreiche molekulardynamischen Simulationen eingesetzt, die teilweise mit quantenmechanischen Beschreibungen kombiniert werden, um den in UKP relevanten atomphysikalischen Aspekten gerecht zu werden. Im Rahmen dieser Rechnungen wird zunächst die seit langem ungeklärte Frage der Atombildung bei tiefen Temperaturen beantwortet. Dieser Prozess ist für UKP besonders relevanten, da die Rekombination die Lebensdauer des Plasmas bestimmt. Die konventionelle Theorie für Rekombination basiert auf der Annahme von von isolierten Drei-Körper-Stößen. Die daraus resultierende Rate divergiert mit abnehmender Temperatur und verliert daher ihre Gültigkeit im ultrakalten Bereich. In dieser Arbeit wird die Beschreibung der Rekombination mit Hilfe aufwendiger Vielteilchen-Simulationen auf den stark gekoppelte Bereich ausgebaut. Hierbei zeigt sich, dass die Rekombinationsrate im Bereich tiefer Temperaturen auf einen konstanten Wert konvergiert, so dass das Problem der divergierenden Rate gelöst werden kann. Ein weiteres, seit langem kontrovers diskutiertes Problem, stellt die Relaxation aufgrund von elastischen Stößen in stark gekoppelten Plasmen dar. Auch hier gilt, dass die konventionelle Theorie für heiße Plasmen, die auf Landau und Spitzer zurückgeht, aufgrund der Vernachlässigung von Korrelationen im Regime starker Kopplung unzureichend wird. Bisher waren keine experimentellen Ergebnisse verfügbar, um die verschiedenen Vorschläge zur Erweiterung der Landau-Spitzer-Beschreibung auf den stark gekoppelten Bereich zu beurteilen. In enger Zusammenarbeit mit der Gruppe von Prof. T. C. Killian (Rice University, Houston, USA) können im Rahmen dieser Arbeit nun erstmals Relaxationsraten in stark gekoppelten Plasmen gemessen werden. Dazu wird mittels eines Pump-Probe-Verfahren die Relaxation der ionischen Geschwindigkeitsverteilung in UKP beobachtet. In dieser Arbeit konnte eine Methode zur Interpretation der experimentellen Daten entwickelt und durch semiklassische Simulationen der Parameterbereich enorm erweitert werden. Unsere Ergebnisse zeigen, dass die Landau-Spitzer-Theorie bereits bei geringen Kopplungsstärken deutliche Defizite aufweist und liefern erstmalig Vorhersagen im stark gekoppelten Bereich. Bei der Untersuchung der ionischen Relaxation wird deutlich, dass insbesondere experimentelle Ergebnisse bei hohen Kopplungsstärken von Interesse sind. Derzeit sind typische UKP-Experimente jedoch auf mäßige Kopplungsstärken limitiert. Ursache hierfür ist, dass das Plasma in einem Zustand weit entfernt vom Gleichgewicht erzeugt wird. Bei der Relaxation ins Gleichgewicht kommt es zu einer Ausbildung von Korrelationen und damit zu einer Umwandlung von potentieller in kinetische Energie. In dieser Arbeit wird deshalb ein neues Plasmaherstellungsverfahren vorgeschlagen, das für die Ionen dieses „Korrrelationsheizen“ stark unterdrücken kann. Durch eine kollektive Anregung kalter Atome in Rydberg-Zustände werden vor der Photoionsation der Atome Korrelationen im atomaren Gas induziert. Es wird gezeigt, dass diese Korrelationen durch eine selektive Ionisation der Rydberg-Atome mit Hilfe von Mikrowellen an das Plasma weitergegeben werden können. Dadurch verringert sich das Korrelationsheizen und eröffnet neue Perspektiven für Untersuchungen ultrakalter Plasmen tief im stark gekoppelten Regime.
78

Biophysical properties of AMPA receptor complexes

Riva, Irene 11 May 2020 (has links)
Die exzitatorische Neurotransmission im gesamten Zentralnervensystem (ZNS) der Wirbeltiere wird weitgehend durch die α-Amino-3-hydroxy-5-methyl-4-isoxazolpropionsäure-Rezeptoren (AMPARs) vermittelt. AMPARs sind Glutamat-gesteuerte Ionenkanäle, die sich an der postsynaptischen Membran befinden, wo sie den Kern makromolekularer Komplexe mit einer Reihe von Hilfsproteinen bilden, die die Rezeptorfunktion konzertiert regulieren. Die bekanntesten dieser Proteine sind die transmembranen AMPA-Rezeptor-Regulierungsproteine (TARPs). TARPs zeigen eine verwirrende Reihe von Effekten auf den Handel, die synaptische Verankerung, die Gate-Kinetik und die Pharmakologie von AMPARs. Über die strukturellen Merkmale des AMPAR-TARP-Komplexes wurde zunehmendes Wissen gesammelt. Die molekularen Mechanismen, die der TARP-Modulation der AMPARs zugrunde liegen, sind jedoch noch nicht vollständig aufgeklärt. In der vorliegenden Studie wurden die AMPAR-TARP-Interaktionen mit Hilfe der Elektrophysiologie in 293 Zellen der menschlichen embryonalen Niere (HEK) untersucht. Die Rolle der extrazellulären TARP-Schleifen, Loop1 (L1) und Loop2 (L2), bei der Modulation der AMPAR-Ansteuerung wurde analysiert. Es wurde ein Modell für die TARP-Modulation vorgeschlagen, das auf vorhergesagten zustandsabhängigen Wechselwirkungen von TARP L1 und L2 mit dem AMPAR basiert. Da die nativen AMPARs im Gehirn hauptsächlich aus heterotetrameren Zusammensetzungen von vier verschiedenen Untereinheiten (GluA1-4) bestehen, wurden außerdem verschiedene Zusammensetzungen von AMPAR-Untereinheiten getestet. Es wurden sowohl gemeinsame als auch von den Untereinheiten abhängige Mechanismen der AMPAR-Modulation durch TARPs beobachtet. Zusammenfassend liefern diese Experimente den Nachweis, dass TARP L1 und L2 nicht an der Assoziation von AMPAR-TARP-Komplexen beteiligt sind und die Modulation der AMPAR-Ansteuerung durch TARPs vollständig erklären können. / Excitatory neurotransmission throughout the vertebrate central nervous system (CNS) is largely mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs are glutamate-gated ion channels located at the postsynaptic membrane, where they compose the hub of macromolecular complexes with a number of auxiliary proteins that concertedly regulate the receptor function. Among these proteins the most known ones are the transmembrane AMPA receptor regulatory proteins (TARPs). TARPs show a bewildering array of effects on the trafficking, synaptic anchoring, gating kinetics and pharmacology of AMPARs. Growing knowledge has been gathered about the structural features of the AMPAR-TARP complex. However, the molecular mechanisms underlying TARP modulation of AMPARs have not been fully revealed yet. Given that higher brain functions rely upon AMPAR activity and dysregulation of AMPARs has been associated to life-threatening CNS disorders, big efforts are being made to unravel the molecular machinery behind AMPAR regulation and to identify AMPAR auxiliary proteins as potential pharmacological targets. In the present study, AMPAR-TARP interactions were investigated using electrophysiology in human embryonic kidney (HEK) 293 cells. The role of TARP extracellular loops, Loop1 (L1) and Loop2 (L2), in the modulation of AMPAR gating was analysed. A model for TARP modulation has been proposed, based on predicted state-dependent interactions of TARP L1 and L2 with the AMPAR. Moreover, considering that native AMPARs in the brain mainly consist of heterotetrameric assemblies of four distinct subunits (GluA1-4), different AMPAR subunit compositions were tested. Common as well as subunit-dependent mechanisms of AMPAR modulation by TARPs have been observed. In summary, these experiments provided evidence that TARP L1 and L2 are not involved in association of AMPAR-TARP complexes and can entirely account for the modulation of AMPAR gating by TARPs.
79

NMR-Untersuchungen zur kollektiven Diffusion von Wasser und gelösten Ionen: Die dynamische Hydratationszahl und der Einfluss poröser Materialien

Beckert, Steffen 25 June 2013 (has links)
Gegenstand der Arbeit ist die Untersuchung der kollektiven Diffusion von Wasser und Ionen in wässrigen Elektrolytlösungen. Dabei wird insbesondere die Dynamik der Wassermoleküle innerhalb der Hydratationshüllen der Ionen und der Einfluss poröser Materialien untersucht. Nach einer Einführung zur Dynamik der Hydratationshülle folgen Grundlagen der NMR-Diffusometrie, welche genutzt wurde um die Selbstdiffusionskoefifizienten der Wassermoleküle und der Ionen der Lösungen zu messen. Daraus wurden die dynamischen Hydratationszahlen der Ionen bestimmt, welche die Anzahl an Wassermolekülen angeben, die durch die Diffusion des Ions in ihrer translatorischen Bewegung beeinflusst sind. Der Einfluss poröser Materialien auf die Dynamik wird am Beispiel nanoporöser Glasmonolithe und mikroporöser Li-LSX Kristalle untersucht.
80

Zerstörungsfreie Prüfung metallischer Überlappschweißverbindungen in Lithium-Ionen-Batterien mit Fokus auf die optisch angeregte Infrarotthermografie

Just, Philipp 09 July 2019 (has links)
Bei der Assemblierung von Lithium-Ionen-Batterien ist ein zentraler Arbeitsschritt die Herstellung der elektrischen Verbindung von einzelnen Lithium-Ionen-Zellen in Reihen- und/oder Parallelschaltung. Dazu kommen in der Regel Überlappschweißverbindungen aus Blechen mit Dicken von unter 2 mm zum Einsatz. Typischerweise werden Eisen-, Aluminium- und Kupferwerkstoffe genutzt. Dieser Produktionsschritt ist wegen der Wichtigkeit für die gesamte Batteriefunktion in seiner Qualität zu überwachen. Im Rahmen dieser Arbeit wird ein dafür geeignetes Verfahren identifiziert. Es wurden Ultraschallprüfverfahren, Durchstrahlungsverfahren, die Messung des elektrischen Widerstands sowie thermografische Verfahren auf ihre Eignung zur Prüfung derartiger Überlappschweißverbindungen hin untersucht. Dabei zeigte sich, dass die nach dem Stand der Technik verfügbaren Verfahren im betrachteten Anwendungsfall wegen unzureichender Zugänglichkeit, mangelnder Fähigkeit der Fehlerdetektion oder wirtschaftlicher Gründe häufig nur eingeschränkt einsetzbar sind. Demzufolge war ein neues Verfahren zur Prüfung der Schweißnähte zur elektrischen Verbindung von Zellen zu entwickeln. Als Ansatz wurde die optisch angeregte Thermografie gewählt. Diese konnte erfolgreich eingesetzt werden, wenn ein Laser zur Anregung sowie eine Photonendetektorkamera zur Detektion genutzt wurde. Durch die Anwendung der Lockin-Thermografie konnten Rauscheinflüsse auf die Messung minimiert werden. Es konnte gezeigt werden, dass Lockin-Messungen auch dann ausgewertet können, wenn das gemessene Temperatursignal neben einer harmonischen Schwingung und Rauschen einen stetigen Temperaturtrend aufweist. Die Anwendung von im Rahmen der Arbeit entwickelten Abschirmelementen, die für die Anregungsstrahlung transparent und die von der genutzten Kamera erfassten Strahlung undurchlässig sind, erlaubte die Prüfung metallischer Schweißverbindung in der Nähe von hochabsorptiven Flächen. Unter Nutzung eines neu entwickelten Auswertealgorithmus, der auf die Kompensation des Effekts lateraler Wärmeflüsse im untersuchten Bauteil zielt, konnte die Ergebnisqualität der Thermografie hinsichtlich einer besseren optischen Korrelation der Ergebnisbilder zu Referenzprüfungen sowie einer verringerten Messunsicherheit der angebundenen Fläche verbessert werden. Insgesamt zeigte sich das Verfahren in seiner weiterentwickelten Form als für die Prüfung tauglich.:1 Einleitung 1.1 Motivation und Ziel 1.2 Einführung in die Arbeit 2 Stand der Technik 2.1 Lithium-Ionen-Batterien für Elektrofahrzeuge 2.1.1 Lithium-Ionen-Batterien im Vergleich zu anderen Energiespeichern in der Elektromobilität 2.1.2 Aufbau und Funktion von Lithium-Ionen-Batterien 2.2 Fertigungstechnik der Kontaktierung von Lithium-Ionen-Zellen 2.2.1 Kontaktierung von Lithium-Ionen-Zellen 2.2.2 Schweißverfahren zur Kontaktierung von Lithium-Ionen-Zellen 2.3 Schweißnahtanforderungen und -fehler 2.4 Zerstörungsfreie Prüfung von Kontaktierverbindungen 2.4.1 Qualitätssicherung von Kontaktierverbindungen 2.4.2 Anforderungen an zerstörungsfreie Prüfverfahren 2.4.3 Ultraschallprüfung 2.4.4 Durchstrahlungsprüfung 2.4.5 Messung des elektrischen Widerstands 2.4.6 Oberflächenprüfung 2.4.7 Infrarotthermografie 3 Vorauswahl eines geeigneten Verfahrens der zerstörungsfreien Prüfung 3.1 Untersuchte Verfahren 3.2 Ultraschallverfahren 3.3 Durchstrahlungsverfahren 3.4 Messung des elektrischen Widerstands 3.5 Infrarotthermografie 3.6 Verfahrensauswahl 4 Anwendung der optisch angeregten Thermografie zur Schweißnahtprüfung 4.1 Herausforderungen bei der Messung von Kontaktierschweißverbindungen von Lithium-Ionen-Batterien 4.2 Narzisseffekt und Perspektivenkorrektur 4.3 Techniken der optischen Anregung 4.4 Signalaufbereitung durch Lockin-Verfahren 4.4.1 Lockin-Thermografie 4.4.2 Lockin-Thermografie im Nicht-Gleichgewichtszustand 5 Unterdrückung des Einflusses von Reflexionen bei der thermografischen Prüfung von Kontaktierverbindungen 5.1 Hintergrund 5.2 Lösungsansatz 5.3 Werkstoffauswahl 5.4 Erprobung 6 Kompensation des Einflusses lateraler Wärmeströme 6.1 Mehrdimensionaler Wärmefluss 6.2 Simulation des Einflusses lateraler Wärmeströme 6.2.1 Simulationsmodell 6.2.2 Simulationsresultate 6.3 Entwicklung eines Kompensationsalgorithmus 6.3.1 Ansatz 6.3.2 Ergebnis 6.3.3 Sensitivitätsanalyse 6.3.4 Fazit der simulativen Untersuchung des Kompensationsalgorithmus 6.4 Umsetzung und Verifikation des Kompensationsalgorithmus 6.4.1 Untersuchte Proben 6.4.2 Emissionsgradmessung 6.4.3 Ergebnisqualität 6.4.4 Grenzen des Algorithmus 7 Zusammenfassung 8 Ausblick / The electrical connection of a multitude of lithium-ion cells is of high importance for producing lithium-ion batteries. These connections are usually carried out with lap welds of steel, aluminium and copper sheets with a thickness of less than 2 mm. Due to its importance the electrical connection should be subject to non-destructive evaluation. Therefore, a suitable method was identified to evaluate the electrical connection. Technologies based on ultrasonic, radiographic and thermographic evaluation as well as measurement of electrical resistance have been studied regarding their potential to non-destructively test aforementioned lap welds. It was found that in the studied case state of the art technologies are limited by restraints regarding accessibility, cycle time and detectability of ctitical flaws. Therefore, a new technique for non-destructive testing of lap welds between cell connections, had to be be defined. Optically excited thermography was considered a promising approach. Optically excited thermography was applied successfully using a laser as excitation source and a photon detector camera to record infrared radiation. The application of the lock-in principle allowed significant noise reduction. It was shown that the evaluation of temperature sequences using the lock-in algorithm does not depend on a temperature signal that shows strict harmonic behaviour but could also be applied when the raw temperature sequence incorporated a trend. The application of newly developed radiation shields, which are transparent to the wavelengths of the excitation signal, but opaque to the wavelengths of infrared detection, allowed thermographic testing of metal surfaces in proximity to highly absorbing surfaces. A new algorithm was developed for evaluating thermographic sequences aimed at reducing the impact of lateral thermal flux. It was proven to increase the quality of thermographic results in terms of visual correlation to reference technologies and measurement uncertainty of the joined area. Overall, the improved technology was found to be feasible for non-destructive testing of lap welds in lithium-ion batteries.:1 Einleitung 1.1 Motivation und Ziel 1.2 Einführung in die Arbeit 2 Stand der Technik 2.1 Lithium-Ionen-Batterien für Elektrofahrzeuge 2.1.1 Lithium-Ionen-Batterien im Vergleich zu anderen Energiespeichern in der Elektromobilität 2.1.2 Aufbau und Funktion von Lithium-Ionen-Batterien 2.2 Fertigungstechnik der Kontaktierung von Lithium-Ionen-Zellen 2.2.1 Kontaktierung von Lithium-Ionen-Zellen 2.2.2 Schweißverfahren zur Kontaktierung von Lithium-Ionen-Zellen 2.3 Schweißnahtanforderungen und -fehler 2.4 Zerstörungsfreie Prüfung von Kontaktierverbindungen 2.4.1 Qualitätssicherung von Kontaktierverbindungen 2.4.2 Anforderungen an zerstörungsfreie Prüfverfahren 2.4.3 Ultraschallprüfung 2.4.4 Durchstrahlungsprüfung 2.4.5 Messung des elektrischen Widerstands 2.4.6 Oberflächenprüfung 2.4.7 Infrarotthermografie 3 Vorauswahl eines geeigneten Verfahrens der zerstörungsfreien Prüfung 3.1 Untersuchte Verfahren 3.2 Ultraschallverfahren 3.3 Durchstrahlungsverfahren 3.4 Messung des elektrischen Widerstands 3.5 Infrarotthermografie 3.6 Verfahrensauswahl 4 Anwendung der optisch angeregten Thermografie zur Schweißnahtprüfung 4.1 Herausforderungen bei der Messung von Kontaktierschweißverbindungen von Lithium-Ionen-Batterien 4.2 Narzisseffekt und Perspektivenkorrektur 4.3 Techniken der optischen Anregung 4.4 Signalaufbereitung durch Lockin-Verfahren 4.4.1 Lockin-Thermografie 4.4.2 Lockin-Thermografie im Nicht-Gleichgewichtszustand 5 Unterdrückung des Einflusses von Reflexionen bei der thermografischen Prüfung von Kontaktierverbindungen 5.1 Hintergrund 5.2 Lösungsansatz 5.3 Werkstoffauswahl 5.4 Erprobung 6 Kompensation des Einflusses lateraler Wärmeströme 6.1 Mehrdimensionaler Wärmefluss 6.2 Simulation des Einflusses lateraler Wärmeströme 6.2.1 Simulationsmodell 6.2.2 Simulationsresultate 6.3 Entwicklung eines Kompensationsalgorithmus 6.3.1 Ansatz 6.3.2 Ergebnis 6.3.3 Sensitivitätsanalyse 6.3.4 Fazit der simulativen Untersuchung des Kompensationsalgorithmus 6.4 Umsetzung und Verifikation des Kompensationsalgorithmus 6.4.1 Untersuchte Proben 6.4.2 Emissionsgradmessung 6.4.3 Ergebnisqualität 6.4.4 Grenzen des Algorithmus 7 Zusammenfassung 8 Ausblick

Page generated in 0.0747 seconds