• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 20
  • 2
  • 1
  • Tagged with
  • 67
  • 24
  • 22
  • 19
  • 15
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Spin dynamics ande topological effects in physics of indirect excitons and microcavity polaritons / Dynamique de spin et effets topologiques en physique des exitons indirects et des polaritons

Nalitov, Anton 06 May 2015 (has links)
Cette thèse est consacrée à de nouveaux phénomènes en physique liées au spin et à la topologie des quasi-particules lumière-matière dans des hétérostructures. Elle est divisée en quatre parties. Chapitre 1 donne un fond nécessaire et introduit les propriétés fondamentales des polaritons et des excitons indirects dans des puits quantiques couplés. Chapitre 2 est concentré sur la dynamique de spin et sur formation de défauts topologiques dans des systèmes aux excitons indirects. Les 2 derniers chapitres considèrent les structures basées sur les microcavités. Chapitre 3 est consacré à la dynamique de spin des polaritons dans des oscillateurs paramétriques optiques. Finalement, chapitre 4 étudie les réseaux des microcavités en forme des piliers et introduit l’isolant topologique polaritonique. / The present thesis manuscript is devoted to new phenomena in physics of light-matter quasiparticles in heterostructures, related to spin and topology. It is divided into four parts. Chapter 1 gives a necessary background, introducing basic properties of microcavity polaritons and indirect excitons in coupled quantum wells. Chapter 2 is focused on spin dynamics and topological defects formation in indirect exciton many-body systems. The last 2 chapters are related to microcavity-based structures. Chapter 3 is devoted to polariton spin dynamics in optical parametric oscillators. Finally, Chapter 4 studies pillar microcavity lattices and introduces the polariton topological insulator.
62

Signatures relativistes en spectroscopie de matériaux topologiques : en volume et en surface / Signature of special relativity in the spectroscopy of topological materials : in the bulk and at the surface

Tchoumakov, Sergueï 28 September 2017 (has links)
Dans cette thèse je me suis intéressé au caractère relativiste de matériaux topologiques tridimensionnels : les semi-métaux de Weyl et les isolants topologiques. Après une introduction aux états de surfaces et aux matériaux topologiques, je discute leurs propriétés de covariance sous les rotations trigonométriques et hyperboliques. Ces transformations me permettent de traiter les équations du mouvement d'un électron dans un champ magnétique ou à la surface, sous l'influence d'un champ électrique ou d'une inclinaison de la relation de dispersion. En première partie, je l'illustre dans le cas de la réponse magnéto-optique des semi-métaux de Weyl, en présence d'une inclinaison. Ces calculs sont en lien avec ma collaboration avec les expérimentateurs du LNCMI à Grenoble pour la caractérisation de la structure de bande de Cd₃As₂ où l'on montre que ce matériau est un semi-métal de Kane et non un semi-métal de Dirac dans la gamme de potentiels chimiques expérimentalement accessible. L'autre partie de cette thèse porte sur les états de surface des isolants topologiques où l'on montre qu'il existe des états de surface massifs au-delà de l'état de surface chiral. Ces états semblent avoir été observés par des études en ARPES d'échantillons de Bi₂Se₃ et Bi₂Te₃ oxydés et par des mesures de transport sur HgTe déformé. J'ai ainsi eu l'occasion de travailler avec les expérimentateurs du LPA à Paris sur le comportement des états de surface de HgTe sous forts effets de champ. Je termine par une discussion des états à l'interface entre un semi-métal de Weyl et un isolant dans le cas où le gap de ce dernier est suffisamment petit pour observer l'effet d'un champ magnétique et d'une inclinaison de la relation de dispersion sur les états de surface. / During my PhD studies I focused on the relativistic properties of threedimensional topological materials, namely Weyl semimetals and topological insulators. After introducing surface states and topological materials I discuss their covariance in trigonometric and hyperbolic rotations. These transformations help to solve the equations of motion of an electron in a magnetic field or at the surface with an applied electric field or with a tilt in the band dispersion. In a first place, I illustrate these transformations for the magneto-optical response of tilted Weyl semimetals. This work is related to my collaboration with experimentalists at LNCMI, Grenoble for characterizing the band structure of Cd₃As₂ where we show that this material is a Kane semi-metal instead of a Dirac semi-metal in the experimentally accessible range of chemical doping. The other part of this thesis is concerned with the surface states of topological insulators. I show that massive surface states can also exist in addition to the chiral surface state due to band inversion. Such states may have already been observed in ARPES measurement of oxidized Bi₂Se₃ and Bi₂Te₃ and in transport measurement of strained bulk HgTe. I show the work we performed with experimentalists at LPA, Paris on the behavior of HgTe surface states for strong field effects. Finally, I discuss the states at the interface of a Weyl semimetal and a small gap insulator. In this situation, an applied magnetic field or the tilt of the band dispersion can strongly affect the observed surface states.
63

Étude de la topologie d’un système tripartite ; Analyse du modèle de Su-Schrieffer-Heeger couplé à des chaînes semi-infinies non dimérisées

Bissonnette, Alexei 04 1900 (has links)
Nous considérons une chaîne de Su-Schrieffer-Heeger (SSH) à laquelle nous attachons une chaîne semi-infinie non dimérisée aux deux extrémités. Nous étudions l’effet d’un tel couplage sur les propriétés du modèle de SSH. En particulier, la représentation d’un tel système infini sous forme de système effectif fini nous permet d’examiner ses états de surface topologiques. Nous montrons que, comme ce à quoi on s’attendrait, les états de surface initiaux évoluent à mesure que le couplage entre les systèmes augmente. Alors que ce couplage augmente, deux phénomènes sont observés: d’un côté, ces états de surface disparaissent progressivement, et de l’autre côté, de nouveaux états de surface émergent. Ces nouveaux états, que nous appelons états fantômes, sont aussi des états de basse énergie. Une particularité surprenante de ceux-ci est qu’ils sont localisés sur une nouvelle interface: celle-ci est passée du premier (et dernier) site au deuxième (et avant-dernier) site, ce qui suggère que la topologie du système est fortement influencée par les chaînes semi-infinies. La topologie du système tripartite peut être classifiée selon trois régimes. Pour le régime de faible couplage, le système est dans une phase topologique bien définie; pour de grands couplages, il est dans sa phase opposée; pour le régime intermédiaire, sa nature topologique n’est pas encore bien comprise. / We consider a Su-Schrieffer-Heeger (SSH) chain to which we attach a semi-infinite undimerized chain (lead) to both ends. We study the effect of the openness of the SSH model on its properties. In particular, an accurate representation of the infinite system using an effective Hamiltonian allows us to examine its topological edge states. We show that, as one would expect, the initial edge states evolve as the coupling between the systems is increased. As this coupling grows, these states slowly vanish, while a new type of edge states emerge. These new states, which we refer to as ghost states, are also low-energy states. A surprising property of these states is that they are localized on a new interface: the interface has moved from the first (and last) site to the second (and second to last) site. This suggests that the topology of the system is strongly affected by the leads, with three regimes of behaviour. For very small coupling the system is in a well-defined topological phase; for very large coupling it is in the opposite phase; in the intermediate region, its topological nature is yet to be understood.
64

Physics of quantum fluids in two-dimensional topological systems / Physique des fluides quantiques dans des systèmes topologiques bidimensionnels

Bleu, Olivier 27 September 2018 (has links)
Cette thèse est consacrée à la description de la physique à une particule ainsi qu'à celle de fluides quantiques bosoniques dans des systèmes topologiques. Les deux premiers chapitres sont introductifs. Dans le premier, nous introduisons des éléments de théorie des bandes et les quantités géométriques et topologiques associées : tenseur métrique quantique, courbure de Berry, nombre de Chern. Nous discutons différents modèles et réalisations expérimentales donnant lieu à des effets topologiques. Dans le second chapitre, nous introduisons les condensats de Bose-Einstein ainsi que les excitons-polaritons de cavité.La première partie des résultats originaux discute des phénomènes topologiques à une particule dans des réseaux en nid d'abeilles. Cela permet de comparer deux modèles théoriques qui mènent à l'effet Hall quantique anormal pour les électrons et les photons dû à la présence d'un couplage spin-orbite et d'un champ Zeeman. Nous étudions aussi l'effet Hall quantique de vallée photonique à l'interface entre deux réseaux de cavités avec potentiels alternés opposés.Dans une seconde partie, nous discutons de nouveaux effets qui émergent due à la présence d'un fluide quantique interagissant décrit par l’équation de Gross-Pitaevskii dans ces systèmes. Premièrement, il est montré que les interactions spin anisotropes donnent lieu à des transitions topologiques gouvernées par la densité de particules pour les excitations élémentaires d’un condensat spineur d’exciton-polaritons.Ensuite, nous montrons que les tourbillons quantifiés d'un condensat scalaire dans un système avec effet Hall quantique de vallée, manifestent une propagation chirale le long de l'interface contrairement aux paquets d'ondes linéaires. La direction de propagation de ces derniers est donnée par leur sens de rotation donnant lieu à un transport de pseudospin de vallée protégé topologiquement, analogue à l’effet Hall quantique de spin.Enfin, revenant aux effets géométriques linéaires, nous nous sommes concentrés sur l’effet Hall anormal. Dans ce contexte, nous présentons une correction non-adiabatique aux équations semi-classiques décrivant le mouvement d’un paquet d’ondes qui s’exprime en termes du tenseur géométrique quantique. Nous proposons un protocole expérimental pour mesurer cette quantité dans des systèmes photonique radiatifs. / This thesis is dedicated to the description of both single-particle and bosonic quantum fluid Physics in topological systems. After introductory chapters on these subjects, I first discuss single-particle topological phenomena in honeycomb lattices. This allows to compare two theoretical models leading to quantum anomalous Hall effect for electrons and photons and to discuss the photonic quantum valley Hall effect at the interface between opposite staggered cavity lattices.In a second part, I present some phenomena which emerge due to the interplay of the linear topological effects with the presence of interacting bosonic quantum fluid described by mean-field Gross-Pitaevskii equation. First, I show that the spin-anisotropic interactions lead to density-driven topological transitions for elementary excitations of a condensate loaded in the polariton quantum anomalous Hall model (thermal equilibrium and out-of-equilibrium quasi-resonant excitation configurations). Then, I show that the vortex excitations of a scalar condensate in a quantum valley Hall system, contrary to linear wavepackets, can exhibit a robust chiral propagation along the interface, with direction given by their winding in real space, leading to an analog of quantum spin Hall effect for these non-linear excitations. Finally, coming back to linear geometrical effects, I will focus on the anomalous Hall effect exhibited by an accelerated wavepacket in a two-band system. In this context, I present a non-adiabatic correction to the known semiclassical equations of motion which can be expressed in terms of the quantum geometric tensor elements. We also propose a protocol to directly measure the tensor components in radiative photonic systems.
65

Méthodes de modélisation statistique de la durée de vie des composants en génie électrique / Statistical methods for the lifespan modeling of electrical engineering components

Salameh, Farah 07 November 2016 (has links)
La fiabilité constitue aujourd’hui un enjeu important dans le contexte du passage aux systèmes plus électriques dans des secteurs critiques tels que l’aéronautique, l’espace ou le nucléaire. Il s’agit de comprendre, de modéliser et de prédire les mécanismes de vieillissement susceptibles de conduire les composants à la défaillance et le système à la panne. L’étude des effets des contraintes opérationnelles sur la dégradation des composants est indispensable pour la prédiction de leur durée de vie. De nombreux modèles de durée de vie ont été développés dans la littérature dans le contexte du génie électrique. Cependant, ces modèles présentent des limitations car ils dépendent du matériau étudié et de ses propriétés physiques et se restreignent souvent à un ou deux facteurs de stress, sans intégrer les interactions pouvant exister entre ces facteurs. Cette thèse présente une nouvelle méthodologie pour la modélisation de la durée de vie des composants du génie électrique. Cette méthodologie est générale ; elle s’applique à différents composants sans a priori sur leurs propriétés physiques. Les modèles développés sont des modèles statistiques estimés sur la base de données expérimentales issues de tests de vieillissement accéléré où plusieurs types de stress sont considérés. Les modèles visent alors à étudier les effets des différents facteurs de stress ainsi que de leurs différentes interactions. Le nombre et la configuration des tests de vieillissement nécessaires à construire les modèles (bases d’apprentissage) sont optimisés de façon à minimiser le coût expérimental tout en maximisant la précision des modèles. Des points expérimentaux supplémentaires aléatoirement configurés sont réalisés pour valider les modèles (bases de test). Deux catégories de composants sont testées : deux types d’isolants couramment utilisés dans les machines électriques et des sources de lumière OLED. Différentes formes des modèles de durée de vie sont présentées : les modèles paramétriques, non paramétriques et les modèles hybrides. Tous les modèles développés sont évalués à l’aide de différents outils statistiques permettant, d’une part, d’étudier la pertinence des modèles et d’autre part, d’évaluer leur prédictibilité sur les points des bases de test. Les modèles paramétriques permettent de quantifier les effets des facteurs et de leurs interactions sur la durée de vie à partir d’une expression analytique prédéfinie. Un test statistique permet ensuite d’évaluer la significativité de chacun des paramètres inclus dans le modèle. Ces modèles sont caractérisés par une bonne qualité de prédiction sur leurs bases de test. La relation entre la durée de vie et les contraintes est également modélisée par les arbres de régression comme méthode alternative aux modèles paramétriques. Les arbres de régression sont des modèles non paramétriques qui permettent de classifier graphiquement les points expérimentaux en différentes zones dans lesquelles les contraintes sont hiérarchisées selon leurs effets sur la durée de vie. Ainsi, une relation simple, graphique, et directe entre la durée de vie et les contraintes est obtenue. Cependant, à la différence des modèles paramétriques continus sur le domaine expérimental étudié, les arbres de régression sont constants par morceaux, ce qui dégrade leur qualité de prédiction sur la base de test. Pour remédier à cet inconvénient, une troisième approche consiste à attribuer un modèle linéaire à chacune des zones identifiées avec les arbres de régression. Le modèle résultant, dit modèle hybride, est donc linéaire par morceaux et permet alors de raffiner les modèles paramétriques en évaluant les effets des facteurs dans chacune des zones tout en améliorant la qualité de prédiction des arbres de régression. / Reliability has become an important issue nowadays since the most critical industries such as aeronautics, space and nuclear are moving towards the design of more electrical based systems. The objective is to understand, model and predict the aging mechanisms that could lead to component and system failure. The study of the operational constraints effects on the degradation of the components is essential for the prediction of their lifetime. Numerous lifespan models have been developed in the literature in the field of electrical engineering. However, these models have some limitations: they depend on the studied material and its physical properties, they are often restricted to one or two stress factors and they do not integrate interactions that may exist between these factors. This thesis presents a new methodology for the lifespan modeling of electrical engineering components. This methodology is general; it is applicable to various components without prior information on their physical properties. The developed models are statistical models estimated on experimental data obtained from accelerated aging tests where several types of stress factors are considered. The models aim to study the effects of the different stress factors and their different interactions. The number and the configuration of the aging tests needed to construct the models (learning sets) are optimized in order to minimize the experimental cost while maximizing the accuracy of the models. Additional randomly configured experiments are carried out to validate the models (test sets). Two categories of components are tested: two types of insulation materials that are commonly used in electrical machines and OLED light sources. Different forms of lifespan models are presented: parametric, non-parametric and hybrid models. Models are evaluated using different statistical tools in order to study their relevance and to assess their predictability on the test set points. Parametric models allow to quantify the effects of stress factors and their interactions on the lifespan through a predefined analytical expression. Then a statistical test allows to assess the significance of each parameter in the model. These models show a good prediction quality on their test sets. The relationship between the lifespan and the constraints is also modeled by regression trees as an alternative method to parametric models. Regression trees are non-parametric models that graphically classify experimental points into different zones where the constraints are hierarchized according to their effects on the lifespan. Thus, a simple, graphic and direct relationship between the lifespan and the stress factors is obtained. However, unlike parametric models that are continuous in the studied experimental domain, regression trees are piecewise constant, which degrades their predictive quality with respect to parametric models. To overcome this disadvantage, a third approach consists in assigning a linear model to each of the zones identified with regression trees. The resulting model, called hybrid model, is piecewise linear. It allows to refine parametric models by evaluating the effects of the factors in each of the zones while improving the prediction quality of regression trees.
66

Propriétés de transport électronique des isolants topologiques / Electronic transport properties of topological insulators

Adroguer, Pierre 15 February 2013 (has links)
Les travaux présentés dans cette thèse ont pour objectif d’apporter à la physique mésoscopique un éclairage concernant la compréhension des propriétés de transport électroniques d’une classe de matériaux récemment découverts : les isolants topologiques.La première partie de ce manuscrit est une introduction aux isolants topologiques, mettant en partie l’accent sur leurs spécificités par rapport aux isolants "triviaux" : des états de bords hélicaux (dans le cas de l’effet Hall quantique de spin en 2 dimensions) ou de surface relativistes (pour les isolants topologiques tridimensionnels) robustes vis-à-vis du désordre.La deuxième partie propose une sonde de l’hélicité des états de bords de l’effet Hall quantique de spin en étudiant les propriétés remarquables de l’injection de paires de Cooper dans cette phase topologique.La troisième partie étudie la diffusion des états de surface des isolants topologiques tridimensionnels dans le régime cohérent de phase. L’étude de la diffusion, de la correction quantique à la conductance (antilocalisation faible) et de l’amplitude des fluctuations universelles de conductance de fermions de Dirac sans masse est présentée. Cette étude est aussi menée dans la cas d’états de surface dont la surface de Fermi présente la déformation hexagonale observée expérimentalement. / The works presented in this thesis intend to contribute to condensed matter physics in the understanding of the electronic properties of a recently discovered class of materials : the topological insulators.The first part of this memoir is an introduction to topological insulators, focusing on their specifities compared to "trivial" insulators : helical edge states (in the two dimensional quantum spin Hall effect) or relativistic surface states (for three dimensional topological insulators) both robust agiant disorder.The second part proposes a new way to probe the unique properties of the helical edge states of quantum spin Hall effect via the injection of Cooper pair from a superconductor.The third part deals with the diffusion of the three dimensional topological insulator surface states, in the phase coherent regime. The diffusion, the quantum correction to conductivity, and the amplitude of the universal conductance fluctuations are studied. This study is also led in the experimentally relevant case where the Fermi surface presents a hexagonal deformation.
67

Étude de la dépendance en température de la structure électronique à l'aide de la théorie de la fonctionnelle de la densité : effets non adiabatiques, dilatation du point zéro, couplage spin-orbite et application aux transitions de phase topologiques

Brousseau-Couture, Véronique 07 1900 (has links)
Les signatures de l’existence des phonons sont omniprésentes dans les propriétés des matériaux. En première approximation, on peut scinder l'effet des phonons sur la structure électronique en deux contributions. D’une part, l'interaction électron-phonon capture la réponse électronique aux vibrations des noyaux du cristal, et d’autre, l'énergie libre de la population de phonons modifie le volume cristallin à l’équilibre. En plus d'être responsables de la dépendance en température de la structure électronique, ces deux mécanismes affectent les niveaux d'énergie à température nulle, à travers le mouvement du point zéro et l'énergie du point zéro. Cette thèse analyse l’apport de ces deux mécanismes à la renormalisation du point zéro (ZPR) de l'énergie de la bande interdite des semi-conducteurs. Une généralisation du modèle de Fröhlich prenant en compte l'anisotropie et les dégénérescences présentes dans les matériaux réels révèle que l'interaction non adiabatique entre les électrons et les noyaux domine le ZPR dans les matériaux polaires. La prise en compte de ce mécanisme dans l'évaluation de l'interaction électron-phonon est déterminante pour reproduire adéquatement les données expérimentales. L'approche développée par Grüneisen, qui néglige communément les effets du point zéro, reproduit la dilatation du point zéro du réseau (ZPLE) et sa contribution au ZPR obtenues avec la méthode standard basée sur la minimisation de l'énergie libre à moindre coût numérique, y compris pour les matériaux anisotropes. La contribution du ZPLE au ZPR total, qui a reçu peu d'attention dans la littérature, peut atteindre de 20% à plus de 80% de la contribution de l'interaction électron-phonon, y compris dans des matériaux constitués de noyaux légers. Elle domine même le ZPR du GaAs dans le contexte de la DFT semi-locale. Il est donc essentiel de traiter les deux contributions sur le même pied d'égalité pour modéliser le ZPR avec précision. L'inclusion du couplage spin-orbite (SOC) diminue le ZPR d'un ensemble substantiel de matériaux cubiques de structure zinc-blende, diamant et rock-salt. L'essentiel de cette variation tire son origine de l'effet du SOC sur les énergies électroniques statiques, qui provient en grande partie de la variation des masses effectives des bandes de valence au point \(\Gamma\). La réduction du ZPR peut être estimée à partir d'un modèle de Fröhlich généralisé auquel on a introduit le SOC. Les subtilités numériques liées au traitement de la séparation de Dresselhaus dans les matériaux non centrosymétriques sont discutées. On démontre enfin comment l'effet combiné de l'interaction électron-phonon et de la dilatation thermique affecte le diagramme de phase topologique du BiTeI. L'augmentation de la température repousse l'apparition de la phase d'isolant topologique \(\mathbb{Z}_2\) vers des pressions plus élevées et élargit la plage de pressions correspondant à la phase intermédiaire de type semi-métal de Weyl. Le caractère orbital dominant des extrema de bande influence significativement leur sensibilité à la pression et au changement de topologie. Pour guider la recherche expérimentale de phases topologiquement non triviales dans les matériaux de façon adéquate, les études numériques doivent donc considérer l'effet de la température. / Phonon signatures are ubiquitous in material properties. At first order, the effect of phonons on the electronic structure can be split into two contributions. On the one hand, the electron-phonon interaction captures the electronic response to the vibrations of the nuclei. On the other hand, the free energy of the phonon population modifies the crystalline volume at equilibrium. In addition to driving the temperature dependence of the electronic structure, these two mechanisms affect the energy levels at zero temperature through zero-point motion and zero-point energy. This thesis investigates the contribution of these two mechanisms to the zero point renormalization (ZPR) of the band gap energy of semiconductors. A generalized Fröhlich model taking into account the anisotropy and degeneracies occurring in real materials reveals that the non-adiabatic interaction between electrons and nuclei dominates the ZPR in polar materials. Taking this mechanism into account when evaluating the electron-phonon interaction is crucial to reproduce experimental data adequately. The Grüneisen formalism, which commonly neglects zero-point effects, reproduces the zero-point lattice expansion (ZPLE) and its contribution to the ZPR obtained from the standard method based on free energy minimization at lower numerical cost, including for anisotropic materials. The ZPLE contribution to the total ZPR, which has received little attention in the literature, can reach from 20% to more than 80% of the contribution of the electron-phonon interaction, including in materials containing light atoms. It even dominates the ZPR of GaAs within semilocal DFT. Therefore, both contributions should be treated on an equal footing to model the ZPR accurately. The inclusion of spin-orbit coupling (SOC) decreases the ZPR of a substantial set of cubic materials of zincblende, diamond and rocksalt structure. This variation originates mostly from the effect of SOC on the static electronic eigenvalues, which comes largely from the variation of the effective masses of the valence bands at the \(\Gamma\) point. The reduction of the ZPR can be estimated from a generalized Fröhlich model in which SOC has been introduced. Numerical subtleties related to the treatment of Dresselhaus separation in non-centrosymmetric materials are discussed. We finally show how the combination of electron-phonon interaction and thermal expansion affects the topological phase diagram of BiTeI. An increase in temperature pushes the \(\mathbb{Z}_2\) topological insulator phase towards higher pressures and widens the pressure range corresponding to the Weyl semi-metal intermediate phase. The leading orbital character of the band extrema significantly influences their sensitivity to variations in pressure and topology. To adequately guide the experimental search for topologically non-trivial phases in materials, numerical studies must therefore consider the effect of temperature.

Page generated in 0.0708 seconds