• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 3
  • Tagged with
  • 15
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimisation et jeux appliqués à l'analyse statique de programmes par interprétation abstraite

Adje, Assalé 29 April 2011 (has links) (PDF)
L'interprétation abstraite est une méthode générale qui permet de déterminer de manière automatique des invariants de programmes. Cette méthode conduit à résoudre un problème de point fixe non linéaire de grande taille mais qui possède des propriétés de monotonie. Ainsi, déterminer des bornes sur les valeurs prises par une variable au cours de l'exécution d'un programme, est un problème de point fixe équivalent à un problème de jeu à deux joueurs, à somme nulle et avec options d'arrêt. Cette dernière observation explique la mise en oeuvre d'algorithmes d'itérations sur les politiques. Dans un premier temps, nous avons généralisé les domaines numériques polyédriques par un domaine numérique abstrait permettant de représenter des invariants non-linéaires. Nous avons défini une fonction sémantique abstraite sur ce domaine à partir d'une correspondance de Galois. Cependant, l'évaluation de celle-ci est aussi difficile qu'un problème d'optimisation globale non-convexe. Cela nous a amené à définir une fonction sémantique relâchée, construite à partir de la théorie de la dualité, qui sur-approxime de la fonction sémantique abstraite. La théorie de la dualité a également motivé une construction d'une itération sur les politiques dynamique pour calculer des invariants numériques. En pratique pour des programmes écrits en arithmétique affine, nous avons combiné la relaxation de Shor et l'information des fonctions de Lyapunov quadratique pour évaluer la fonction sémantique relâchée et ainsi générer des invariants numériques sous forme d'ellipsoïdes tronquées. Le deuxième travail concerne l'itération sur les politiques et le calcul du plus petit point fixe qui fournit l'invariant le plus précis. Nous avons raffiné l'itération sur les politiques afin de produire le plus petit point fixe dans le cas des jeux stochastiques. Ce raffinement repose sur des techniques de théorie de Perron-Frobenius non-linéaire. En effet, la fonction sémantique abstraite sur les intervalles peut être vue comme un opérateur de Shapley en information parfaite: elle est semidifférentiable. L'approche conjointe de la semidifférentielle et des rayons spectraux non linéaires nous a permis, dans le cas des contractions au sens large de caractériser le plus petit point fixe. Cette approche mène à un critère d'arrêt pour l'itération sur politique dans le cas des fonctions affines par morceaux contractantes au sens large. Quand le point fixe est non minimal, le problème consiste à exhiber un point fixe négatif non nul de la semidifférentielle. Ce vecteur conduit à une nouvelle politique qui fournit un point fixe strictement plus petit que le point fixe courant. Cette approche a été appliquée à quelques exemples de jeux stochastiques à paiements positifs et de vérification de programmes.
12

Algorithmes d'approximation parcimonieuse inspirés d'Orthogonal Least Squares pour les problèmes inverses

Soussen, Charles 28 November 2013 (has links) (PDF)
Ce manuscrit synthétise mon activité de recherche au CRAN entre 2005 et 2013. Les projets menés s'inscrivent dans les domaines des problèmes inverses en traitement du signal et des images, de l'approximation parcimonieuse, de l'analyse d'images hyperspectrales et de la reconstruction d'images 3D. Je détaille plus particulièrement les travaux concernant la conception, l'analyse et l'utilisation d'algorithmes d'approximation parcimonieuse pour des problèmes inverses caractérisés par un dictionnaire mal conditionné. Dans un premier chapitre, je présente les algorithmes heuristiques conçus pour minimiser des critères mixtes L2-L0. Ce sont des algorithmes gloutons << bidirectionnels >> définis en tant qu'extension de l'algorithme Orthogonal Least Squares (OLS). Leur développement est motivé par le bon comportement empirique d'OLS et de ses versions dérivées lorsque le dictionnaire est une matrice mal conditionnée. Le deuxième chapitre est une partie applicative en microscopie de force atomique, où les algorithmes du premier chapitre sont utilisés avec un dictionnaire particulier dans le but de segmenter automatiquement des signaux. Cette segmentation permet finalement de fournir une cartographie 2D de différents paramètres électrostatiques et bio-mécaniques. Le troisième chapitre est une partie théorique visant à analyser les algorithmes gloutons OMP (Orthogonal Matching Pursuit) et OLS. Une première analyse de reconstruction exacte par OLS en k itérations est proposée. De plus, une comparaison poussée des conditions de reconstruction exacte lorsqu'un certain nombre d'itérations ont déjà été effectuées fournit un éclairage sur le meilleur comportement d'OLS (par rapport à OMP) pour les problèmes mal conditionnés. Dans un quatrième chapitre, je dresse quelques perspectives méthodologiques et appliquées dans le domaine de l'analyse parcimonieuse en lien avec les chapitres précédents.
13

Etude mathématique et numérique de modèles de transport : application à la spintronique

El Hajj, Raymond 03 September 2008 (has links) (PDF)
Ce travail de thèse comporte trois parties. La partie principale s'intéresse au transport des courants polarisés en spin dans des matériaux à base de semi-conducteurs. Nous dérivons et analysons une hiérarchie des modèles allant du niveau microscopique au niveau macroscopique et tenant compte des différents mécanismes de rotation et de relaxation du vecteur spin dans les semi-conducteurs. Les mécanismes essentiels pris en compte sont les couplages spin-orbite et les interactions avec renversement de spin (spin-flip interactions). Une analyse semi-classique (via la transformation de Wigner) de l'équation de Schrödinger avec hamiltonien spin-orbite est présentée. Au niveau cinétique, l'équation de Vlasov (ou Boltzmann) spinorielle est une équation à valeur dans l'ensemble des matrices carrées d'ordre deux hermitiennes et positives. Partant ensuite de la spinor forme de l'équation de Boltzmann (avec différents opérateurs de collisions avec et sans renversement du vecteur spin) et par des techniques d'asymptotiques de diffusion, nous dérivons et analysons plusieurs modèles macroscopiques. Ils sont de type dérive-diffusion, SHE, Energie-Transport, à deux composantes ou spinoriels conservant des effets de rotation et de relaxation du vecteur spin. Nous validons ensuite ces modèles par des cas tests numériques. Deux applications numériques sont présentées : la simulation d'un transistor à effet de rotation de spin et l'étude de l'effet d'accumulation de spin à l'interface entre deux couches semi-conductrices différemment dopées. Dans la seconde partie, nous considérons une équation cinétique de type Boltzmann linéaire dans des domaines où un champ magnétique fort est appliqué. Nous étudions la limite de diffusion en supposant que le champ magnétique est unidirectionnel et tend vers l'infini. Le modèle obtenu est un modèle macroscopique constitué d'une équation diffusive dans la direction parallèle au champ magnétique et d'une dérive représentant l'effet centre-guide en présence d'un champ électrique dans la direction perpendiculaire. Le terme de diffusion contient des moyennes de giration de l'opérateur de collisions utilisé. Nous prouvons la convergence en utilisant des techniques d'entropie pour traiter le comportement diffusif, et en conjuguant par les rotations locales induites par le champ magnétique pour tenir compte des oscillations. Dans la troisième partie de cette thèse, Nous nous intéressons à la description du potentiel de confinement dans des gas d'électrons bidimensionnels. Nous étudions la limite faible longueur de Debye (ou faible température) du système de Schrödinger-Poisson unidimensionnel stationnaire sur un intervalle borné. Les électrons sont supposés dans un mélange d'états avec une statistique de Boltzmann (ou de Fermi-Dirac). En utilisant différentes reformulations du système comme des problèmes de minimisation convexe, nous montrons qu'asymptotiquement seul le premier niveau d'énergie est occupé. Le potentiel électrostatique converge vers une couche limite avec un profil calculé à l'aide d'un système de Schrödinger-Poisson sur le demi axe réel.
14

GPU-enhanced power flow analysis / Calcul de Flux de Puissance amélioré grâce aux Processeurs Graphiques

Marin, Manuel 11 December 2015 (has links)
Cette thèse propose un large éventail d'approches afin d'améliorer différents aspects de l'analyse des flux de puissance avec comme fils conducteur l'utilisation du processeurs graphiques (GPU). Si les GPU ont rapidement prouvés leurs efficacités sur des applications régulières pour lesquelles le parallélisme de données était facilement exploitable, il en est tout autrement pour les applications dites irrégulières. Ceci est précisément le cas de la plupart des algorithmes d'analyse de flux de puissance. Pour ce travail, nous nous inscrivons dans cette problématique d'optimisation de l'analyse de flux de puissance à l'aide de coprocesseur de type GPU. L'intérêt est double. Il étend le domaine d'application des GPU à une nouvelle classe de problème et/ou d'algorithme en proposant des solutions originales. Il permet aussi à l'analyse des flux de puissance de rester pertinent dans un contexte de changements continus dans les systèmes énergétiques, et ainsi d'en faciliter leur évolution. Nos principales contributions liées à la programmation sur GPU sont: (i) l'analyse des différentes méthodes de parcours d'arbre pour apporter une réponse au problème de la régularité par rapport à l'équilibrage de charge ; (ii) l'analyse de l'impact du format de représentation sur la performance des implémentations d'arithmétique floue. Nos contributions à l'analyse des flux de puissance sont les suivantes: (ii) une nouvelle méthode pour l'évaluation de l'incertitude dans l'analyse des flux de puissance ; (ii) une nouvelle méthode de point fixe pour l'analyse des flux de puissance, problème que l'on qualifie d'intrinsèquement parallèle. / This thesis addresses the utilization of Graphics Processing Units (GPUs) for improving the Power Flow (PF) analysis of modern power systems. Currently, GPUs are challenged by applications exhibiting an irregular computational pattern, as is the case of most known methods for PF analysis. At the same time, the PF analysis needs to be improved in order to cope with new requirements of efficiency and accuracy coming from the Smart Grid concept. The relevance of GPU-enhanced PF analysis is twofold. On one hand, it expands the application domain of GPU to a new class of problems. On the other hand, it consistently increases the computational capacity available for power system operation and design. The present work attempts to achieve that in two complementary ways: (i) by developing novel GPU programming strategies for available PF algorithms, and (ii) by proposing novel PF analysis methods that can exploit the numerous features present in GPU architectures. Specific contributions on GPU computing include: (i) a comparison of two programming paradigms, namely regularity and load-balancing, for implementing the so-called treefix operations; (ii) a study of the impact of the representation format over performance and accuracy, for fuzzy interval algebraic operations; and (iii) the utilization of architecture-specific design, as a novel strategy to improve performance scalability of applications. Contributions on PF analysis include: (i) the design and evaluation of a novel method for the uncertainty assessment, based on the fuzzy interval approach; and (ii) the development of an intrinsically parallel method for PF analysis, which is not affected by the Amdahl's law.
15

Le désordre des itérations chaotiques et leur utilité en sécurité informatique

Guyeux, Christophe 13 December 2010 (has links) (PDF)
Les itérations chaotiques, un outil issu des mathématiques discrètes, sont pour la première fois étudiées pour obtenir de la divergence et du désordre. Après avoir utilisé les mathématiques discrètes pour en déduire des situations de non convergence, ces itérations sont modélisées sous la forme d'un système dynamique et sont étudiées topologiquement dans le cadre de la théorie mathématique du chaos. Nous prouvons que leur adjectif " chaotique " a été bien choisi: ces itérations sont du chaos aux sens de Devaney, Li-Yorke, l'expansivité, l'entropie topologique et l'exposant de Lyapunov, etc. Ces propriétés ayant été établies pour une topologie autre que la topologie de l'ordre, les conséquences de ce choix sont discutées. Nous montrons alors que ces itérations chaotiques peuvent être portées telles quelles sur ordinateur, sans perte de propriétés, et qu'il est possible de contourner le problème de la finitude des ordinateurs pour obtenir des programmes aux comportements prouvés chaotiques selon Devaney, etc. Cette manière de faire est respectée pour générer un algorithme de tatouage numérique et une fonction de hachage chaotiques au sens le plus fort qui soit. A chaque fois, l'intérêt d'être dans le cadre de la théorie mathématique du chaos est justifié, les propriétés à respecter sont choisies suivant les objectifs visés, et l'objet ainsi construit est évalué. Une notion de sécurité pour la stéganographie est introduite, pour combler l'absence d'outil permettant d'estimer la résistance d'un schéma de dissimulation d'information face à certaines catégories d'attaques. Enfin, deux solutions au problème de l'agrégation sécurisée des données dans les réseaux de capteurs sans fil sont proposées.

Page generated in 0.1015 seconds