• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 34
  • 26
  • 19
  • 18
  • 13
  • 13
  • 12
  • 12
  • 10
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Low cost synthesis of cathode and anode materials for lithium-ion batteries

Cheng, Lifeng 04 1900 (has links)
Dans cette thèse, nous démontrons des travaux sur la synthèse à faible coût des matériaux de cathode et l'anode pour les piles lithium-ion. Pour les cathodes, nous avons utilisé des précurseurs à faible coût pour préparer LiFePO4 et LiFe0.3Mn0.7PO4 en utilisant une méthode hydrothermale. Tout d'abord, des matériaux composites (LiFePO4/C) ont été synthétisés à partir d'un précurseur de Fe2O3 par une procédé hydrothermique pour faire LiFePO4(OH) dans une première étape suivie d'une calcination rapide pour le revêtement de carbone. Deuxièmement, LiFePO4 avec une bonne cristallinité et une grande pureté a été synthétisé en une seule étape, avec Fe2O3 par voie hydrothermale. Troisièmement, LiFe0.3Mn0.7PO4 a été préparé en utilisant Fe2O3 et MnO comme des précurseurs de bas coûts au sein d'une méthode hydrothermale synthétique. Pour les matériaux d'anode, nous avons nos efforts concentré sur un matériau d'anode à faible coût α-Fe2O3 avec deux types de synthèse hydrothermales, une a base de micro-ondes (MAH) l’autre plus conventionnelles (CH). La nouveauté de cette thèse est que pour la première fois le LiFePO4 a été préparé par une méthode hydrothermale en utilisant un précurseur Fe3+ (Fe2O3). Le Fe2O3 est un précurseur à faible coût et en combinant ses coûts avec les conditions de synthèse à basse température nous avons réalisé une réduction considérable des coûts de production pour le LiFePO4, menant ainsi à une meilleure commercialisation du LiFePO4 comme matériaux de cathode dans les piles lithium-ion. Par cette méthode de préparation, le LiFePO4/C procure une capacité de décharge et une stabilité de cycle accrue par rapport une synthétisation par la méthode à l'état solide pour les mêmes précurseurs Les résultats sont résumés dans deux articles qui ont été récemment soumis dans des revues scientifiques. / In this thesis, low cost syntheses of cathode and anode materials for lithium ion batteries will be presented. For cathode materials, low cost precursors were used to prepare LiFePO4 and LiFe0.3Mn0.7PO4 using low temperature hydrothermal method. Initially, a LiFePO4/C composite material was synthesized from a Fe2O3 precursor using a hydrothermal method to prepare LiFePO4(OH) in a first step followed by a fast calcination and carbon coating. Secondly, LiFePO4 with good crystallinity and high purity was synthesized, in one step, with nanometric sized Fe2O3 by a hydrothermal method. Thirdly, LiFe0.3Mn0.7PO4 was prepared using low cost Fe2O3 and MnO as precursors within a hydrothermal synthetic method. For anode materials, a low cost anode material α-Fe2O3 was prepared using two hydrothermal synthetic methods, microwave assisted (MAH) and conventional hydrothermal (CH). The novelty of the thesis is for the first time LiFePO4 has been prepared using a low cost Fe3+ precursor (Fe2O3) by a hydrothermal method. Low cost precursors and low temperature synthesis conditions will greatly reduce the synthetic cost of LiFePO4, leading to greater commercialization of LiFePO4 as a cathode materials for lithium-ion batteries. The as-prepared LiFePO4/C product provided enhanced discharge capacity and cycling stability compared to that synthesized using a solid state method with the same precursors. The results were summarized within two articles that were recently submitted to peer reviewed scientific journals.
32

Low cost synthesis of cathode and anode materials for lithium-ion batteries

Cheng, Lifeng 04 1900 (has links)
Dans cette thèse, nous démontrons des travaux sur la synthèse à faible coût des matériaux de cathode et l'anode pour les piles lithium-ion. Pour les cathodes, nous avons utilisé des précurseurs à faible coût pour préparer LiFePO4 et LiFe0.3Mn0.7PO4 en utilisant une méthode hydrothermale. Tout d'abord, des matériaux composites (LiFePO4/C) ont été synthétisés à partir d'un précurseur de Fe2O3 par une procédé hydrothermique pour faire LiFePO4(OH) dans une première étape suivie d'une calcination rapide pour le revêtement de carbone. Deuxièmement, LiFePO4 avec une bonne cristallinité et une grande pureté a été synthétisé en une seule étape, avec Fe2O3 par voie hydrothermale. Troisièmement, LiFe0.3Mn0.7PO4 a été préparé en utilisant Fe2O3 et MnO comme des précurseurs de bas coûts au sein d'une méthode hydrothermale synthétique. Pour les matériaux d'anode, nous avons nos efforts concentré sur un matériau d'anode à faible coût α-Fe2O3 avec deux types de synthèse hydrothermales, une a base de micro-ondes (MAH) l’autre plus conventionnelles (CH). La nouveauté de cette thèse est que pour la première fois le LiFePO4 a été préparé par une méthode hydrothermale en utilisant un précurseur Fe3+ (Fe2O3). Le Fe2O3 est un précurseur à faible coût et en combinant ses coûts avec les conditions de synthèse à basse température nous avons réalisé une réduction considérable des coûts de production pour le LiFePO4, menant ainsi à une meilleure commercialisation du LiFePO4 comme matériaux de cathode dans les piles lithium-ion. Par cette méthode de préparation, le LiFePO4/C procure une capacité de décharge et une stabilité de cycle accrue par rapport une synthétisation par la méthode à l'état solide pour les mêmes précurseurs Les résultats sont résumés dans deux articles qui ont été récemment soumis dans des revues scientifiques. / In this thesis, low cost syntheses of cathode and anode materials for lithium ion batteries will be presented. For cathode materials, low cost precursors were used to prepare LiFePO4 and LiFe0.3Mn0.7PO4 using low temperature hydrothermal method. Initially, a LiFePO4/C composite material was synthesized from a Fe2O3 precursor using a hydrothermal method to prepare LiFePO4(OH) in a first step followed by a fast calcination and carbon coating. Secondly, LiFePO4 with good crystallinity and high purity was synthesized, in one step, with nanometric sized Fe2O3 by a hydrothermal method. Thirdly, LiFe0.3Mn0.7PO4 was prepared using low cost Fe2O3 and MnO as precursors within a hydrothermal synthetic method. For anode materials, a low cost anode material α-Fe2O3 was prepared using two hydrothermal synthetic methods, microwave assisted (MAH) and conventional hydrothermal (CH). The novelty of the thesis is for the first time LiFePO4 has been prepared using a low cost Fe3+ precursor (Fe2O3) by a hydrothermal method. Low cost precursors and low temperature synthesis conditions will greatly reduce the synthetic cost of LiFePO4, leading to greater commercialization of LiFePO4 as a cathode materials for lithium-ion batteries. The as-prepared LiFePO4/C product provided enhanced discharge capacity and cycling stability compared to that synthesized using a solid state method with the same precursors. The results were summarized within two articles that were recently submitted to peer reviewed scientific journals.
33

Novel approaches to the synthesis and treatment of cathode materials for lithium-ion batteries

Rodrigues, Isadora R. 07 1900 (has links)
Nous avons mis au point une approche novatrice pour la synthèse d’un matériau de cathode pour les piles lithium-ion basée sur la décomposition thermique de l’urée. Les hydroxydes de métal mixte (NixMnxCo(1-2x)(OH)2) ont été préparés (x = 0.00 à 0.50) et subséquemment utilisés comme précurseurs à la préparation de l’oxyde de métal mixte (LiNixMnxCo(1-2x)O2). Ces matériaux, ainsi que le phosphate de fer lithié (LiFePO4), sont pressentis comme matériaux de cathode commerciaux pour la prochaine génération de piles lithium-ion. Nous avons également développé un nouveau traitement post-synthèse afin d’améliorer la morphologie des hydroxydes. L’originalité de l’approche basée sur la décomposition thermique de l’urée réside dans l’utilisation inédite des hydroxydes comme précurseurs à la préparation d’oxydes de lithium mixtes par l’intermédiaire d’une technique de précipitation uniforme. De plus, nous proposons de nouvelles techniques de traitement s’adressant aux méthodes de synthèses traditionnelles. Les résultats obtenus par ces deux méthodes sont résumés dans deux articles soumis à des revues scientifiques. Tous les matériaux produits lors de cette recherche ont été analysés par diffraction des rayons X (DRX), microscope électronique à balayage (MEB), analyse thermique gravimétrique (ATG) et ont été caractérisés électrochimiquement. La performance électrochimique (nombre de cycles vs capacité) des matériaux de cathode a été conduite en mode galvanostatique. / We have developed a novel approach to the synthesis of cathode materials for lithium-ion batteries, based on the thermal decomposition of urea. Mixed metal hydroxides (NixMnxCo(1-2x)(OH)2), x = 0.00 to 0.50, were prepared and subsequently used as precursor for lithiated mixed metal oxide (LiNixMnxCo(1-2x)O2). These materials along with lithium iron phosphate (LiFePO4) are being considered as cathode materials for the next generation of lithium-ion batteries. We have also developed new post-synthetic treatments on the hydroxides in order to enhance the morphology, which would result in improved electrode properties. The novelty of this thesis is that for the first time mixed metal hydroxides for use as precursors for lithium mixed oxides have been prepared via a uniform precipitation technique from solution. In addition, we have proposed new treatments techniques towards the more traditional synthesis method for mixed metal hydroxides. The results obtained from these two methods are summarized within two articles that were recently submitted to peer-reviewed journals. Within this thesis, all materials were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and electrochemical measurements. The electrochemical performance (capacity vs cycle number) of the cathode materials were tested galvanostatically.
34

A detailed study of the lithiation of iron phosphate as well as the development of a novel synthesis of lithium iron silicate as cathode material for lithium-ion batteries

Galoustov, Karen 03 1900 (has links)
Dans cette thèse nous démontrons le travail fait sur deux matériaux de cathodes pour les piles lithium-ion. Dans la première partie, nous avons préparé du phosphate de fer lithié (LiFePO4) par deux méthodes de lithiation présentées dans la littérature qui utilisent du phosphate de fer (FePO4) amorphe comme précurseur. Pour les deux méthodes, le produit obtenu à chaque étape de la synthèse a été analysé par la spectroscopie Mössbauer ainsi que par diffraction des rayons X (DRX) pour mieux comprendre le mécanisme de la réaction. Les résultats de ces analyses ont été publiés dans Journal of Power Sources. Le deuxième matériau de cathode qui a été étudié est le silicate de fer lithié (Li2FeSiO4). Une nouvelle méthode de synthèse a été développée pour obtenir le silicate de fer lithié en utilisant des produits chimiques peu couteux ainsi que de l’équipement de laboratoire de base. Le matériau a été obtenu par une synthèse à l’état solide. Les performances électrochimiques ont été obtenues après une étape de broyage et un dépôt d’une couche de carbone. Un essai a été fait pour synthétiser une version substituée du silicate de fer lithié dans le but d’augmenter les performances électrochimiques de ce matériau. / In this thesis, we demonstrate work on two different cathode materials for lithium-ion batteries. First, the synthesis of lithium iron phosphate (LiFePO4) is reproduced from literature using two lithiation methods starting with amorphous iron phosphate (FePO4). For both reactions, the product at each step of the synthesis was analyzed using Mössbauer Spectroscopy and X-ray diffraction in order to gain further insight of the reaction mechanism. The results of this work were published in Journal of Power Sources. The second cathode material of interest was lithium iron silicate (Li2FeSiO4). A novel synthetic method was developed to produce lithium iron silicate cost effectively starting with low cost precursors and basic laboratory equipment. The material was synthesized using a solid- state synthesis after milling and carbon coating, electrochemical performance was evaluated. An attempt was made to synthesize off-stoichiometric lithium iron silicate in order to increase the electrochemical performance of the material.
35

Détermination in-situ de l'état de santé de batteries lithium-ion pour un véhicule électrique / In-situ lithium-ion battery state of health estimation for electric vehicle

Riviere, Elie 29 November 2016 (has links)
Les estimations précises des états de charge (« State of Charge » - SoC) et de santé (« State of Health » - SoH) des batteries au lithium sont un point crucial lors d’une utilisation industrielle de celles-ci. Ces estimations permettent d’améliorer la fiabilité et la robustesse des équipements embarquant ces batteries. Cette thèse CIFRE est consacrée à la recherche d’algorithmes de détermination de l’état de santé de batteries lithium-ion, en particulier de chimie Lithium Fer Phosphate (LFP) et Lithium Manganèse Oxyde (LMO).Les recherches ont été orientées vers des solutions de détermination du SoH directement embarquables dans les calculateurs des véhicules électriques. Des contraintes fortes de coût et de robustesse constituent ainsi le fil directeur des travaux.Or, si la littérature actuelle propose différentes solutions de détermination du SoH, celles embarquées ou embarquables sont encore peu étudiées. Cette thèse présente donc une importante revue bibliographique des différentes méthodes d’estimation du SoH existantes, qu’elles soient embarquables ou non. Le fonctionnement détaillé ainsi que les mécanismes de vieillissement d’une batterie lithium-ion sont également explicités.Une partie majoritaire des travaux est consacrée à l’utilisation de l’analyse incrémentale de la capacité (« Incremental Capacity Analysis » - ICA) en conditions réelles, c’est-à-dire avec les niveaux de courant présents lors d’un profil de mission classique d’un véhicule électrique, avec les mesures disponibles sur un BMS (« Battery Management System ») industriel et avec les contraintes de robustesses associées, notamment une gamme étendue de température de fonctionnement. L’utilisation de l’ICA pour déterminer la capacité résiduelle de la batterie est mise en œuvre de façon totalement innovante et permet d’obtenir une grande robustesse aux variations des conditions d’utilisation de la batterie.Une seconde méthode est, elle, dédiée à la chimie LMO et exploite le fait que le potentiel aux bornes de la batterie soit représentatif de son état de charge. Un compteur coulométrique partiel est ainsi proposé, intégrant une gestion dynamique des bornes d’intégration en fonction de l’état de la batterie.A l’issue des travaux, une méthode complète et précise de détermination du SoH est disponible pour chacune des chimies LFP et LMO. La détermination de la capacité résiduelle de ces deux familles de batteries est ainsi possible à 4 % près. / Accurate lithium-ion battery State of Charge (SoC) and State of Health (SoH) estimations are nowadays a crucial point, especially when considering an industrial use. These estimations enable to improve robustness and reliability of hardware using such batteries. This thesis focuses on researching lithium-ion batteries state of health estimators, in particular considering Lithium Iron Phosphate (LFP) and Lithium Manganese Oxide (LMO) chemistries.Researches have been targeted towards SoH estimators straight embeddable into electric vehicles (EV) computers. Cost and reliability constraints are thus the main guideline for this work.Although existing literature offers various SoH estimators, those who are embedded or embeddable are still little studied. A complete literature review about SoH estimators, embedded or not, is therefore proposed. Lithium-ion batteries detailed operation and ageing mechanisms are also presented.The main part of this work is dedicated to Incremental Capacity Analysis (ICA) use with electric vehicle constraints, such as current levels available with a typical EV mission profile or existing measurements on the Battery Management System (BMS). Incremental Capacity Analysis is implemented in an innovative way and leads to a remaining capacity estimator with a high robustness to conditions of use variations, including an extended temperature range.A second method, dedicated to LMO chemistry, take advantage of the fact that the battery potential is representative of its state of charge. Partial Coulomb counting is thus performed, with a dynamic management of integration limits, depending on the battery state.Outcomes of this work are two complete and accurate SoH estimators, one for each chemistry, leading to a remaining capacity estimation accurate within 4 %.
36

Elektrochemická příprava grafen oxidu a jeho využití v elektrodových kompozitech s LiFePO4 / Electrochemical preparation of graphene oxide and its utilization in LiFePO4 composites

Krejčí, Pavel January 2018 (has links)
This work deals with issues of application of the graphene material in the field of electrochemical energy storage. It includes basic graphene properties, the overview of methods for the production of lithium-iron-phosphate/graphene composites and results of different research approaches. The general aim is to present growing opportunity of application of graphene based composites in the electrochemical energy storage field. In the experimental part of this work, a electrochemical exfoliation of graphite and a production of LFP/G composites with different amount of graphene material and with different types of graphene material are carried out. This work includes also x-ray diffraction spectroscopy measurements and the evaluation of impacts of graphene additives on final properties of the electrochemical energy storage.
37

Manufacturing & Regional Cost Competitiveness of Commercial Sodium Ion Cells : A bottom-up cost analysis of Lithium and Sodium Ion Battery Storage

Alva, Srujan Kiran January 2023 (has links)
Batteries are increasingly seen as an indispensable element in the rapid progress of the energy transition. With forecasts for global demand set to reach 2 TWh by 2030 and increasing policy support for battery manufacturers, many questions arise on whether the current rapid expansion of battery manufacturing industry is sustainable. Issues regarding the stability of the supply chain and rising energy security concerns has led to an expanded focus on alternate battery technologies. Sodium ion cells are commonly cited as a potential solution to many of the current issues facing the lithium-ion battery industry. With sodium ion cells reaching commercialization, this thesis would like to explore the viability of commercial sodium ion cells through a bottom-up manufacturing and regional cost analysis of Sodium Prussian Blue Analogues and Sodium Layered Oxides. To account for the more qualitative aspects of regional battery manufacturing, the current policy framework and supply chain are briefly explored. To study the current commercial sodium ion cells, the report considers Na0.9[Cu0.22Fe0.30Mn0.48] O2 (Na Oxide) and Na2MnFe(CN)6 (Na PBA) cathode chemistries which are similar to the cells manufactured by HiNa and Novasis Energies respectively. These cells are compared to two of the most common Lithium chemistries on the market, LiFePO4 (LFP) and LiNi0.3Mn0.3Co0.3 (Li NMC111). Various manufacturing scales of the model plant are explored for each chemistry, and the changes in manufacturing costs for the US, China, India, Sweden and Chile are explored. Considering a baseline plant of 1500 MWh/yr, the base case results show that from the cost perspective the sodium ion cells are not too different from that of the lithium-ion cells. The cost of the lithium ion cells NMC111 and LFP (2019 US$) are at 126 $/kWh and 113$/kWh while the Na Oxide and Na PBA cell costs are at 125 $/kWh and 148 $/kWh. While the costs are comparable, the volumetric energy density of the sodium cells is almost half that of their lithium counterparts, which hampers the overall cost advantage from the cheaper materials. Compared to the lithium cells where the cathode and anode are on average the most expensive components, the separator and the hard carbon anode become the most expensive cost components in the sodium ion cells studied. In the regional analysis, China and Chile have the cheapest cell costs for both sodium and lithium, while the US and India are the most expensive within the countries studied with the maximum cost difference in the range of 15 $/kWh. While most countries have differing approaches in terms of policy support, the trend towards domestic sourcing of supplies can clearly be seen in most of the countries studied. The past three years has seen interest in battery manufacturing escalate significantly, with slow policy support in the 2010s from most countries. Chile is a notable exception with a lack of strong policy support. For the manufacturing scale, it was found that the minimum effective scale was 1500 MWh annually. The capital costs for the sodium ion cell plants were 16% more expensive than the lithium cell plants due to increased production rates to meet the same annual production. With cathode thickness, it was found that the Na PBA cell benefited the most with the increase in thickness, as it had the highest CAM capacity. The cost advantages of the sodium ion cells start to materialise when considering the increase in price of materials in 2022. When considering increased metal costs in 2022, the price of the Li NMC and LFP cells increase to around 186 $/kWh, while sodium ion cells don’t display an appreciable change in cost. Furthermore, when considering a higher power rate of 5C, the lithium cells perform poorly with Li NMC increasing to 188 $/kWh and LFP to 148 $/kWh while the sodium cells remain close to their 0.2C costs at 148$/kWh for Na PBA and 127 $/kWh for Na Oxide. / Batterier betraktas i allt högre grad som en oumbärlig komponent i den snabba utvecklingen av energiomställningen. Med prognoser som visar att den globala efterfrågan kommer att nå 2 TWh år 2030, och med ökat stöd från myndigheter till batteritillverkare, uppstår många frågor om huruvida den nuvarande snabba expansionen av batteritillverkningsindustrin är hållbar. Frågor om stabiliteten i leveranskedjan och ökad oro för energisäkerheten har lett till ett ökat fokus på alternativa batteriteknologier. Natriumjonceller nämns ofta som en potentiell lösning på många av de aktuella problemen som litiumjonbatteriindustrin står inför. Denna avhandling syftar till att undersöka livsdugligheten hos kommersiella natriumjonceller genom en bottom-up-tillverkning och regional kostnadsanalys av natriumpreussiska blåanaloger och natriumskiktade oxider. För att belysa de mer kvalitativa aspekterna av regional batteritillverkning undersöks även den nuvarande politiska ramen och leveranskedjan kortfattat. För att studera de nuvarande kommersiella natriumjoncellerna överväger rapporten katodkemin Na0.9[Cu0.22Fe0.30Mn0.48]O2 (Na Oxide) och Na2MnFe(CN)6 (Na PBA), som liknar celler som tillverkas av HiNa respektive Novasis Energies. Dessa celler jämförs med två av de vanligaste litiumkemikalierna på marknaden, LiFePO4 (LFP) och LiNi0.3Mn0.3Co0.3 (Li NMC111). Olika tillverkningsskalor i modellfabriker undersöks för varje kemikalie, och förändringarna i tillverkningskostnaderna i USA, Kina, Indien, Sverige och Chile analyseras. Med en baslinjeanläggning på 1500 MWh/år visar basfallsresultaten att natriumjoncellerna inte skiljer sig alltför mycket kostnadsmässigt från litiumjoncellerna. Kostnaden för litiumjoncellerna NMC111 och LFP är 126 $/kWh respektive 113 $/kWh, medan kostnaderna för Na Oxide och Na PBA-celler ligger på 125 $/kWh respektive 148 $/kWh. Trots att kostnaderna är jämförbara är natriumcellernas volymetriska energitäthet nästan hälften så stor som deras litiumequivalenter, vilket minskar den totala kostnadsfördelen av de billigare materialen. Jämfört med litiumcellerna, där katoden och anoden i genomsnitt utgör de dyraste komponenterna, är separatorn och hårdkolanoden de dyraste kostnadskomponenterna i de undersökta natriumjoncellerna. I den regionala analysen har Kina och Chile de lägsta cellkostnaderna för både natrium och litium, medan USA och Indien är dyrast bland de undersökta länderna med en maximal kostnadsskillnad på 15 $/kWh. Även om de flesta länder har olika tillvägagångssätt när det gäller politiskt stöd, kan trenden mot inhemska inköp av material tydligt ses i de flesta av de undersökta länderna. Under de senaste tre åren har intresset för batteritillverkning ökat betydligt, efter ett långsamt politiskt stöd under 2010-talet från de flesta länder. Chile utgör ett anmärkningsvärt undantag med brist på starkt politiskt stöd. Vid tillverkningsskalan fann man att den lägsta effektiva skalan var 1500 MWh årligen. Kapitalkostnaderna för natriumjoncellsanläggningar var 16 % dyrare än för litiumjoncellsanläggningar på grund av ökade produktionshastigheter för att uppnå samma årsproduktion. När det gäller katoddjocklek så gynnades Na PBA-cellen mest av en ökning i tjocklek, eftersom den hade den högsta CAM-kapaciteten. Fördelarna med natriumjonceller börjar realiseras när man beaktar prisökningen på material år 2022. Vid en ökning av metallkostnaderna 2022 ökar priset på Li NMC- och LFP-cellerna till cirka 186 $/kWh, medan kostnaden för natriumjoncellerna inte uppvisar någon märkbar förändring. Dessutom, vid en högre effekt på 5C, presterar litiumcellerna dåligt med en kostnad på 188 $/kWh för Li NMC och 148 $/kWh för LFP, medan kostnaden för natriumcellerna förblir nära deras kostnader vid 0,2C, nämligen 148 $/kWh för Na PBA och 127 $/kWh för Na Oxide.
38

THE INTERPRETATION OF ELECTRON ENERGY-LOSS SPECTROSCOPY IN COMPLEX SYSTEMS: A DFT BASED STUDY

Nichol, Robert M. 19 August 2015 (has links)
No description available.
39

Nanostructured Materials for Energy Applications

Li, Yanguang 08 September 2010 (has links)
No description available.
40

Analysis of aging mechanisms in Li-ion cells used for traction batteries of electric vehicles and development of appropriate diagnostic concepts for the quick evaluation of the battery condition / Analyse des mécanismes de vieillissement des cellules Li-ion utilisées pour les batteries de traction des véhicules électriques et développement de concepts de diagnostic appropriés pour l'évaluation rapide de l'état de la batterie

Schlasza, Christian 12 December 2016 (has links)
Dans cette thèse, les mécanismes de vieillissement des cellules Li-ion sont analysés sur un niveau théorique,assisté par une AMDEC (Analyse des modes de défaillance, de leurs effets et de leur criticité). L'accent est mis surla famille des cellules lithium fer phosphate (LFP) utilisées comme batteries de traction dans les applicationsvéhicules électriques.L'objectif de la partie xpérimentale de cette thèse est le développement d'un concept d'un outil de diagnostic pourla détermination rapide d'état de la batterie. Une expérience de vieillissement accélérée est réalisée avec un groupede cellules LFP de haute capacité (70Ah). Les cellules sont analysées en utilisant des méthodes de mesured'impédance dans les domaines temporel et fréquentiel. La pectroscopie d'Impédance Électrochimique (SIE, ouEIS en anglais) s'est trouvée être un bon outil pour révéler des informations intéressantes sur l'état de santé (Stateof-Health, SOH) de la batterie.Des modèles de batterie sont utilisés pour l'interprétation des résultats de mesure. En comparant différents modèlesdu circuit équivalent (ECMs), un modèle est choisi. Ce modèle est utilisé pour la détermination du SOC et étendupour la détermination du SOH. Un concept pour la détermination du SOH est développé, permettant uneapproximation de la capacité de la batterie dans une période de temps de moins de 30s, si les onditions de labatterie et d'environnement, comme la température et l'état de charge de la batterie, sont connus. / In this thesis, the aging mechanisms withing Li-ion cells are analyzed on a theoretical level, supported by an FMEA(Failure ode and Effects Analysis). The focus lies on the group of lithium iron phosphate (LFP) cells used fortraction batteries in electric vehicles. Scope of the experimental part of the thesis is the development of a diagnosticconcept for the quick battery state determination. A group of high capacity LFP cells (70Ah) designed for tractionpurposes in electric vehicles is aged artificially and investigated afterwards by impedance measurements in the timeand frequency domain. Electrochemical impedance spectroscopy (EIS) is found to reveal interesting information onthe battery's State-of-Health (SOH).For the interpretation of the measurement results, battery models are employed. Different equivalent circuit models(ECMs) are compared and an appropriate model is chosen, which is used for the SOC (State-of-Charge)determination and extended for the SOH (State-of-Health) determination. An SOH determination concept isdeveloped, which allows the approximation of the cell capacity in less than 30s, if the battery and environmentalconditions, such as the temperature and the cell's SOC, are known.

Page generated in 0.0468 seconds