• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 14
  • 9
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 39
  • 21
  • 16
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electro-Thermal Mechanical Modeling of Microbolometer for Reliability Analysis

Effa, Dawit (David) 12 September 2010 (has links)
Infrared (IR) imaging is a key technology in a variety of military and civilian applications, especially for night vision and remote sensing. Compared with cryogenically cooled IR sensors, uncooled infrared imaging devices have the advantages of being low cost, light weight, and superior reliability. The electro-thermal analysis of a microbolometer pixel is critical to determine both device performance and reliability. To date, most microbolometer analysis research has focused on performance optimization and computation of thermal conductance directly from the geometry. However, modeling of the thermal distribution across the microbolometer pixel is critical for the comprehensive analysis of system performance and reliability. Therefore, this thesis investigates the electro-thermo-mechanical characteristics of a microbolometer pixel considering the effects of joule heating and incoming IR energy. The contributions of the present research include the electro-thermal models for microbolometer and methods of validating thermal distribution using experimental results. The electro-thermal models explain the effect of microbolometer material properties and geometry on device performance and reliability. The research also contributes methods of estimating the thermal conductivity of microbolometer, which take into account different heat transfer mechanisms, including radiation and convection. Previous approaches for estimating the thermal conductance of uncooled microbolometer consider heat conduction via legs from the geometry of the pixel structure and material properties [2]. This approach assumes linear temperature distribution in the pixel legs structure. It also leaves out the various electro-thermal effects existing for multilayer structures. In the present research, a different approach is used to develop the thermal conductance of microbolometer pixel structure. The temperature distribution in the pixel is computed from an electro-thermal model. Then, the average temperature in the pixel microplate and the total heat energy generated by joule heating is utilized to compute the thermal conductance of the structure. The thesis discusses electro-thermal and thermo-mechanical modeling, simulation and testing of Polysilicon Multi-User MEMS Process (PolyMUMPs®) test devices as the groundwork for the investigation of microbolometer performance and reliability in space applications. An electro-thermal analytical and numerical model was developed to predict the temperature distribution across the microbolometer pixel by solving the second order differential heat equation. To provide a qualitative insight of the effect of different parameters in the thermal distribution, including material properties and device geometry, first an explicit formulation for the solution of the electro-thermal coupling is obtained using the analytical method. In addition, the electro-thermal model, which accounts for the effect of IR energy and radiation heat transfer, spreading resistance and transient conditions, was studied using numerical methods. In addition, an analytical model has been developed to compute the IR absorption coefficient of a Thin Single Stage (TSS) microbolometer pixel. The simulation result of this model was used to compute absorbed IR energy for the numerical model. Subsequently, the temperature distribution calculated from the analytical model is used to obtain the deflections that the structure undergoes, which will be fundamental for the reliability analysis of the device. Finite element analysis (FEA) has been simulated for the selected device using commercial software, ANSYS® multiphysics. Finite element simulation shows that the electro-thermal models predict the temperature distribution across a microbolometer pixel at steady-state conditions within 2.3% difference from the analytical model. The analytical and numerical models are also simulated and results for a temperature distribution within 1.6% difference. In addition, to validate the analytical and numerical electro-thermal and thermo-mechanical models, a PolyMUMPs® test device has been used. The test results showed a close agreement with the FEM simulation deflection of the test device.
32

Field-directed nanowire chaining enabling transparent electrodes

Xu, Manyan 08 January 2019 (has links)
Transparent electrodes (TEs) require materials that have both transparency and electrical conductivity, a combination not usually found in nature. They are in increasing demand for use in solar cells, touch screens, displays, transparent heating films and several other devices. Most TEs used today are made of indium tin oxide (ITO). However, it has several disadvantages, such as high fabrication cost, rigidity and brittleness. Many ITO alternatives are being pursued, among which metallic nanowire (NW) networks on transparent substrates such as glass or polymer, have received much attention. This thesis demonstrates ordered silver NW networks on polyimide, fabricated by the field-directed chaining technique. We achieved a sheet resistance of 27 Ω/sq and 95.4% transparency at 550nm, with a Figure of Merit (FOM) 0.023Ω-1, which is higher than the FOM of commercial ITO, 0.005Ω-1. We have demonstrated that ordered NW networks, directed by alternative current (AC) electric fields, are easy to fabricate over a large area and at low cost, on rigid and flexible substrates. The AC electric field changes with different experiment setup. In this work, the effect of polymer thickness, electric field frequency, and gap size between electrodes are explored by COMSOL simulation and validated experimentally. By choosing the appropriate frequency and gap size, ordered NW networks are successfully created on a 23μm polyethylene terephthalate (PET) sheet. Fluid motion is one of the disruptors during NW chaining. We demonstrate control of this disruptor by the use of sandwiched channels for the NW suspension. Post-fabrication treatments are important and necessary for improving the connectivity and conductivity of Ag NW networks. In this work, we explore Joule heating and show its potential to improve the conductivity over other post-treatment approaches. However, Joule heating can also cause failures of NW networks. Ordered NW networks present better optical-electrical properties than random NW networks. Post-fabrication treatment can improve the properties, but there is a limit. In this work, a mathematical model is built for optical-electrical properties of perfectly ordered NW networks, which sets the upper bound of performance for transparent electrodes made of NW networks. A linear relationship is found between the transmittance and inverse sheet resistance. The model is then modified with factors to account for departure from the ideal. / Graduate / 2019-12-12
33

Modèles et outils pour la conception de composants magnétiques HF dédiés à l'électronique de puissance / Models and tools for the design of RF magnetic components dedicated to power electronics

Belkaid, Zahir 02 December 2016 (has links)
Les composants magnétiques sont des constituants essentiels des convertisseurs électroniques de puissance en termes de volume et de coût, en particulier dans les alimentations à découpage. Pour cette raison, il est intéressant de développer des méthodes et des outils logiciels pour optimiser la conception de dispositif magnétiques en relation avec les paramètres de conversion. Concevoir et optimiser un composant magnétique suppose de définir parfaitement les contraintes induites par les spécifications, de choisir des conducteurs, isolants et circuits magnétiques, tant sur le plan des matériaux que des géométries, de calculer finement les pertes dans ces différentes parties et enfin, de disposer de modèles thermiques permettant de conduire le design en considérant la contrainte majeure que constituent les températures de fonctionnement des différentes parties du composant. L'objectif de cette thèse est de jeter les bases d'un outil générique d'aide à la conception optimale de composants magnétiques en s'appuyant sur des modélisations analytiques et numériques. / The magnetic components are essential constituents of the power electronic converters in terms of volume and cost, particularly in switching power supplies. Therefore, it is essential to develop methods and software tools that can optimize the magnetic device design in relation to the conversion parameters. The design and optimization of the magnetic component includes several constraints that are imposed by the specifications including the choice of electrical conductors and magnetic circuits, both in terms of materials and their geometries. It is necessary to calculate the losses in these parts and to know the thermal models that allows a better design by considering the major constraint namely, the operation temperatures of different parts of the component.The current work describes the basics of a generic tool that will help in the optimal design of a magnetic components based on both analytical and numerical modeling.
34

New approaches for high spatial and temporal resolution nanothermometry : development of hot wire nano heater devices and investigation of thermosensitive materials with fluorescent and spin crossover properties / Nouvelles approches de la nanothermométrie à hautes résolutions spatiales et temporelles : développement de dispositifs de chauffage à l'échelle nanométrique et études de matériaux thermosensibles par la fluorescence et les propriétés de la transition de spin

Kraieva, Olena 26 October 2015 (has links)
L'objectif de cette thèse était de développer de nouvelles méthodes micro- et nano-thermométriques proposant de hautes résolutions spatiales et temporelles. Dans ce cadre nous nous sommes concentrés sur deux tâches : dans un premier temps, nous avons développé un dispositif de nano-chauffage qui peut aisément servir à la caractérisation thermo-physique de matériaux à l'échelle nanométrique. Dans un second temps, en utilisant cette plate-forme nous avons étudié des matériaux thermosensibles, incluant divers luminophores et des complexes à transition de spin ainsi que leurs mélanges. Les dispositifs de nano-chauffage, basés sur des nanofils chauffés par effet Joule, ont été fabriqués par lithographie électronique conventionnelle. Grâce à leur faible inertie thermique, les dispositifs basés sur des nanofils sont particulièrement intéressants en termes de temps de réponse et de confinement des changements de température induits. La caractérisation thermique de ces éléments de chauffage a été réalisée à l'aide de méthodes électriques et optiques ainsi que de simulations par éléments finis. Nous avons montré expérimentalement que nos chauffages prodiguent des perturbations en température (1 K < DeltaT < 80 K) rapides (< µs) et spatialement localisées (< µm) lorsque stimulées par des impulsions de courant électrique. Les simulations par éléments finis reproduisent ces résultats expérimentaux avec une bonne précision et prouvent ainsi leur intérêt pour le design de tels dispositifs. Les performances thermométriques de matériaux fluorescents, incluant des colorants organiques (Rhodamine B), des nanoparticules inorganiques (PbF2:Er3+/Yb3+, CdSe) et des nanoparticules hybrides organiques/inorganiques ([Fe(Htrz)2(trz)]BF4@SiO2-pyrene), ont ensuite été étudiées. D'une manière générale, leur intérêt pour l'imagerie thermique a été démontré, mais des problèmes de stabilité rendent les mesures quantitatives difficiles avec de tels matériaux. D'un autre côté, nous avons réussi à synthétiser des films de nanoparticules du complexe à transition de spin [Fe(Htrz)2(trz)]BF4 (non-dopé). Ces films qui nous ont permis de suivre les changements de température à l'aide de mesures de réflectivité optique plus robustes. La boucle d'hystérèse thermique dans ce matériau procure un effet de mémoire thermique à long terme dont nous avons usé avec succès pour imager les changements de température très rapides (< µs) et spatialement localisés (< µm) - même après que la chaleur se soit dissipée. Cette méthode originale nous procure une combinaison sans précédent de sensitivité spatio-temporelle dans le champ de la nano-thermométrie aux applications pratiques prometteuses. / The overall objective of this PhD thesis was to develop novel micro- and nano-thermometry methods providing high spatial and temporal resolution thermal imaging. To achieve this goal we have focused on two tasks: First, we developed a nano-heater device that can be easily employed for the thermo-physical characterization of materials at the nanoscale. In a second time, using this platform we investigated thermo-sensitive materials, including different luminophores and spin crossover complexes as well as their mixtures. The nano-heater device, based on Joule-heated metallic nanowires, was fabricated by standard electron beam lithography. Due to their small thermal mass, nanowire based devices are particularly interesting in terms of response times and also in terms of confinement of the induced temperature changes. The thermal characterization of these heating elements was carried out using electrical and optical methods as well as finite element simulations. We have shown experimentally that our heaters can provide fast (< µs) and spatially well localized (< µm) T-jump perturbations (1 K < DeltaT < 80 K) driven by an electrical current pulse. Finite element simulations reproduced these experimental results with good accuracy and proved to be a powerful tool of prediction for the device design. Fluorescent materials, including organic dyes (Rhodamine B), inorganic nanoparticles (PbF2:Er3+/Yb3+, CdSe) and hybrid organic/inorganic nanoparticles ([Fe(Htrz)2(trz)]BF4@SiO2-pyrene), were then investigated for their thermometry performance. Overall, they were found useful for thermal imaging, but stability problems make quantitative measurements challenging with these materials. On the other hand, we have succeeded in synthesizing nanoparticle films of the (undoped) [Fe(Htrz)2(trz)]BF4 spin crossover complex, which allowed us to infer temperature changes through more robust optical reflectivity measurements. The thermal hysteresis loop in this material provides a long-term thermal memory effect which we used successfully to image very fast (˜µs) transient temperature changes with high spatial resolution (sub-µm) - even when the heat is dissipated. This original method provides an unprecedented combination of spatio-temporal sensitivity within the field of nanothermometry with promising potential applications.
35

Localized Heating in Membrane Distillation for Performance Enhancement

Mustakeem, Mustakeem 12 1900 (has links)
Membrane distillation (MD) is an emerging technology capable of treating high-saline feeds and operating with low-grade heat energy. However, commercial implementation of MD is limited by so-called temperature polarization, which is the deviation in the temperature at the feed-membrane interface with respect to the bulk fluid. This work presents solutions to alleviate temperature polarization in MD by employing a localized heating concept to deliver heat at the vicinity of the feed-membrane interface. This can be realized in multiple ways, including Joule heating, photothermal heating, electromagnetic induction heating, and nanofluid heating. In the first experiment, a Joule heating concept was implemented and tested, and the results showed a 45% increase in permeate flux and a 57% decrease in specific energy consumption. This concept was further improved by implementing a new dead-end MD configuration, which led to a 132% increase in the gained output ratio. In addition, the accumulation of foulants on the membrane surface could be successfully controlled by intermittent flushing of feedwater. Three-dimensional CFD calculations of conjugate heat transfer revealed a more uniform heat transfer and temperature gradient across the membrane due to the increased feedwater temperature over a larger membrane area. In another approach, a photothermal MD concept was used to heat the feed water locally. A 2-D photothermal material, MXene, recently known for its photothermal property, was used to coat commercial MD membranes. The coated membranes were evaluated under one-sun illumination to yield a permeate flux of 0.77 kg.m$^{−2}$h$^{−1}$ with a photothermal efficiency of 65.3% for a feed concentration of 0.36 g.L$^{−1}$. The system can produce around 6 liters of water per day per square meter of membrane. An energy analysis was also performed to compare the efficiency of various energy sources. Considering the sun as a primary energy source, the performance of different heating modes was compared in terms of performance and scale-up opportunities. Overall this work demonstrates that the application of localized heating will enable the scale-up and the use of renewable energy sources to make the MD process more efficient and sustainable. / The illustrative figure was produced by Ana Bigio, scientific illustrator, KAUST.
36

Analýza teplotních dějů uvnitř článku olověného akumulátoru / Analysis of thermal processes inside of lead acid battery cell

Starý, Viktor January 2013 (has links)
Lead-acid battery is one of the most widely used electrochemical cells. These batteries have been associated with supplying energy to start the car. Currently used for propulsion and the overall operation of hybrid electric vehicles. When operating lead-acid batteries are made inside cell the thermal happens. The thermal going generate heat caused by chemical reactions during charging and discharging of the electrochemical system, the heat generated by ohmic and polarization losses and heat mediated contact with the environment. In this diploma thesis shows the principle of lead-acid battery and thermal processes that take places in the accumulator during its operation.
37

Interactive, Effective &amp; Professional Comsol Applications : Based on COMSOL Modules Joule Heating &amp; Corona Discharge

Sigstam, Axel, Olofsson, Linus January 2023 (has links)
This thesis will cover how two applications were developed using the commercial software COMSOL Multiphysics. The first application, the Joule heating application, simulates joule heating while taking the skin effect into consideration. The second application, the Corona Discharge application, is used to simulate corona discharges. It also estimates the initiation of charge propagation using the integration of the Townsend mechanism. The goal of this thesis is to verify that the COMSOL Application Builder can be used to create easy-to-use applications. With a high degree of accuracy and efficiency, it aims to aid Hitachi’s work with the design and effectiveness of bushings. These applications were developed to have similar graphical interfaces, making it easier for users to understand their functionality. Although a striking similarity in the graphical interfaces, the two applications have vastly different computational formulas, and physical properties, and are not based on the same COMSOL modules. The applications resulted in improving Hitachi’s workflow by significantly increasing efficiency and accuracy. The applications also contain a high degree of guidance to help the user optimize their results. However, as with all code-based projects, there is room for improvement. In the case of the Corona Discharge Application, one upgrade could be to allow the application to automatically find and calculate points with the highest potential. In conclusion, this thesis found that it is possible to create applications based onCOMSOL models, with a high degree of accuracy and efficiency, while still making them easy to use, interactive, and retaining all their physical properties.
38

Study on Forming and Resistive Switching Phenomena in Tantalum Oxide for Analog Memory Devices / アナログメモリ素子応用に向けたタンタル酸化物におけるフォーミングおよび抵抗変化現象に関する研究

Miyatani, Toshiki 23 March 2023 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第24622号 / 工博第5128号 / 新制||工||1980(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 白石 誠司, 准教授 小林 圭 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
39

Significance of the Alfvén waves in the thermospheric dynamics in the cusp region / カスプ域の熱圏ダイナミクスにおけるアルフベン波の重要性

Oigawa, Tomokazu 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23709号 / 理博第4799号 / 新制||理||1687(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 田口 聡, 教授 松岡 彩子, 教授 榎本 剛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
40

Giant Non-Joulian Magnetostriction in Fe-Al Single Crystals

Wilhelmi, James January 2019 (has links)
A series of measurements aimed at comparing the magneto-elastic response and non-Joulian properties (magneto-volume) of single crystals of the iron-aluminum alloys Fe_81.8 Al_18.2 with different thermal treatments were per formed; the results of which confirmed net volume expansion in all field orientations. The magnitude of this expansion varied largely across various magnetic field alignments, with a greater than four times larger expansion for fields parallel to the [010] crystal axis than the [100] axis. The magnitude and direction of the change in volumetric expansion from quenched crystals to slow cooled crystals also depended heavily on the orientation of the magnetic field, with reduced magneto-volume responses ranging from ~2.4 to 0.5 times smaller for fields parallel to the [100] and [110] crystal axes respectively. These results present evidence of the non-Joulian effect and places crystals of the iron aluminum alloy Fe_81.8 Al_18.2 within the realm of functional non-Joulian magnets. / Mechanical Engineering

Page generated in 0.4016 seconds