Spelling suggestions: "subject:"komplexen gasnetzwerke"" "subject:"komplexen funknetzwerke""
11 |
Subgraph Covers- An Information Theoretic Approach to Motif Analysis in NetworksWegner, Anatol Eugen 16 February 2015 (has links) (PDF)
A large number of complex systems can be modelled as networks of interacting units. From a mathematical point of view the topology of such systems can be represented as graphs of which the nodes represent individual elements of the system and the edges interactions or relations between them. In recent years networks have become a principal tool for analyzing complex systems in many different fields.
This thesis introduces an information theoretic approach for finding characteristic connectivity patterns of networks, also called network motifs. Network motifs are sometimes also referred to as basic building blocks of complex networks. Many real world networks contain a statistically surprising number of certain subgraph patterns called network motifs. In biological and technological networks motifs are thought to contribute to the overall function of the network by performing modular tasks such as information processing. Therefore, methods for identifying network motifs are of great scientific interest.
In the prevalent approach to motif analysis network motifs are defined to be subgraphs that occur significantly more often in a network when compared to a null model that preserves certain features of the network. However, defining appropriate null models and sampling these has proven to be challenging. This thesis introduces an alternative approach to motif analysis which looks at motifs as regularities of a network that can be exploited to obtain a more efficient representation of the network. The approach is based on finding a subgraph cover that represents the network using minimal total information. Here, a subgraph cover is a set of subgraphs such that every edge of the graph is contained in at least one subgraph in the cover while the total information of a subgraph cover is the information required to specify the connectivity patterns occurring in the cover together with their position in the graph.
The thesis also studies the connection between motif analysis and random graph models for networks. Developing random graph models that incorporate high densities of triangles and other motifs has long been a goal of network research. In recent years, two such model have been proposed . However, their applications have remained limited because of the lack of a method for fitting such models to networks. In this thesis, we address this problem by showing that these models can be formulated as ensembles of subgraph covers and that the total information optimal subgraph covers can be used to match networks with such models. Moreover, these models can be solved analytically for many of their properties allowing for more accurate modelling of networks in general.
Finally, the thesis also analyzes the problem of finding a total information optimal subgraph cover with respect to its computational complexity. The problem turns out to be NP-hard hence, we propose a greedy heuristic for it. Empirical results for several real world networks from different fields are presented. In order to test the presented algorithm we also consider some synthetic networks with predetermined motif structure.
|
12 |
Resilience of the Critical Communication Networks Against Spreading FailuresMurić, Goran 14 September 2017 (has links) (PDF)
A backbone network is the central part of the communication network, which provides connectivity within the various systems across large distances. Disruptions in a backbone network would cause severe consequences which could manifest in the service outage on a large scale. Depending on the size and the importance of the network, its failure could leave a substantial impact on the area it is associated with. The failures of the network services could lead to a significant disturbance of human activities. Therefore, making backbone communication networks more resilient directly affects the resilience of the area. Contemporary urban and regional development overwhelmingly converges with the communication infrastructure expansion and their obvious mutual interconnections become more reciprocal.
Spreading failures are of particular interest. They usually originate in a single network segment and then spread to the rest of network often causing a global collapse. Two types of spreading failures are given focus, namely: epidemics and cascading failures. How to make backbone networks more resilient against spreading failures? How to tune the topology or additionally protect nodes or links in order to mitigate an effect of the potential failure? Those are the main questions addressed in this thesis.
First, the epidemic phenomena are discussed. The subjects of epidemic modeling and identification of the most influential spreaders are addressed using a proposed Linear Time-Invariant (LTI) system approach. Throughout the years, LTI system theory has been used mostly to describe electrical circuits and networks. LTI is suitable to characterize the behavior of the system consisting of numerous interconnected components. The results presented in this thesis show that the same mathematical toolbox could be used for the complex network analysis.
Then, cascading failures are discussed. Like any system which can be modeled using an interdependence graph with limited capacity of either nodes or edges, backbone networks are prone to cascades. Numerical simulations are used to model such failures. The resilience of European National Research and Education Networks (NREN) is assessed, weak points and critical areas of the network are identified and the suggestions for its modification are proposed.
|
13 |
Topological stability criteria for networking dynamical systems with Hermitian JacobianDo, A. L., Boccaletti, S., Epperlein, J., Siegmund, S., Gross, T. 04 June 2020 (has links)
The central theme of complex systems research is to understand the emergent macroscopic properties of a system from the interplay of its microscopic constituents. The emergence of macroscopic properties is often intimately related to the structure of the microscopic interactions. Here, we present an analytical approach for deriving necessary conditions that an interaction network has to obey in order to support a given type of macroscopic behaviour. The approach is based on a graphical notation, which allows rewriting Jacobi’s signature criterion in an interpretable form and which can be applied to many systems of symmetrically coupled units. The derived conditions pertain to structures on all scales, ranging from individual nodes to the interaction network as a whole. For the purpose of illustration, we consider the example of synchronization, specifically the (heterogeneous) Kuramoto model and an adaptive variant. The results complete and extend the previous analysis of Do et al. (2012 Phys. Rev. Lett. 108, 194102).
|
14 |
Optimization of Agro-Socio-Hydrological Networks under Water Scarcity Conditions: Inter- and Trans-disciplinary Approaches for Sustainable Water Resources ManagementOrduna Alegria, Maria Elena 01 June 2021 (has links)
Sustainable agriculture is one of the greatest challenges of our time. The pathways to sustainable agriculture consist of successive decisions for optimization that are often a matter of negotiation as resources are shared at all levels. This work essentially comprises three research projects with novel inter- and transdisciplinary methods to better understand and optimize agricultural water management under water scarcity conditions.
In the first project, climate variability in the US Corn Belt was analyzed with a focus on deficit irrigation to find the optimal irrigation strategies for possible future changes. Two optimization methods for deficit irrigation showed positive water savings and yield increases in the predicted water scarcity scenarios.
In the second project, a serious board game was developed and game sessions were carried out to simulate the complex decision space of actors in irrigated agriculture under climate and groundwater variability. The aim of the game was to understand how decisions are made by actors by observing the course of the game and linking these results to common behavioral theories implemented in socio-ecological models.
In the third project, two frameworks based on innovation theories and agro-social-hydrological networks were developed and tested using agent-based models. In the first framework, centralized and decentralized irrigation management in Kansas US was compared to observe the development of collective action and the innovation diffusion of sustainable irrigation strategies. The second framework analyzed different decision processes to perform a sensitivity analysis of innovation implementation, groundwater abstraction and saline water intrusion in the Al Batinah region in Oman. Both frameworks allowed the evaluation of diverse behavior theories and decision-making parameters to find the optimal irrigation management and the impact of diverse socio-ecological policies.
Inter- and Trans-disciplinary simulations of the interactions between human decisions and water systems, like the ones presented in here, improve the understanding of irrigation systems as anthropogenic landscapes in socio-economic and ecological contexts. The joint application of statistical and participatory approaches enables different but complementary perspectives that allow for a multidimensional analysis of irrigation strategies and water resources management.:Contents
Declaration of Independent Work i
Declaration of Conformity iii
List of Publications v
Acknowledgments ix
Abstract xi
Zusammenfassung xiii
Contents xv
List of Figures xvii
List of Tables xix
List of Abbreviations xxi
1. Introduction 3
1.1 Complex Networks Approach 3
1.2 Research Objectives 4
1.3 Thesis Outline 5
2. Literature Review 9
2.1 Agro-Hydrological Systems 9
2.1.1 Necessary Disciplinary Convergence 9
2.1.2 Multi-Objective Optimization Approaches 10
2.2 Optimization of Crop-Water Productivity 11
2.2.1 Irrigation Strategies 11
2.3 Sustainable Management of A-S-H Networks 12
2.3.1 Socio-Hydrology 13
2.3.2 Representation of Decision-Making Processes 14
2.3.3 Influence of Social Network 16
2.4 Socio-Hydrological Modeling Approaches 17
2.4.1 Game Theory Approach 17
2.4.2 Agent-Based Modeling 18
2.4.3 Participatory Modeling 20
2.5 Education for Sustainability 21
2.5.1 Experiential Learning 21
2.5.2 Serious Games 22
2.6 Summary of Research Gaps 24
3. Irrigation Optimization in The US Corn Belt 27
3.1 Agriculture in The Corn Belt 27
3.2 Historical and Prospective Climatic Variability 29
3.3 Simulated Irrigation Strategies 29
3.4 Optimal Irrigation Strategies Throughout the Corn Belt 30
3.5 Summary 31
4. Participatory Analysis of A-S-H Dynamics 35
4.1 Decision-Making Processes in A-S-H Networks 36
4.1.1 Collaborative and Participatory Data Collection Approaches 37
4.2 MAHIZ 38
4.2.1 Serious Game Development 38
4.2.2 Implementation of Serious Game Sessions 39
4.4 Evaluation of The Learning Process in Serious Games 40
4.5 Evaluation of Behavior Theories and Social Parameters 42
4.6 Summary 43
5 Robust Evaluation of Decision-Making Processes In A-S-H Networks 47
5.1 Innovation in A-S-H Networks 47
5.1.1 Multilevel Social Networks 48
5.1.2 Theoretical Framework of Developed ABMs 49
5.2 DInKA Model: Irrigation Expansion in Kansas, US 50
5.2.1 Robust Analysis of Innovation Diffusion 53
5.3 SAHIO Implementation: Coastal Agriculture in Oman 54
5.3.1 SAHIO Sensitivity analysis 58
5.4 Summary 60
6 Conclusions and Outlook 63
6.1 Limitations 64
6.2 Outlook 64
Bibliography 69
Appendix A. Implementation Code 79
A.1 DInKA 79
A.2 SAHIO 82
Appendix B. SAHIO’s Decision-Making Process for Each MoHuB Theory 91
Appendix C. SAHIO A-S-H Innovation Results 97
Appendix D. Selected Publications 101
D.1 Evaluation of Hydroclimatic Variability and Prospective Irrigation Strategies in the U.S. Corn Belt. 103
D.2 A Serious Board Game to Analyze Socio-Ecological Dynamics towards Collaboration in Agriculture. 121
D.2.1 MAHIZ Rulebook 140
D.2.2 MAHIZ Feedback Form 156
|
15 |
Diffusion and Supercritical Spreading Processes on Complex NetworksIannelli, Flavio 11 March 2019 (has links)
Die große Menge an Datensätzen, die in den letzten Jahren verfügbar wurden, hat es ermöglicht, sowohl menschlich-getriebene als auch biologische komplexe Systeme in einem beispiellosen Ausmaß empirisch zu untersuchen.
Parallel dazu ist die Vorhersage und Kontrolle epidemischer Ausbrüche für Fragen der öffentlichen Gesundheit sehr wichtig geworden.
In dieser Arbeit untersuchen wir einige wichtige Aspekte von Diffusionsphänomenen und Ausbreitungsprozeßen auf Netzwerken. Wir untersuchen drei verschiedene Probleme im Zusammenhang mit Ausbreitungsprozeßen im überkritischen Regime. Zunächst untersuchen wir die Reaktionsdiffusion auf Ensembles zufälliger Netzwerke, die durch die beobachteten Levy-Flugeigenschaften der menschlichen Mobilität charakterisiert sind.
Das zweite Problem ist die Schätzung der Ankunftszeiten globaler Pandemien. Zu diesem Zweck leiten wir geeignete verborgene Geometrien netzgetriebener Streuprozeße, unter Nutzung der Random-Walk-Theorie, her und identifizieren diese.
Durch die Definition von effective distances wird das Problem komplexer raumzeitlicher Muster auf einfache, homogene Wellenausbreitungsmuster reduziert. Drittens führen wir durch die Einbettung von Knoten in den verborgenen Raum, der durch effective distances im Netzwerk definiert ist, eine neuartige Netzwerkzentralität ein, die ViralRank genannt wird und quantifiziert, wie nahe ein Knoten, im Durchschnitt, den anderen Knoten im Netzwerk ist.
Diese drei Studien bilden einen einheitlichen Rahmen zur Charakterisierung von Diffusions- und Ausbreitungsprozeßen, die sich auf komplexen Netzwerken allgemein abzeichnen, und bieten neue Ansätze für herausfordernde theoretische Probleme, die für die Bewertung künftiger Modelle verwendet werden können. / The large amount of datasets that became available in recent years has made it possible to empirically study humanly-driven, as well as biological complex systems to an unprecedented extent.
In parallel, the prediction and control of epidemic outbreaks have become very important for public health issues.
In this thesis, we investigate some important aspects of diffusion phenomena and spreading processes unfolding on networks.
We study three different problems related to spreading processes in the supercritical regime.
First, we study reaction-diffusion on ensembles of random networks characterized by the observed Levy-flight properties of human mobility.
The second problem is the estimation of the arrival times of global pandemics. To this end, we derive and identify suitable hidden geometries of network-driven spreading processes, leveraging on random-walk theory. Through the definition of network effective distances, the problem of complex spatiotemporal patterns is reduced to simple, homogeneous wave propagation patterns.
Third, by embedding nodes in the hidden space defined by network effective distances, we introduce a novel network centrality, called ViralRank, which quantifies how
close a node is, on average, to the other nodes.
These three studies constitute a unified framework to characterize diffusion and spreading processes unfolding on complex networks in very general settings, and provide new approaches to challenging theoretical problems that can be used to benchmark future models.
|
16 |
Extremes in events and dynamics : a nonlinear data analysis perspective on the past and present dynamics of the Indian summer monsoonMalik, Nishant January 2011 (has links)
To identify extreme changes in the dynamics of the Indian Summer Monsoon (ISM) in the past, I propose a new approach based on the quantification of fluctuations of a nonlinear similarity measure, to identify regimes of distinct dynamical complexity in short time series. I provide an analytical derivation for the relationship of the new measure with the dynamical invariants such as dimension and Lyapunov exponents of the underlying system. A statistical test is also developed to estimate the significance of the identified transitions. Our method is justified by uncovering bifurcation structures in several paradigmatic models, providing more complex transitions compared with traditional Lyapunov exponents. In a real world situation, we apply the method to identify millennial-scale dynamical transitions in Pleistocene proxy records of the south Asian summer monsoon system. We infer that many of these transitions are induced by the external forcing of solar insolation and are also affected by internal forcing on Monsoonal dynamics, i.e., the glaciation cycles of the Northern Hemisphere and the onset of the tropical Walker circulation. Although this new method has general applicability, it is particularly useful in analysing short palaeo-climate records.
Rainfall during the ISM over the Indian subcontinent occurs in form of enormously complex spatiotemporal patterns due to the underlying dynamics of atmospheric circulation and varying topography. I present a detailed analysis of summer monsoon rainfall over the Indian peninsular using Event Synchronization (ES), a measure of nonlinear correlation for point processes such as rainfall. First, using hierarchical clustering I identify principle regions where the dynamics of monsoonal rainfall is more coherent or homogenous. I also provide a method to reconstruct the time delay patterns of rain events. Moreover, further analysis is carried out employing the tools of complex network theory. This study provides valuable insights into the spatial organization, scales, and structure of the 90th and 94th percentile rainfall events during the ISM (June to September). I furthermore analyse the influence of different critical synoptic atmospheric systems and the impact of the steep Himalayan topography on rainfall patterns. The presented method not only helps in visualising the structure of the extremeevent rainfall fields, but also identifies the water vapor pathways and decadal-scale moisture sinks over the region. Furthermore a simple scheme based on complex networks is presented to decipher the spatial intricacies and temporal evolution of monsoonal rainfall patterns over the last six decades. Some supplementary results on the evolution of monsoonal rainfall extremes over the last sixty years are also presented. / Um Extremereignisse in der Dynamik des indischen Sommermonsuns (ISM) in der geologischen Vergangenheit zu identifizieren, schlage ich einen neuartigen Ansatz basierend auf der Quantifikation von Fluktuationen in einem nichtlinearen Ähnlichkeitsmaß vor. Dieser reagiert empfindlich auf Zeitabschnitte mit deutlichen Veränderungen in der dynamischen Komplexität kurzer Zeitreihen. Ein mathematischer Zusammenhang zwischen dem neuen Maß und dynamischen Invarianten des zugrundeliegenden Systems wie fraktalen Dimensionen und Lyapunovexponenten wird analytisch hergeleitet. Weiterhin entwickle ich einen statistischen Test zur Schätzung der Signifikanz der so identifizierten dynamischen Übergänge. Die Stärken der Methode werden durch die Aufdeckung von Bifurkationsstrukturen in paradigmatischen Modellsystemen nachgewiesen, wobei im Vergleich zu den traditionellen Lyapunovexponenten eine Identifikation komplexerer dynamischer Übergänge möglich ist. Wir wenden die neu entwickelte Methode zur Analyse realer Messdaten an, um ausgeprägte dynamische Veränderungen auf Zeitskalen von Jahrtausenden in Klimaproxydaten des südasiatischen Sommermonsunsystems während des Pleistozäns aufzuspüren. Dabei zeigt sich, dass viele dieser Übergänge durch den externen Einfluss der veränderlichen Sonneneinstrahlung, sowie durch dem Klimasystem interne Einflussfaktoren auf das Monsunsystem (Eiszeitzyklen der nördlichen Hemisphäre und Einsatz der tropischenWalkerzirkulation) induziert werden. Trotz seiner Anwendbarkeit auf allgemeine Zeitreihen ist der diskutierte Ansatz besonders zur Untersuchung von kurzen Paläoklimazeitreihen geeignet.
Die während des ISM über dem indischen Subkontinent fallenden Niederschläge treten, bedingt durch die zugrundeliegende Dynamik der atmosphärischen Zirkulation und topographische Einflüsse, in äußerst komplexen, raumzeitlichen Mustern auf. Ich stelle eine detaillierte Analyse der Sommermonsunniederschläge über der indischen Halbinsel vor, die auf Ereignissynchronisation (ES) beruht, einem Maß für die nichtlineare Korrelation von Punktprozessen wie Niederschlagsereignissen. Mit hierarchischen Clusteringalgorithmen identifiziere ich zunächst Regionen mit besonders kohärenten oder homogenen Monsunniederschlägen. Dabei können auch die Zeitverzögerungsmuster von Regenereignissen rekonstruiert werden. Darüber hinaus führe ich weitere Analysen auf Basis der Theorie komplexer Netzwerke durch. Diese Studien ermöglichen wertvolle Einsichten in räumliche Organisation, Skalen und Strukturen von starken Niederschlagsereignissen oberhalb der 90% und 94% Perzentilen während des ISM (Juni bis September). Weiterhin untersuche ich den Einfluss von verschiedenen, kritischen synoptischen Systemen der Atmosphäre sowie der steilen Topographie des Himalayas auf diese Niederschlagsmuster. Die vorgestellte Methode ist nicht nur geeignet, die Struktur extremer Niederschlagsereignisse zu visualisieren, sondern kann darüber hinaus über der Region atmosphärische Transportwege von Wasserdampf und Feuchtigkeitssenken auf dekadischen Skalen identifizieren.Weiterhin wird ein einfaches, auf komplexen Netzwerken basierendes Verfahren zur Entschlüsselung der räumlichen Feinstruktur und Zeitentwicklung von Monsunniederschlagsextremen während der vergangenen 60 Jahre vorgestellt.
|
17 |
Subgraph Covers- An Information Theoretic Approach to Motif Analysis in NetworksWegner, Anatol Eugen 02 April 2015 (has links)
A large number of complex systems can be modelled as networks of interacting units. From a mathematical point of view the topology of such systems can be represented as graphs of which the nodes represent individual elements of the system and the edges interactions or relations between them. In recent years networks have become a principal tool for analyzing complex systems in many different fields.
This thesis introduces an information theoretic approach for finding characteristic connectivity patterns of networks, also called network motifs. Network motifs are sometimes also referred to as basic building blocks of complex networks. Many real world networks contain a statistically surprising number of certain subgraph patterns called network motifs. In biological and technological networks motifs are thought to contribute to the overall function of the network by performing modular tasks such as information processing. Therefore, methods for identifying network motifs are of great scientific interest.
In the prevalent approach to motif analysis network motifs are defined to be subgraphs that occur significantly more often in a network when compared to a null model that preserves certain features of the network. However, defining appropriate null models and sampling these has proven to be challenging. This thesis introduces an alternative approach to motif analysis which looks at motifs as regularities of a network that can be exploited to obtain a more efficient representation of the network. The approach is based on finding a subgraph cover that represents the network using minimal total information. Here, a subgraph cover is a set of subgraphs such that every edge of the graph is contained in at least one subgraph in the cover while the total information of a subgraph cover is the information required to specify the connectivity patterns occurring in the cover together with their position in the graph.
The thesis also studies the connection between motif analysis and random graph models for networks. Developing random graph models that incorporate high densities of triangles and other motifs has long been a goal of network research. In recent years, two such model have been proposed . However, their applications have remained limited because of the lack of a method for fitting such models to networks. In this thesis, we address this problem by showing that these models can be formulated as ensembles of subgraph covers and that the total information optimal subgraph covers can be used to match networks with such models. Moreover, these models can be solved analytically for many of their properties allowing for more accurate modelling of networks in general.
Finally, the thesis also analyzes the problem of finding a total information optimal subgraph cover with respect to its computational complexity. The problem turns out to be NP-hard hence, we propose a greedy heuristic for it. Empirical results for several real world networks from different fields are presented. In order to test the presented algorithm we also consider some synthetic networks with predetermined motif structure.
|
18 |
Resilience of the Critical Communication Networks Against Spreading Failures: Case of the European National and Research NetworksMurić, Goran 23 August 2017 (has links)
A backbone network is the central part of the communication network, which provides connectivity within the various systems across large distances. Disruptions in a backbone network would cause severe consequences which could manifest in the service outage on a large scale. Depending on the size and the importance of the network, its failure could leave a substantial impact on the area it is associated with. The failures of the network services could lead to a significant disturbance of human activities. Therefore, making backbone communication networks more resilient directly affects the resilience of the area. Contemporary urban and regional development overwhelmingly converges with the communication infrastructure expansion and their obvious mutual interconnections become more reciprocal.
Spreading failures are of particular interest. They usually originate in a single network segment and then spread to the rest of network often causing a global collapse. Two types of spreading failures are given focus, namely: epidemics and cascading failures. How to make backbone networks more resilient against spreading failures? How to tune the topology or additionally protect nodes or links in order to mitigate an effect of the potential failure? Those are the main questions addressed in this thesis.
First, the epidemic phenomena are discussed. The subjects of epidemic modeling and identification of the most influential spreaders are addressed using a proposed Linear Time-Invariant (LTI) system approach. Throughout the years, LTI system theory has been used mostly to describe electrical circuits and networks. LTI is suitable to characterize the behavior of the system consisting of numerous interconnected components. The results presented in this thesis show that the same mathematical toolbox could be used for the complex network analysis.
Then, cascading failures are discussed. Like any system which can be modeled using an interdependence graph with limited capacity of either nodes or edges, backbone networks are prone to cascades. Numerical simulations are used to model such failures. The resilience of European National Research and Education Networks (NREN) is assessed, weak points and critical areas of the network are identified and the suggestions for its modification are proposed.
|
19 |
Adaptive-network models of collective dynamicsZschaler, Gerd 15 May 2012 (has links)
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom.
In this thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system\'s collective and long-term behaviour by applying tools from dynamical systems theory.
We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects\' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous.
Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change.
Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks\' adaptive response to the agents\' dynamics is sufficiently fast.
|
20 |
Emergence and persistence of diversity in complex networksBöhme, Gesa Angelika 04 March 2013 (has links)
Complex networks are employed as a mathematical description of complex systems in many different fields, ranging from biology to sociology, economy and ecology. Dynamical processes in these systems often display phase transitions, where the dynamics of the system changes qualitatively. In combination with these phase transitions certain components of the system might irretrievably go extinct. In this case, we talk about absorbing transitions. Developing mathematical tools, which allow for an analysis and prediction of the observed phase transitions is crucial for the investigation of complex networks.
In this thesis, we investigate absorbing transitions in dynamical networks, where a certain amount of diversity is lost. In some real-world examples, e.g. in the evolution of human societies or of ecological systems, it is desirable to maintain a high degree of diversity, whereas in others, e.g. in epidemic spreading, the diversity of diseases is worthwhile to confine. An understanding of the underlying mechanisms for emergence and persistence of diversity in complex systems is therefore essential. Within the scope of two different network models, we develop an analytical approach, which can be used to estimate the prerequisites for diversity.
In the first part, we study a model for opinion formation in human societies. In this model, regimes of low diversity and regimes of high diversity are separated by a fragmentation transition, where the network breaks into disconnected components, corresponding to different opinions. We propose an approach for the estimation of the fragmentation point. The approach is based on a linear stability analysis of the fragmented state close to the phase transition and yields much more accurate results compared to conventional methods.
In the second part, we study a model for the formation of complex food webs. We calculate and analyze coexistence conditions for several types of species in ecological communities. To this aim, we employ an approach which involves an iterative stability analysis of the equilibrium with respect to the arrival of a new species. The proposed formalism allows for a direct calculation of coexistence ranges and thus facilitates a systematic analysis of persistence conditions for food webs.
In summary, we present a general mathematical framework for the calculation of absorbing phase transitions in complex networks, which is based on concepts from percolation theory. While the specific implementation of the formalism differs from model to model, the basic principle remains applicable to a wide range of different models.
|
Page generated in 0.0341 seconds