• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 43
  • 29
  • 1
  • Tagged with
  • 145
  • 122
  • 92
  • 64
  • 64
  • 64
  • 58
  • 50
  • 36
  • 24
  • 24
  • 24
  • 24
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Transport hochgeladener Ionen durch Nanokapillarfolien und makroskopische Glaskapillaren

Kreller, Martin 11 June 2013 (has links)
In dieser Arbeit wird die Transmission von hochgeladenen Ionen durch Nanokapillarfolien und makroskopische Glaskapillaren untersucht. Die systematische Analyse des übertragenen Ionenstrahls liefert Informationen zur Physik der Ionentransmission und hier insbesondere zum Einfluss des Anstellwinkels zwischen Kapillarachse und Richtung des einfallenden Ionenstrahls und zum Einfluss der kinetischen Energie des einfallenden Ionenstrahls auf den Transmissionsprozess. Es werden Ionenoptiken aus Nanokapillarfolien und makroskopischen Glaskapillaren konstruiert und deren Eigenschaften zur Ionenstrahlformierung untersucht. Der durch das Kapillartarget transportierte Ionenstrahl wird durch die Ausfallsrichtung μ, die Divergenz Γ, der Intensität N und des Anteils umgeladener Teilchen charakterisiert. Es wird die Abhängigkeit dieser charakteristischen Eigenschaften von der in die Kapillaren eingetragen Ladung untersucht. Weiterhin erfolgt eine exponentielle Annäherung an die Gleichgewichtswerte mit der Aufladungskonstante ρ. Die Aufladungskonstante wächst mit steigendem Anstellwinkel und steigender kinetischer Energie der einfallenden Teilchen, ist aber für alle oben genannten Eigenschaften des ausfallenden Ionenstrahls gleich. Erstmalig werden gleichzeitig alle oben genannten Eigenschaften des transportierten Ionenstrahls in Abhängigkeit von der kinetischen Energie der einfallenden Teilchen untersucht. Die Energieabhängigkeit der Eigenschaften des übertragenen Ionenstrahls wird mit einer exponentiellen Annäherung an einen Grenzwert für hohe kinetische Energien beschrieben und durch den Parameter charakterisiert. Dieser ist für alle Eigenschaften des ausfallenden Ionenstrahls im Rahmen des Messfehlers gleich. Die in dieser Arbeit im Bereich von Ekin. = q · 630 eV bis Ekin. = q · 5600 eV gemessene exponentielle Abhängigkeit des Guiding-Prozesses von der kinetischen Energie unterscheidet sich von der in der Literatur zu findenden Abhängigkeit. Die Divergenz des ausfallenden Ionenstrahls wird gesondert betrachtet. Die Experimente zeigen eine größere Divergenz des ausfallenden Ionenstrahls in Ablenkrichtung als senkrecht zur Ablenkrichtung. Die Strahldivergenz senkrecht zur Ablenkrichtung steigt im untersuchten Energiebereich mit steigendem Anstellwinkel. In Ablenkrichtung wird in Abhängigkeit von der kinetischen Energie eine unterschiedliche Abhängigkeit der Divergenz vom Anstellwinkel gemessen. Das Verhalten wird unter Berücksichtigung des Guiding-Modells diskutiert. Untersuchungen hinsichtlich einer möglichen technischen Anwendbarkeit des Guiding-Prozesses führen zu differenzierten Ergebnissen. Die Messungen mittels einer aus einer Nanokapillarfolie geformten Linse zeigen ein geringes technischen Potenzial, da die Fokussierung des einfallenden Strahls durch die Divergenz des ausfallenden Ionenstrahls kompensiert wird. Im Gegensatz dazu zeigt die Verwendung einer makroskopischen Glaskapillare ein großes Anwendungspotenzial. Die Ionenstromdichte des einfallenden Ionenstrahls konnte mit einer konischen Glaskapillare um den Faktor 8 erhöht werden. Durch die Realisierung eines Potenzialunterschieds zwischen dem Ein- und Ausgang einer makroskopischen Kapillare wird ein Ionenstrahl innerhalb der Kapillare abgebremst. Es wird gezeigt, dass der Guiding-Effekt die Aufweitung des Ionenstrahls während der Abbremsung effektiv verhindert. Dies ermöglicht die Konstruktion einer kompakten Ionenabbremseinheit.:1 Transport hochgeladener Ionen durch Mikro- und Nanokapillaren 2 Methodische Grundlagen der Ionentransmissionsexperimente 3 Transmission durch Nanokapillarfolien 4 Transmission durch eine makroskopische Glaskapillare 5 Zusammenfassung und Ausblick
82

A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices

Yu, Minghao, Naisa, Chandrasekhar, Raghupathy, Ramya Kormath Madam, Ly, Khoa Hoang, Zhang, Haozhe, Dmitrieva, Evgenia, Liang, Chaolun, Lu, Xihong, Kühne, Thomas D., Mirhosseini, Hossein, Weidinger, Inez M., Feng, Xinliang 05 July 2022 (has links)
Rechargeable aqueous Zn-ion energy storage devices are promising candidates for next-generation energy storage technologies. However, the lack of highly reversible Zn2+-storage anode materials with low potential windows remains a primary concern. Here, we report a two-dimensional polyarylimide covalent organic framework (PI-COF) anode with high-kinetics Zn2+-storage capability. The well-organized pore channels of PI-COF allow the high accessibility of the build-in redox-active carbonyl groups and efficient ion diffusion with a low energy barrier. The constructed PI-COF anode exhibits a specific capacity (332 C g–1 or 92 mAh g–1 at 0.7 A g–1), a high rate capability (79.8% at 7 A g–1), and a long cycle life (85% over 4000 cycles). In situ Raman investigation and first-principle calculations clarify the two-step Zn2+-storage mechanism, in which imide carbonyl groups reversibly form negatively charged enolates. Dendrite-free full Zn-ion devices are fabricated by coupling PI-COF anodes with MnO2 cathodes, delivering excellent energy densities (23.9 ∼ 66.5 Wh kg–1) and supercapacitor-level power densities (133 ∼ 4782 W kg–1). This study demonstrates the feasibility of covalent organic framework as Zn2+-storage anodes and shows a promising prospect for constructing reliable aqueous energy storage devices.
83

A mathematical model of ion homeostasis in the malaria parasite, Plasmodium falciparum

Diemer, Jorin 27 September 2023 (has links)
Jedes Jahr infizieren sich mehr als 200 Millionen Menschen mit Malaria. Eine halbe Millionen von ihnen verstirbt. Die Mehrzahl der Krankheits- und Todesfälle wird durch den Parasiten Plasmodium falciparum verursacht, einen von sechs Stämmen von Malariaparasiten, der Menschen infizieren kann. Der P. falciparum-Parasit hat in unterschiedlichem Maße Resistenzen gegen die meisten derzeit verwendeten Malariamittel entwickelt, und es besteht ein ständiger Bedarf an der Entwicklung neuer Malariamedikamente. Zwei Wirkstoffe, die sich derzeit in der klinischen Erprobung gegen Malaria befinden, zielen auf ’Ionenpumpen’ in der Oberflächenmembran des Malariaparasiten ab. Die Ionenregulation im Parasiten P. falciparum war in den letzten Jahrzehnten Gegenstand umfangreicher Forschung, welche zu einem allgemeinen Verständnis darüber geführt, wie der Parasit seine interne Ionenhaushalt reguliert. Es wurde jedoch noch nicht versucht, diese Erkenntnisse in ein quantitatives Modell zu integrieren. In dieser Arbeit habe ich ein mathematisches Modell für die Ionenhomöostase im asexuellen, intra-erythrozytären Stadium des Parasiten P. falciparum entwickelt. Das Modell bietet neue Einblicke in bisher unerklärte, experimentelle Beobachtungen und sagt die Wechselwirkungen von Ionentransport-Inhibitoren voraus. Das neu entwickelte Modell der Ionenregulation im Parasiten wurde in ein bereits bestehendes mathematisches Modell der Ionenregulation im Wirtserythrozyten integriert, um ein vorläufiges "kombiniertes Modell" des parasiteninfizierten Erythrozyten als Ganzes zu erstellen. Die Ergebnisse dieses kombinierten Modells wurden mit den Ergebnissen einer begrenzten Anzahl von Experimenten verglichen, die im Rahmen dieser Arbeit durchgeführt wurden. In diesen Experimenten wurde die Veränderung der infizierten Erythrozyten nach verschiedenen osmotischen Störungen gemessen. Die im Rahmen dieser Arbeit durchgeführte mathematische Modellierung trägt zum Verständnis der gegenseitigen Abhängigkeiten bei, die bei der Ionenregulierung des Malariaparasiten eine Rolle spielen, und bietet einen Rahmen für das Verständnis der Auswirkungen von "Ionentransport-hemmenden" Malariamitteln. / Malaria is currently responsible for more than 200 million estimated cases and half a million deaths annually, with the majority of cases and deaths attributable to Plasmodium falciparum, one of six strains of malaria parasite able to infect humans. The P. falciparum parasite has developed varying degrees of resistance against most, if not all, of the antimalarial drugs currently available and there is an ongoing need to develop new antimalarial agents. Two compounds, which are currently in clinical trials against malaria target an ’ion pump’ on the surface membrane of the malaria parasite. Ion regulation in the P. falciparum parasite has been the subject of extensive studies over recent decades. This research has led to a general understanding of how the parasite regulates its internal ionic composition. However, there has not yet been any attempt to integrate these findings into a quantitative model. In the work presented in this thesis, I have developed a mathematical model for ion homeostasis in the asexual intra-erythrocytic blood-stage of the P. falciparum parasite. The model provides new insights into formerly unexplained in vitro observations and predicts interactions of ion transport inhibitors. The newly formulated model of ion regulation in the parasite was integrated with a pre-existing mathematical model for ion regulation in the host erythrocyte to generate a preliminary ’combined model’ of the parasite-infected erythrocyte as a whole. Outputs from this combined model were compared to the results from a limited number of experiments conducted in the course of this thesis. These experiments entailed measuring the change of infected erythrocytes following different osmotic perturbations. The mathematical modelling conducted in the course of this work adds to the understanding of the interdependencies involved in malaria parasite ion regulation and provides a framework to help understand the effects of ’ion-transport-inhibiting’ antimalarial agents.
84

Hollow MoSx nanomaterials for aqueous energy storage applications

Quan, Ting 31 May 2021 (has links)
Die vorliegende Arbeit konzentriert sich auf die Synthese von neuartigen hohlen MoSx-Nanomaterialien mit kontrollierbarer Größe und Form durch die kolloidale Template Methode. Ihre möglichen Anwendungen in wässrigen Energiespeichersystemen, einschließlich Superkondensatoren und Li-Ionen-Batterien (LIBs), wurden untersucht. Im ersten Teil wurde eine neue Nanostruktur aus hohlen Kohlenstoff-MoS2-Kohlenstoff-nanoplättchen erfolgreich durch eine L-Cystein unterstützte hydrothermale Methode unter Verwendung von Gibbsit als Templat und Polydopamin (PDA) als Kohlenstoffvorläufer synthetisiert. Nach dem Kalzinieren und Ätzen des Gibbsit Templates wurden gleichförmige Hohlplättchen erhalten, die aus einer sandwichartigen Anordnung von teilweise graphitischem Kohlenstoff und zweidimensional geschichteten MoS2 Flocken bestehen. Die Plättchen haben eine ausgezeichnete Dispergierbarkeit und Stabilität in Wasser sowie eine gute elektrische Leitfähigkeit aufgrund des durch die Kalzinierung von Polydopaminbeschichtungen erzeugten Kohlenstoffs gezeigt. Das Material wird dann in einem symmetrischen Superkondensator mit 1 M Li2SO4 als Elektrolyt aufgebracht, der eine spezifische Kapazität von 248 F/g (0.12 F/cm2) bei einer konstanten Stromdichte von 0.1 A/g und eine ausgezeichnete elektrochemische Stabilität über 3000 Zyklen aufweist, was darauf hindeutet, dass hohle Kohlenstoff-MoS2-Kohlenstoffnanoplättchen vielversprechende Materialien als Kandidaten für Superkondensatoren sind. Im zweiten Teil wurde 21 molare LiTFSI, das sogenannte "Wasser-in-Salz" (WIS) Elektrolyt, in Superkondensatoren mit hohlen Kohlenstoffnanoplättchen als Elektrodenmaterial untersucht. Im Vergleich zu dem im ersten Teil verwendeten 1 molaren Li2SO4-Elektrolyten wurden bei dem vorliegenden WIS Elektrolyt signifikante Verbesserungen in einem breiteren und stabilen Potentialfenster festgestellt, das durch die geringere Leitfähigkeit mit dem Gegenstück leicht beeinflusst wird. Die elektrochemische Impedanzspektroskopie (EIS) wurde ausgiebig eingesetzt, um einen Einblick in die Reaktionsmechanismen der WIS-Superkondensatoren zu erhalten. Zusätzlich wurde auch der Einfluss der Temperatur auf die elektrochemische Leistung im Temperaturbereich zwischen 15 und 55 °C untersucht, was eine hervorragende spezifische Kapazität von 128 F/g bei dem optimierten Zustand von 55 °C ergab. Die EIS-Messungen deckten die Abnahme der angepassten Widerstände mit der Temperaturerhöhung und umgekehrt auf und beleuchteten direkt die Beziehung zwischen elektrochemischer Leistung und Arbeitstemperatur von Superkondensatoren für zuverlässige praktische Anwendungen. Im dritten Teil wurde MoS3, ein amorphes, kettenförmig strukturiertes Übergangsmetall Trichalcogenid, als vielversprechende Anode in "Wasser-in-Salz" Li-Ionen-Batterien (WIS-LIBs) nachgewiesen. Die in diesem Teil verwendeten hohlen MoS3-Nanosphären wurden mittels einer skalierbaren Säurefällungsmethode bei Raumtemperatur synthetisiert, wobei sphärische Polyelektrolytbürsten (SPB) als Schablonen verwendet wurden. Beim Einsatz in WIS-LIBs mit LiMn2O4 als Kathodenmaterial erreicht das präparierte MoS3 eine hohe spezifische Kapazität von 127 mAh/g bei einer Stromdichte von 0.1 A/g und eine gute Stabilität über 1000 Zyklen sowohl in Knopf- als auch in Pouch-Zellen. Der Arbeitsmechanismus von MoS3 in WIS-LIBs wurde auch durch Ex-situ-Röntgenbeugungsmessungen (XRD) untersucht. Während des Betriebs wird MoS3 während der anfänglichen Li-Ionen-Aufnahme irreversibel in Li2MoO4 umgewandelt und dann allmählich in eine stabilere und reversible LixMoOy-Phase (2≤y≤4)) entlang der Zyklen umgewandelt. Amorphes Li-defizientes Lix-mMoOy/MoOz wird bei der Delithiierung gebildet. Die Ergebnisse der vorliegenden Studie zeigen einfache Ansätze zur Synthese hohler MoSx-Nanomaterialien mit kontrollierbarer Morphologie unter Verwendung einer Template-basierten Methode, die auf die vielversprechende Leistung von MoSx für wässrige Energiespeicheranwendungen zurückzuführen sind. Die elektrochemischen Untersuchungen von hohlen MoSx-Nanomaterialien in wässrigen Elektrolyten geben Einblick in die Reaktionsmechanismen von wässrigen Energiespeichersystemen und treiben die Entwicklung von Metallsulfiden für wässrige Energiespeicheranwendungen voran. / The present thesis focuses on the synthesis of novel hollow MoSx nanomaterials with controllable size and shape through the colloidal template method. Their possible applications in aqueous energy storage systems, including supercapacitors and Li-ion batteries (LIBs), have been studied. In the first part, hollow carbon-MoS2-carbon nanoplates have been successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as the template and polydopamine (PDA) as the carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which are made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, have been obtained. The platelets have shown excellent dispersibility and stability in water, and good electrical conductivity due to carbon coating generated by the calcination of polydopamine. The material is then applied in a symmetric supercapacitor using 1 M Li2SO4 as the electrolyte, which exhibits a specific capacitance of 248 F/g (0.12 F/cm2) at a constant current density of 0.1 A/g and an excellent electrochemical stability over 3000 cycles, suggesting that hollow carbon-MoS2-carbon nanoplates are promising candidate materials for supercapacitors. In the second part, 21 m LiTFSI, so-called “water-in-salt” (WIS) electrolyte, has been studied in supercapacitors with hollow carbon nanoplates as electrode materials. In comparison with 1 M Li2SO4 electrolyte used in the first part, significant improvements on a broader and stable potential window have been revealed in the present WISE, which is slightly influenced by the lower conductivity with the counterpart. The electrochemical impedance spectroscopy (EIS) has been extensively employed to provide an insight look on the formation of solid electrolyte interphase in the WIS-supercapacitors. Additionally, the effect of temperature on the electrochemical performance has also been investigated in the temperature range between 15 and 55 °C, yielding eminent specific capacitance of 128 F/g at the optimized condition of 55 °C. The EIS measurements disclosed the decrease of fitted resistances with the increase of temperature and vise versa, directly illuminating the relationship between electrochemical output and working temperature of supercapacitors for reliable practical applications. In the third part, MoS3, an amorphous chain-like structured transitional metal trichalcogenide, has been demonstrated as a promising anode in the “water-in-salt” Li-ion batteries (WIS-LIBs). Hollow MoS3 nanospheres used in this part have been synthesized via a scalable room-temperature acid precipitation method using spherical polyelectrolyte brushes (SPB) as the template. When applied in WIS-LIBs with LiMn2O4 as the cathode material, the prepared MoS3 achieves a high specific capacity of 127 mAh/g at the current density of 0.1 A/g and good stability over 1000 cycles in both coin cells and pouch cells. The working mechanism of MoS3 in WIS-LIBs has also been studied by ex-situ X-ray diffraction (XRD) measurements. During operation, MoS3 undergoes irreversible conversion to Li2MoO4 during the initial Li ion uptake, and is then gradually converted to a more stable and reversible LixMoOy (2≤y≤4)) phase along cycling. Amorphous Li-deficient Lix-mMoOy/MoOz is formed upon delithiation. The results in the present thesis demonstrate facile approaches for synthesizing hollow MoSx nanomaterials with controllable morphologies using a template-based method, which attribute to the promising performance of MoSx for aqueous energy storage applications. The electrochemical studies of hollow MoSx nanomaterials in aqueous electrolytes provide insight into the reaction mechanisms of aqueous energy storage systems and push forward the development of metal sulfides for aqueous energy storage applications.
85

Electrochemical Storage of Lithium in Silicon - Morphological Analysis from the Atomistic Scale to the Macroscale

Ronneburg, Arne 26 May 2021 (has links)
Die experimentellen Daten können bei Dr. Sebastian Risse, Helmholtz-Zentrum Berlin, eingesehen werden. / Silizium-Elektroden werden aufgrund ihrer um eine Gröÿenordnung höheren Kapazität als mögliches Elektrodenmaterial in Lithium-Ionen-Batterien betrachtet. Diese Kapazität geht jedoch mit einer Volumenausdehnung von bis zu 310 % einher. Dies begünstigt einen schnellen Kapazitätsabfall und ein kontinuierliches Wachstum der SEI-Schicht. Ziel dieser Arbeit ist es daher, die Morphologie-Änderung der Siliziumelektrode während des Lithiierungs-Prozesses besser zu verstehen unter Nutzung von operando-Methoden Im ersten Teil wurde Neutronenreflektometrie (NR) genutzt, um die Morphologie-Änderung auf der Nanometerskala einer Siliziumelektrode zu untersuchen. Das Wachsen/Schrumpfen der lithiierten Zone im Silizium wurde beobachtet. Auf der Oberfläche der Elektrode wächst im delithiierten Zustand eine Grenzschicht, welche die Lithiierung verhindert. Nachdem diese Schicht aufgelöst ist, kann Lithium eingelagert werden. Im zweiten Teil wurde operando Röntgen- Phasenkontrast-Radiographie genutzt. Ein rechteckiges Riss-Gitter wurde dabei im delithiierten Zustand beobachtet, welches sich während der Lithiierung schließt. Dieses Gitter ist entlang der Kristallachsen des Siliziums orientiert. Im nächsten Zyklus entsteht das Gitter am selben Ort wieder, und breitet sich mit steigender Zyklenzahl über die Elektrode aus. Im dritten Teil wurde der Einfluss einer künstlichen Grenzschicht auf die Lithiierung untersucht. Erneut wurde NR genutzt. Die künstliche Schicht verringert das Wachstum der SEI-Schicht, unterdrückt es jedoch nicht komplett. Nach 2 Zyklen ist die Grenzschicht degradiert, und Seitenreaktionen können beobachtet werden. / Silicon electrodes receive great interest as potential electrode material in lithium-based batteries due to their one order of magnitude higher capacity. This is accompanied by a volume expansion of up to 310 %, leading to an accelerated capacity loss of the electrodes. The volume expansion creates mechanical stress, leading to fracturization of the electrode and the continuous growth of the solid-electrolyte-interphase (SEI) layer under the consumption of active material. The aim of this thesis is to investigate the morphological changes of silicon electrodes during lithiation/ delithiation. Especially operando-techniques are well-suited to investigate these morphological changes since they allow us to precisely link structural data and the electrochemical state. The first project uses operando neutron reflectometry (NR) and in-situ electrochemical impedance spectroscopy (EIS) to analyze the morphology change of the silicon surface on the nanometer-scale. The growth and shrinkage of the lithiated layers within the electrode as well as the lithium concentration was determined with this method. An SEI-layer forms on top of the silicon electrode in the delithiated state, which hinders the lithium uptake in the initial part of the subsequent lithiation. The second project analyzes the morphology-change of the electrode on the µm-scale. Here the fracturization of the silicon electrode is investigated by operando X-ray phase-contrast radiography. A rectangular fracturization pattern was observed during the second half of the delithiation, which vanished again during the lithiation. The third project investigates the influence of an artificial coating layer on the lithiation process. Again operando NR was chosen as analysis tool. The artificial coating decreased the formation of the SEI-layer within the first cycles, but did not suppress it completely. However, this layer degraded already in an early stage of cycling, resulting in the occurrence of side reactions afterward.
86

High energy density and durable pouch-cell graphite-based dual ion battery using concentrated hybrid electrolytes

Sabaghi, Davood, Wang, Gang, Mikhailova, Daria, Morag, Ahiud, Ahmad, Li, Dongqi, Khosravi Haji Vand, Saman, Yu, Minghao, Feng, Xinliang, Shaygan Nia, Ali 23 May 2024 (has links)
Graphite-based dual-ion batteries (GDIBs) represent a promising battery concept for large-scale energy storage on account of low cost, high working voltage, and sustainability. The electrolyte concentration plays a critical role in determining the energy density and cycle life of GDIBs. However, the concentrated electrolytes show low Lithium ions (Li+) transport kinetics, reducing their intercalation and solid electrolyte interface (SEI) formation abilities. Moreover, the GDIBs in the high cut-off voltage suffer from electrolyte degradation, and corrosion of the current collector. Herein, we report a highly concentrated electrolyte formulation based on hybrid lithium hexafluorophosphate (LiPF6) and lithium bis(fluorosulfonyl)imide (LiFSI) salts with a super-wide electrochemical stability window (6 V) and the ability to form SEI and passivation layer on graphite anode and current collector, respectively. By regulating the concentrated LiFSI electrolyte with LiPF6 and solvent additive, the coulombic efficiency of the graphite cathode can be further improved to ∼98%. As a result, GDIB pouch cell exhibits a capacity of 21 mAh g−1 (cell level) at 50 mA g−1, and 98.2% capacity retention after 300 cycles. The resultant battery offers an energy density of 90.3 Wh kg−1, along with a high energy efficiency of 87% and average discharge voltage of 4.3 V.
87

Biopolymerbasierte Materialien als Precursoren für elektrochemische Anwendungen

Fischer, Johanna 16 May 2024 (has links)
Elektrochemische Energiespeicher sind entscheidend für eine zuverlässige Energieversorgung angesichts steigender Nachfrage und knapper Ressourcen. Die fortlaufende Entwicklung möglichst umweltfreundlicher Materialien mit guter Verfügbarkeit ist essenziell für die Verbesserung von deren Leistungsfähigkeit. Ziel der Arbeit war die Nutzung cellulosebasierter Präkursoren zur Herstellung von Elektrodenmaterialien für die elektrochemischen Energiespeicher Superkondensator und Li-Ionen-Batterie. Dabei werden die Struktur-Eigenschaftsbeziehungen von Präkursormaterial und Kohlenstoff, sowie deren Einfluss auf die resultierenden elektrochemischen Leistungen untersucht. Mittels Acetatverfahren können sphärische Partikel auf Basis von Cellulose mit einer Partikelgröße < 5 µm und enger Partikelgrößenverteilung hergestellt werden. Bei der Herstellung sphärischer Partikel aus Celluloseacetat werden eine Vielzahl verschiedener Parameter im Herstellungsprozess variiert und deren Einfluss auf die Eigenschaften der sphärischen Partikel verändert. Außerdem werden die Cellulosederivate Celluloseacetat-butyrat und Celluloseacetat-phthalat als Ausgangsmaterial zur Herstellung sphärischer Partikel verwendet. Die hergestellten sphärischen Partikel werden mittels Pyrolyse zu Kohlenstoff umgewandelt, wobei zum einen der Einfluss der Eigenschaften der sphärischen Präkursoren auf die resultierenden Kohlenstoffe und zum anderen der Einfluss verschiedener Carbonisierungsbedingungen (Carbonisierungstemperatur, Haltezeit, Heizrate) anhand von sphärischen Celluloseacetatpartikeln mit einer Partikelgröße < 5 µm untersucht werden. Zur Vergrößerung der Oberfläche und zur Veränderung der Porenstruktur werden aktivierte Kohlenstoffe hergestellt. Dabei wird KOH in verschiedenen Aktivierungsgraden C : KOH verwendet sowie alternative Aktivierungsreagenzien getestet. Die (aktivierten) Kohlenstoffe dienen als Elektrodenmaterialien in Superkondensatoren, Li-Ionen-Batterien und Li-Ionen-Kondensatoren. Die hergestellten Kohlenstoffe zeigen vielversprechende Kapazitäten als Elektrodenmaterial in symmetrischen Superkondensatoren mit KOH-Elektrolytlösung, insbesondere bei Verwendung von aktiviertem Kohlenstoff aus sphärischen Celluloseacetatpartikeln. Außerdem werden verschiedene neutrale wässrige Elektrolytlösungen als Alternative zu alkalischen KOH-Lösungen getestet und der Einfluss von Konzentration und Arbeitstemperatur betrachtet. Weiterhin kann die Eignung der hergestellten nicht-aktivierten Kohlenstoffe aus Celluloseacetat-Perlen als Anodenmaterial in Lithium-Ionen-Batterien als Alternative zu Graphit gezeigt werden, insbesondere hinsichtlich Langzeitstabilität und dem Einsatz bei hohen Betriebstemperaturen. Auch ein möglicher Einsatz der aktivierten Kohlenstoffe aus Celluloseacetat-Perlen in Li-Ionen-Kondensatoren als Kathodenmaterial mit TNO-Anode wird geprüft.:ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ABKÜRZUNGSVERZEICHNIS SYMBOLVERZEICHNIS 1 EINLEITUNG 2 THEORETISCHE GRUNDLAGEN 2.1 Ausgangsmaterialien 2.1.1 Cellulose 2.1.2 Celluloseester (Celluloseacetat, Celluloseacetat-butyrat, Celluloseacetat-phthalat) 2.1.3 Sphärische Partikel aus Cellulose und Cellulosederivaten 2.2 Kohlenstoffe 2.2.1 Kohlenstoffe in Energiespeichern 2.2.2 Amorphe Kohlenstoffe 2.2.3 Aktivierte Kohlenstoffe 2.3 Elektrochemische Speichermethoden 2.3.1 Superkondensatoren 2.3.1.1 Speicherarten – EDLC vs. Pseudokapazität 2.3.1.2 Elektrodenmaterialien 2.3.1.3 Elektrolytsysteme 2.3.2 Lithium-Ionen-Batterien 2.3.3 Lithium-Ionen-Kondensatoren 2.4 Methoden zur strukturellen Charakterisierung 2.4.1 Laserbeugungsspektroskopie 2.4.2 Sedimentationsverhalten zur Bestimmung der Porosität 2.4.3 Stickstoffphysiosorption 2.4.4 Raman-Spektroskopie 2.4.5 Rasterelektronenmikroskopie 2.4.6 Röntgendiffraktometrie 2.4.7 Viskositätsmessungen 2.5 Elektrochemische Charakterisierung 2.5.1 Zyklische Voltammetrie 2.5.2 Galvanostatisches Zyklieren 2.5.3 Elektrochemische Impedanzspektroskopie 2.5.4 Galvanostatische intermittierende Titrationstechnik 3 EXPERIMENTELLER TEIL 3.1 Herstellung Perlcellulose 3.1.1 Herstellung der sphärischen Celluloseester / Deacetylierung 3.1.2 Variationen der Parameter 3.2 Carbonisierung / Aktivierung 3.3 Herstellung der Elektrochemischen Energiespeicher 3.3.1 Superkondensatoren 3.3.2 Lithium-Ionen-Batterien 3.3.3 Lithium-Ionen-Kondensatoren 3.4 Chemikalien 3.5 Geräte und Methoden 4 ERGEBNISSE & DISKUSSION 4.1 Ausgangsmaterialien für die Herstellung von sphärischen Celluloseestern 4.2 Sphärische Celluloseester 4.2.1 Verschiedene CA-Materialien 4.2.2 Deacetylierung zur Perlcellulose 4.2.3 Partikelgröße 4.2.4 Salzgehalt 4.2.5 Tensidgehalt 4.2.6 Celluloseacetat-butyrat 4.2.7 Celluloseacetat-phthalat 4.2.8 Zusammenfassung der Herstellung sphärischer Partikel aus Celluloseestern 4.3 Kohlenstoffe auf Basis von sphärischen Celluloseestern 4.3.1 Einfluss der Carbonisierungsbedingungen auf die hergestellten Kohlenstoffe aus CA1-Perlen 4.3.2 Einfluss der verschiedenen Herstellungsbedingungen der Celluloseacetat-Perlen auf den resultierenden Kohlenstoff 4.3.3 Kohlenstoffe aus Celluloseacetat-butyrat-Perlen 4.3.4 Kohlenstoffe aus Celluloseacetat-phthalat 4.3.5 Zusammenhänge zwischen Präkursoren und Kohlenstoffen 4.4 Aktivierte Kohlenstoffe 4.4.1 Aktivierung von CA- und CAB-Perlen mit KOH 4.4.2 Vergleich von KOH mit anderen Aktivierungsreagenzien 4.5 Superkondensatoren mit Elektroden aus Kohlenstoffen auf Basis von sphärischen Celluloseestern in alkalischen Elektrolyten 4.5.1 Einfluss der Carbonisierungsbedingungen auf die Performance von Superkondensatoren mit CA1-Elektroden 4.5.2 Superkondensatoren auf Basis von Kohlenstoffen aus verschiedenen Celluloseestern 4.5.3 Aktivierte Kohlenstoffe 4.5.4 Zusammenhang zwischen den hergestellten Kohlenstoffen und deren Einsatz als Elektrodenmaterial in Superkondensatoren 4.6 Vergleich von alkalischen und neutralen Elektrolyten in Superkondensatoren 4.6.1 Charakterisierung der Elektrolyte 4.6.2 Neutrale Elektrolyte und alkalische Elektrolyte im Vergleich 4.6.3 Einfluss von Konzentration und Temperatur auf die Zellperformance mit Na2SO4-Elektrolyten 4.7 Kohlenstoffe aus sphärischen Celluloseestern als Anodenmaterial in Lithium-Ionen-Batterien 4.7.1 Einfluss der Carbonisierungsbedingungen auf CA1 als Anodenmaterial 4.7.2 Bindersysteme 4.7.3 Kohlenstoffe aus Celluloseestern mit verschiedenen Herstellungsbedingungen 4.7.4 Einfluss der Temperatur 4.8 Lithium-Ionen-Kondensatoren mit aktiviertem Kohlenstoff aus CA-Perlen als Kathodenmaterial 4.9 Vergleich der Kohlenstoffe als Elektrodenmaterial in den verschiedenen Energiespeichersystemen 5 ZUSAMMENFASSUNG 6 LITERATURVERZEICHNIS 7 ANHANG
88

Mechanische Aufbereitung der Feinfraktion zerkleinerter Lithium-Ionen-Batterien / Mechanical processing of the fine fraction of crushed lithium-ion batteries

Gellner, Martha 30 May 2018 (has links) (PDF)
Bei einem entwickelten Verfahren zur mechanischen Aufbereitung von Lithium-Ionen-Batterien (LIBs) aus Elektrofahrzeugen fallen zwei, hauptsächlich aus den Elektrodenbestandteilen bestehenden, Feinfraktionen (FF) an. Typischerweise erfolgt eine Rückgewinnung der enthaltenen Wertstoffe Co, Ni und Cu derzeit über eine kombinierte pyro- und hydrometallurgische Aufbereitung. Dabei dient der pyrometallurgische Schritt der Abtrennung von Stoffen, welche bei der hydrometallurgischen Aufbereitung störend wirken. Durch eine mechanische Aufbereitung der FF wurde alternativ zu dem pyrometallurgischen Schritt versucht, die in der FF enthaltenen Wertstoffe anzureichern sowie ebenfalls die Störstoffe für eine hydrometallurgische Aufbereitung abzutrennen. Dazu wurden verschiedene trockene Sortierprozesse herangezogen und auf ihre Eignung hin untersucht. Mit Hilfe der Ergebnisse wurde ein Verfahrensfließbild für die Aufbereitung der FF entworfen und testweise durchlaufen. Zusätzlich zu den Sortierversuchen wurden eine Materialcharakterisierung durchgeführt, die Aufschlussverhältnisse (visuelle Einschätzung, Bestimmung Aufschlussgrad) sowie die Aufschlusszerkleinerung der FF untersucht. Als Aufgabegut diente eine Co-, Ni-, Mn- haltige FF, welche nach der 1. Zerkleinerung und Klassierung im entworfenen Verfahrensfließbild zur Aufbereitung der LIBs aus Elektrofahrzeugen gewonnen wurde. Zur Anreicherung der Wertstoffe Co, Ni innerhalb des Aktivmaterials (AM) und Cu sowie zur Reduzierung der Störstoffgehalte von Al und Kohlenstoff in bestimmten Produkten haben sich die Siebklassierung, die Magnetscheidung, die Gegenstromsortierung sowie als nasser Dichtesortierprozess die Schwimm-Sink-Sortierung als geeignet herausgestellt. Als resultierendes technologisches Aufbereitungsverfahren haben sich aus den Ergebnissen eine Siebklassierung bei x = 200 µm und x = 800 µm mit einer nachgeschalteten Magnetscheidung oder Gegenstromsortierung für die Klasse 0,2…0,8 mm ergeben, woraus 4 Produkte resultieren. Beim testweisen Durchlaufen des resultierenden Verfahrensfließbildes hat sich zudem herausgestellt, dass in Abhängigkeit von der FF bzw. deren Kenngrößen auf die Magnetscheidung bzw. Gegenstromsortierung verzichtet werden kann. Insgesamt wird zur Aufwands- und Kostenminimierung eine Vereinheitlichung der aufzubereitenden FF empfohlen. Die Wirtschaftlichkeit des Verfahrens (inklusive Pyro- und Hydrometallurgie) wird stark durch die dynamische Entwicklung der Batterietechnologie, insbesondere der enthaltenen erlösbringenden Komponente Kobalt, und des Marktes (Verkaufsraten und Lebensdauer der LIBs) beeinflusst. Die notwendige kontinuierliche Anpassung des bestehenden Verfahrensfließbildes aufgrund der schnellen Weiterentwicklung chemischer LIB-Regime ist zudem nicht vermeidbar. Generelle Unterschiede in den FF (chemische Zusammensetzung, PGV) können auf verschiedene LIB-Typen (unterschiedliche AMs), deren Vorgeschichte (Alterungszustand, Lagerung, …) sowie die Zerkleinerungsbedingungen zurückgeführt werden. Mit Hilfe einer Bilanzierung wurden die Gehalte des gesamten AM in den FF zwischen c = 33,2 ± 3,4 Ma.-% und c = 54,9 ± 5,7 Ma.-% ermittelt. Mit Hilfe der untersuchten Methoden wurde in keinem Produkt der maximale Anreicherungsfaktor für die AMs erreicht, so dass lediglich eine Voranreicherung bezüglich dieser (und auch der anderen Komponenten) erzielt wurde. Betrachtungen zu den Verbindungs- und Aufschlussverhältnissen in der FF führten zu dem Ergebnis, dass sowohl die Anodenbeschichtung noch mit der Kupferfolie als auch die Kathodenbeschichtung mit der Aluminiumfolie im Verbund vorliegen können. Bezüglich der AMs wird ein Aufschluss im Partikelgrößenbereich größer der Primär- und Sekundärpartikelgröße (> 1 bis 20 µm) ausgeschlossen. Es konnte ein maximaler Aufschlussgrad von A = 37,9 % für eine der untersuchten Feinfraktionen bestimmt werden. Zur Zerkleinerung der Partikel in der Feinfraktion eignen sich eine Zerkleinerung in der einer Fliehkraftmühle bzw. mittels Ultraschallbeanspruchung.
89

Layered transition metal sulfide- based negative electrode materials for lithium and sodium ion batteries and their mechanistic studies

Gao, Suning 21 September 2020 (has links)
The environmental concerns over the use of fossil fuels, and their resource constraints, as well as energy security concerns, have spurred great interest in generating electric energy from renewable sources. Solar and wind energy are abundant and potentially readily available. However, the generation of sustainable energies is generally intermittent and these energies have geographical limits which are relative to current large-scale energy generation facilities. To smooth out the intermittency of renewable energy production, low-cost electrical energy storage (EES) devices are becoming highly necessary. Among these EES technologies, lithium ion batteries are one of the most promising EES devices in terms of the characteristics of high gravimetric, volumetric energy density and environmentally friendly compared to lead-acid batteries and Ni-Cd batteries. Other advantages of Li-ion batteries are the ability of being recharged hundreds of times and high stability. Moreover, the dramatically growing market share of hybrid electrical and electrical vehicles in automobiles has motivated the development of high energy and power density LIBs with high mass loading. However, there are still several remaining challenges in LIBs for their further application in grid-scale ESSs. One of the global issues to date is the high costs including the cost of raw materials such as lithium and cobalt, production, machining, and transportation, etc. In addition, the increasing energy demand thereby leads to the pressures on the resource supply chains and thus increasing the cost of LIBs. Therefore, it is urgent to find a complementary or alternative EES device in a short term to satisfy the growing energy demand. Under the background of fast development of LIBs technology as well as the establishment of Li chemistry fundamentals in the last 40 years, rechargeable battery systems utilizing Na element have been extensively studied to develop less expensive and more sustainable ESSs. The sodium resource is abundantly existed in the planet. According to the periodic table, sodium is the most possible alternative to lithium, because it has the similar chemical and physical properties towards to lithium. As a consequence, the established fundamentals in LIBs can be reasonably analogized to SIBs. Moreover, Sodium is readily available from various sources-foods that contain sodium naturally, foods containing salt and other sodium-containing ingredients. Therefore, The study of SIBs technology and sodium chemistry are gaining increasing interests and attentions both in the scientific researchers and battery industry. However, theoretically speaking, the energy density of SIBs is lower than that of LIBs by using same electrode materials because sodium is more than 3 times heavier than Li as well as the standard electrode potential of Na (-2.71 V) is higher than Li (-3.04 V). Therefore, SIBs are not thought as an ideal candidate to substitute LIBs in the fields of small or middle-size portable devices, but are more favorable in a large grid support where the operation cost is the primary choice. Negative electrode is important component in a single cell. Exploring negative electrode materials with high electrochemical performance in LIBs and SIBs is indeed required for fulfilling the spreading energy demand. Among various negative electrode materials, layered transition metal sulfides (MSs) are reckoned as a promising class with high theoretical specific capacity and power capability due to their intrinsically layered structure which is beneficial to the diffusion of Li+ and Na+ . However, layered transition metal sulfides are suffering from intrinsically poor electrical conductivity, volume changes, high irreversibility and sluggish kinetics during Li+ /Na+ storage process. To address these issues, numerous strategies are applied to explore high performance LIBs and SIBs negative electrode materials in this PHD thesis. / Die ökologischen Bedenken hinsichtlich der Nutzung fossiler Brennstoffe und deren Ressourcenbeschränkungen sowie Bedenken hinsichtlich der Energiesicherheit haben großes Interesse an der Erzeugung elektrischer Energie aus erneuerbaren Quellen geweckt. Sonnen- und Windenergie sind im Überfluss vorhanden und potenziell leicht verfügbar. Die Erzeugung nachhaltiger Energien ist jedoch in der Regel intermittierend, und diese Energien haben geographische Grenzen, die im Vergleich zu den derzeitigen großen Energieerzeugungsanlagen relativ begrenzt sind. Um die Unterbrechungen in der Produktion erneuerbarer Energien auszugleichen, werden kostengünstige elektrische Energiespeicher (EES) dringend notwendig. Unter diesen EES-Technologien sind Lithium-Ionen-Batterien eines der vielversprechendsten EES-Geräte hinsichtlich der Eigenschaften einer hohen gravimetrischen, volumetrischen Energiedichte und umweltfreundlich im Vergleich zu Blei-Säure-Batterien und Ni-Cd-Batterien. Weitere Vorteile von Lithium-Ionen-Batterien sind die Fähigkeit, hunderte Male wieder aufgeladen werden zu können, und die hohe Stabilität. Darüber hinaus hat der dramatisch wachsende Marktanteil von Hybrid- und Elektrofahrzeugen in Automobilen die Entwicklung von LIBs mit hoher Energie- und Leistungsdichte und hoher Massenbelastung motiviert. Es gibt jedoch noch einige Herausforderungen in den LIBs, die für die weitere Anwendung in den ESSs im Rastermaßstab erforderlich sind. Eine der bisherigen globalen Fragen sind die Gesamtkosten einschließlich der Kosten für Rohstoffe wie Lithium und Kobalt, Produktion, Bearbeitung und Transport usw. Darüber hinaus führt die steigende Energienachfrage dadurch zu einem Druck auf die Ressourcenversorgungsketten und damit zu einer Verteuerung der LIBs. Daher ist es dringend erforderlich, kurzfristig eine ergänzende und alternative EES-Technologie zu finden, um den wachsenden Energiebedarf zu decken. Vor dem Hintergrund der schnellen Entwicklung der LIBs-Technologie sowie der Etablierung der Grundlagen der Li-Chemie in den letzten 40 Jahren wurden wiederaufladbare Batteriesysteme, die das Na-Element verwenden, umfassend untersucht, um kostengünstigere und nachhaltigere ESSs zu entwickeln. Die Natriumressource ist auf der Erde im Überfluss vorhanden. Nach dem Periodensystem ist Natrium die möglichste Alternative, da es die ähnlichen chemischen und physikalischen Eigenschaften von Lithium hat. Folglich lassen sich die etablierten Grundlagen der LIBs in vernünftiger Weise mit denen der SIBs vergleichen. Darüber hinaus ist Natrium aus verschiedenen Quellen leicht erhältlich - aus Lebensmitteln, die von Natur aus Natrium enthalten, aus Lebensmitteln, die Salz und andere natriumhaltige Zutaten enthalten. Daher gewinnt das Studium der SIBs-Technologie und Natriumchemie sowohl in der wissenschaftlichen Forschung als auch in der Batterieindustrie zunehmend an Interesse und Aufmerksamkeit. Theoretisch gesehen ist jedoch die Energiedichte von SIBs bei Verwendung der gleichen Elektrodenmaterialien niedriger als die von LIBs, da Natrium mehr als dreimal schwerer als Li ist und das Standardelektrodenpotential von Na (-2,71 V) höher als Li (-3,04 V) ist. Daher werden SIBs nicht als idealer Kandidat für den Ersatz von LIBs im Bereich kleiner oder mittelgroßer tragbarer Geräte angesehen, sondern sie sind günstiger bei einer großen Netzunterstützung, bei der die Betriebskosten die primäre Wahl sind. Die negative Elektrode ist ein notwendiger und wichtiger Teil in einer einzelnen Zelle. In der Tat ist es zur Erfüllung des sich ausbreitenden Energiebedarfs erforderlich, negative Elektroden-Materialien mit hoher elektrochemischer Leistung in LIBs und SIBs zu untersuchen. Unter den verschiedenen Materialien für negative Elektroden gelten geschichtete Übergangsmetallsulfide (MS) als eine vielversprechende Klasse mit hoher theoretischer spezifischer Kapazität und Leistungskapazität aufgrund ihrer intrinsisch geschichteten Struktur, die der Diffusion von Li+ und Na+ förderlich ist. Allerdings leiden schichtförmige Übergangsmetallsulfide unter inhärent schlechter elektrischer Leitfähigkeit, Volumenänderungen, hoher Irreversibilität und träger Kinetik während des Li+ /Na+ -Speicherprozesses. Um diese Probleme anzugehen, werden in dieser Doktorarbeit zahlreiche Strategien zur Untersuchung von Hochleistungs-LIBs und SIBs für negative Elektrodenmaterialien angewandt.
90

Mechanische Aufbereitung der Feinfraktion zerkleinerter Lithium-Ionen-Batterien

Gellner, Martha 08 March 2018 (has links)
Bei einem entwickelten Verfahren zur mechanischen Aufbereitung von Lithium-Ionen-Batterien (LIBs) aus Elektrofahrzeugen fallen zwei, hauptsächlich aus den Elektrodenbestandteilen bestehenden, Feinfraktionen (FF) an. Typischerweise erfolgt eine Rückgewinnung der enthaltenen Wertstoffe Co, Ni und Cu derzeit über eine kombinierte pyro- und hydrometallurgische Aufbereitung. Dabei dient der pyrometallurgische Schritt der Abtrennung von Stoffen, welche bei der hydrometallurgischen Aufbereitung störend wirken. Durch eine mechanische Aufbereitung der FF wurde alternativ zu dem pyrometallurgischen Schritt versucht, die in der FF enthaltenen Wertstoffe anzureichern sowie ebenfalls die Störstoffe für eine hydrometallurgische Aufbereitung abzutrennen. Dazu wurden verschiedene trockene Sortierprozesse herangezogen und auf ihre Eignung hin untersucht. Mit Hilfe der Ergebnisse wurde ein Verfahrensfließbild für die Aufbereitung der FF entworfen und testweise durchlaufen. Zusätzlich zu den Sortierversuchen wurden eine Materialcharakterisierung durchgeführt, die Aufschlussverhältnisse (visuelle Einschätzung, Bestimmung Aufschlussgrad) sowie die Aufschlusszerkleinerung der FF untersucht. Als Aufgabegut diente eine Co-, Ni-, Mn- haltige FF, welche nach der 1. Zerkleinerung und Klassierung im entworfenen Verfahrensfließbild zur Aufbereitung der LIBs aus Elektrofahrzeugen gewonnen wurde. Zur Anreicherung der Wertstoffe Co, Ni innerhalb des Aktivmaterials (AM) und Cu sowie zur Reduzierung der Störstoffgehalte von Al und Kohlenstoff in bestimmten Produkten haben sich die Siebklassierung, die Magnetscheidung, die Gegenstromsortierung sowie als nasser Dichtesortierprozess die Schwimm-Sink-Sortierung als geeignet herausgestellt. Als resultierendes technologisches Aufbereitungsverfahren haben sich aus den Ergebnissen eine Siebklassierung bei x = 200 µm und x = 800 µm mit einer nachgeschalteten Magnetscheidung oder Gegenstromsortierung für die Klasse 0,2…0,8 mm ergeben, woraus 4 Produkte resultieren. Beim testweisen Durchlaufen des resultierenden Verfahrensfließbildes hat sich zudem herausgestellt, dass in Abhängigkeit von der FF bzw. deren Kenngrößen auf die Magnetscheidung bzw. Gegenstromsortierung verzichtet werden kann. Insgesamt wird zur Aufwands- und Kostenminimierung eine Vereinheitlichung der aufzubereitenden FF empfohlen. Die Wirtschaftlichkeit des Verfahrens (inklusive Pyro- und Hydrometallurgie) wird stark durch die dynamische Entwicklung der Batterietechnologie, insbesondere der enthaltenen erlösbringenden Komponente Kobalt, und des Marktes (Verkaufsraten und Lebensdauer der LIBs) beeinflusst. Die notwendige kontinuierliche Anpassung des bestehenden Verfahrensfließbildes aufgrund der schnellen Weiterentwicklung chemischer LIB-Regime ist zudem nicht vermeidbar. Generelle Unterschiede in den FF (chemische Zusammensetzung, PGV) können auf verschiedene LIB-Typen (unterschiedliche AMs), deren Vorgeschichte (Alterungszustand, Lagerung, …) sowie die Zerkleinerungsbedingungen zurückgeführt werden. Mit Hilfe einer Bilanzierung wurden die Gehalte des gesamten AM in den FF zwischen c = 33,2 ± 3,4 Ma.-% und c = 54,9 ± 5,7 Ma.-% ermittelt. Mit Hilfe der untersuchten Methoden wurde in keinem Produkt der maximale Anreicherungsfaktor für die AMs erreicht, so dass lediglich eine Voranreicherung bezüglich dieser (und auch der anderen Komponenten) erzielt wurde. Betrachtungen zu den Verbindungs- und Aufschlussverhältnissen in der FF führten zu dem Ergebnis, dass sowohl die Anodenbeschichtung noch mit der Kupferfolie als auch die Kathodenbeschichtung mit der Aluminiumfolie im Verbund vorliegen können. Bezüglich der AMs wird ein Aufschluss im Partikelgrößenbereich größer der Primär- und Sekundärpartikelgröße (> 1 bis 20 µm) ausgeschlossen. Es konnte ein maximaler Aufschlussgrad von A = 37,9 % für eine der untersuchten Feinfraktionen bestimmt werden. Zur Zerkleinerung der Partikel in der Feinfraktion eignen sich eine Zerkleinerung in der einer Fliehkraftmühle bzw. mittels Ultraschallbeanspruchung.

Page generated in 0.0399 seconds