• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • Tagged with
  • 25
  • 25
  • 22
  • 22
  • 22
  • 17
  • 16
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dynamic stop pooling for flexible and sustainable ride sharing

Lotze, Charlotte, Marszal, Philip, Schröder, Malte, Timme, Marc 30 May 2024 (has links)
Ride sharing—the bundling of simultaneous trips of several people in one vehicle—may help to reduce the carbon footprint of human mobility. However, the complex collective dynamics pose a challenge when predicting the efficiency and sustainability of ride sharing systems. Standard door-to-door ride sharing services trade reduced route length for increased user travel times and come with the burden of many stops and detours to pick up individual users. Requiring some users to walk to nearby shared stops reduces detours, but could become inefficient if spatio-temporal demand patterns do not well fit the stop locations. Here, we present a simple model of dynamic stop pooling with flexible stop positions. We analyze the performance of ride sharing services with and without stop pooling by numerically and analytically evaluating the steady state dynamics of the vehicles and requests of the ride sharing service. Dynamic stop pooling does a priori not save route length, but occupancy. Intriguingly, it also reduces the travel time, although users walk parts of their trip. Together, these insights explain how dynamic stop pooling may break the trade-off between route lengths and travel time in door-to-door ride sharing, thus enabling higher sustainability and service quality.
22

Mentale Modelle der Benutzer von Fahrerinformationssystemen

Schilling, Tanja 02 December 2008 (has links)
Ziel dieser Arbeit ist es einerseits, allgemeine Erwartungen an die Bedienabläufe eines Fahrerinformationssystems zu ermitteln, welche Benutzer aus ihren Vorerfahrungen mit anderen technischen Geräten mitbringen, und andererseits zu zeigen, dass sich die Anpassung der Bedienabläufe eines Fahrerinformationssystems an diese allgemeinen Benutzererwartungen vorteilhaft auf die Gebrauchstauglichkeit des Gerätes auswirkt. Dabei wird eine Erwartung, welche in einer bestimmten Bediensituation an das Gerät besteht, verstanden als das mentale Modell von der Funktionsweise des Systems, welches der Benutzer in genau dieser Situation aus seinem schematischen Vorwissen und Merkmalen der Bedienoberfläche des zu bedienenden Gerätes bildet. In einer ersten Studie werden zunächst durch einen Vergleich mit dem konzeptuellen Modell eines bestehenden Fahrerinformationssystems diejenigen mentalen Modelle der Benutzer von Bedienabläufen identifiziert, welche interindividuell übereinstimmen. Dazu wird eine auf process tracing aufbauende, eigens entwickelte Methodik eingesetzt, welche es ebenfalls erlaubt, für diese Erwartungen diejenigen Aspekte zu ermitteln, welche unabhängig von speziellen Merkmalen des untersuchten Systems auch für Bedienabläufe eines Fahrerinformationssystems generell zutreffen. In einer nächsten Studie werden die ermittelten systemunabhängigen Benutzererwartungen verifiziert, indem aus ihnen das Bedienverhalten für ein zweites FIS mit anderem Bedienkonzept vorhergesagt wird. Dank der Verwendung des gleichen, handlungspsychologisch definierten Analyseniveaus für mentale und konzeptuelle Modelle können die verifizierten systemunabhängigen, interindividuell übereinstimmenden Benutzererwartungen als konzeptuelle Modelle in Form von Status-Übergangs-Diagrammen dargestellt und so als allgemeine Gestaltungsempfehlungen für Bedienabläufe in Fahrerinformationssystemen festgehalten werden. In einer dritten Studie werden die Bedienabläufe eines Prototypen entsprechend den allgemeinen Benutzererwartungen gestaltet und gegenüber Bedienabläufen evaluiert, welche von den Benutzererwartungen abweichen. Dabei zeigt sich, dass Bedienabläufe, welche mit den allgemeinen mentalen Modellen der Benutzer übereinstimmen, zu besseren Bedienleistungen und Systembewertung auf Seiten der Benutzer führen. Die formulierten allgemeinen Gestaltungsempfehlungen sind meist generalisierbar auf andere Domänen und die Ergebnisse dieser Arbeit bieten Ansatzpunkte für zukünftige Forschungsarbeiten. / The presented research project has two main goals: To learn about the nature of users’ general expectancies towards the operation of infotainment systems in passenger cars and to show that designing the paths of operation according to the users’ expectancies has positive effects on the usability of such systems. An expectancy at a certain point in the course of operation is understood as the mental model which the user forms of the system’s functionality in this situation on the basis of the system’s interface’s properties and his or her past experiences with other technical devices. A first study compares the conceptional model of an existing in-car infotainment system with the mental models of people using this system and thus identifies which mental models are shared interindividually by a majority of the users. The methodology used in this study was developed based on process tracing and permitted to equally identify those aspects of the mental models which are independent of the specific interaction concept of the examined system and therefore apply to the paths of operation of any in-car infotainment system in general. A next study verifies the users’ system-independent expectancies found in the first study by predicting users’ behavior during the operation of a second system with a different user interface. Both the users’ mental models and the systems’ conceptional models are analyzed and described using the same level of abstraction which is defined on the basis of action regulation theory. Thus directly comparable to the conceptional models, the users’ expectancies are described as state-transition diagrams which in turn as conceptional models represent the derived recommendations for the design of operational paths in infotainment systems. A third study uses a prototype system to evaluate paths of operation which have been designed according to the general recommendations versus paths of operation which deviate from the users’ expectancies. The results of this third study show that a system with paths of operation matching the users’ general mental models permits better user performance and leads to greater customer satisfaction. The general rules for designing the paths of operation of an in-car infotainment system described in this project can be applied to other domains and open perspectives for future research.
23

Human Mobility and Infectious Disease Dynamics / How modern mobility data enhances epidemic control

Schlosser, Frank 02 August 2023 (has links)
Die Covid-19 Pandemie hat gezeigt, wie stark die Ausbreitung von Infektionskrankheiten von der Dynamik der menschlichen Mobilität bestimmt wird. Gleichzeitig eröffnet die anhaltende Explosion an verfügbaren Mobilitätsdaten im 21. Jahrhundert einen viel genaueren Blick auf die menschliche Mobilität. In dieser Arbeit untersuchen wir verschiedene Ansätze, wie moderne Mobilitätsdaten zusammen mit Modellierung ein tieferes Verständnis des Zusammenspiels von menschlicher Mobilität und der Ausbreitung von Infektionskrankheiten ermöglichen. Wir verwenden Mobilitätsdaten um zu zeigen, dass landesweite Mobilitätsmuster während der Covid-19 Pandemie in Deutschland komplexe strukturelle Veränderungen durchlaufen haben. Wir stellen einen räumlich heterogenen Rückgang der Mobilität während Lockdown-Phasen fest. Vor allem beobachten wir, dass ein deutlicher Rückgang der Fernreisen während der Pandemie zu einem lokaleren Netzwerk und einer Abschwächung des “Small-World”-Effekts führt. Wir zeigen, dass diese strukturellen Veränderungen einen erheblichen Einfluss auf die Ausbreitungsdynamik von Epidemien haben, indem sie die epidemische Kurve abflachen und die Ausbreitung in geografisch weit entfernte Regionen verzögern. Des Weiteren entwickeln wir eine neue Methode zur Bestimmung des Ausbruchsursprungs anhand von hochaufgelösten geografischen Bewegungsdaten. Abschließend untersuchen wir, wie repräsentativ Mobilitätsdatensätze für das tatsächliche Reiseverhalten einer Bevölkerung sind. Wir identifizieren verschieden Arten von Verzerrungen, zeigen ihre Spuren in empirischen Datensätzen, und entwickeln einen mathematischen Rahmen um diese Verzerrungen abzuschwächen. Wir hoffen, dass unsere Studien in dieser Arbeit sich als hilfreiche Bausteine erweisen für ein einheitliches Verständnis von menschlicher Mobilität und der Dynamik von Infektionskrankheiten. / The Covid-19 pandemic demonstrated how strongly infectious disease spread is driven by the dynamics of human mobility. At the same time, the ongoing explosion of available mobility data in the 21st century opens up a much finer view of human mobility. In this thesis, we investigate several ways in which modern mobility data sources and modeling enable a deeper understanding of the interplay of human mobility and infectious disease spread. We use large-scale mobility data captured from mobile phones to show that country-wide mobility patterns undergo complex structural changes during the Covid-19 pandemic in Germany. Most prominently, we observe that a distinct reduction in long-distance travel during the pandemic leads to a more local, clustered network and a moderation of the “small-world” effect. We demonstrate that these structural changes have a considerable effect on epidemic spreading processes by “flattening” the epidemic curve and delaying the spread to geographically distant regions. Further, we show that high-resolution mobility data can be used for early outbreak detection. We develop a novel method to determine outbreak origins from geolocated movement data of individuals affected by the outbreak. We also present several practical applications that have been developed based on the above research. To further explore the question of applicability, we examine how representative mobility datasets are of the actual travel behavior of a population. We develop a mathematical framework to mitigate these biases, and use it to show that biases can severely impact outcomes of dynamic processes such as epidemic simulations, where biased data incorrectly estimates the severity and speed of disease transmission. We hope that our studies in this thesis will prove as helpful building blocks to assemble the emerging, unified understanding of mobility and infectious disease dynamics.
24

Physics-based Machine Learning Approaches to Complex Systems and Climate Analysis

Gelbrecht, Maximilian 20 July 2021 (has links)
Komplexe Systeme wie das Klima der Erde bestehen aus vielen Komponenten, die durch eine komplizierte Kopplungsstruktur miteinander verbunden sind. Für die Analyse solcher Systeme erscheint es daher naheliegend, Methoden aus der Netzwerktheorie, der Theorie dynamischer Systeme und dem maschinellen Lernen zusammenzubringen. Durch die Kombination verschiedener Konzepte aus diesen Bereichen werden in dieser Arbeit drei neuartige Ansätze zur Untersuchung komplexer Systeme betrachtet. Im ersten Teil wird eine Methode zur Konstruktion komplexer Netzwerke vorgestellt, die in der Lage ist, Windpfade des südamerikanischen Monsunsystems zu identifizieren. Diese Analyse weist u.a. auf den Einfluss der Rossby-Wellenzüge auf das Monsunsystem hin. Dies wird weiter untersucht, indem gezeigt wird, dass der Niederschlag mit den Rossby-Wellen phasenkohärent ist. So zeigt der erste Teil dieser Arbeit, wie komplexe Netzwerke verwendet werden können, um räumlich-zeitliche Variabilitätsmuster zu identifizieren, die dann mit Methoden der nichtlinearen Dynamik weiter analysiert werden können. Die meisten komplexen Systeme weisen eine große Anzahl von möglichen asymptotischen Zuständen auf. Um solche Zustände zu beschreiben, wird im zweiten Teil die Monte Carlo Basin Bifurcation Analyse (MCBB), eine neuartige numerische Methode, vorgestellt. Angesiedelt zwischen der klassischen Analyse mit Ordnungsparametern und einer gründlicheren, detaillierteren Bifurkationsanalyse, kombiniert MCBB Zufallsstichproben mit Clustering, um die verschiedenen Zustände und ihre Einzugsgebiete zu identifizieren. Bei von Vorhersagen von komplexen Systemen ist es nicht immer einfach, wie Vorwissen in datengetriebenen Methoden integriert werden kann. Eine Möglichkeit hierzu ist die Verwendung von Neuronalen Partiellen Differentialgleichungen. Hier wird im letzten Teil der Arbeit gezeigt, wie hochdimensionale räumlich-zeitlich chaotische Systeme mit einem solchen Ansatz modelliert und vorhergesagt werden können. / Complex systems such as the Earth's climate are comprised of many constituents that are interlinked through an intricate coupling structure. For the analysis of such systems it therefore seems natural to bring together methods from network theory, dynamical systems theory and machine learning. By combining different concepts from these fields three novel approaches for the study of complex systems are considered throughout this thesis. In the first part, a novel complex network construction method is introduced that is able to identify the most important wind paths of the South American Monsoon system. Aside from the importance of cross-equatorial flows, this analysis points to the impact Rossby Wave trains have both on the precipitation and low-level circulation. This connection is then further explored by showing that the precipitation is phase coherent to the Rossby Wave. As such, the first part of this thesis demonstrates how complex networks can be used to identify spatiotemporal variability patterns within large amounts of data, that are then further analysed with methods from nonlinear dynamics. Most complex systems exhibit a large number of possible asymptotic states. To investigate and track such states, Monte Carlo Basin Bifurcation analysis (MCBB), a novel numerical method is introduced in the second part. Situated between the classical analysis with macroscopic order parameters and a more thorough, detailed bifurcation analysis, MCBB combines random sampling with clustering methods to identify and characterise the different asymptotic states and their basins of attraction. Forecasts of complex system are the next logical step. When doing so, it is not always straightforward how prior knowledge in data-driven methods. One possibility to do is by using Neural Partial Differential Equations. Here, it is demonstrated how high-dimensional spatiotemporally chaotic systems can be modelled and predicted with such an approach in the last part of the thesis.
25

A complex systems perspective on land-use dynamics in the Amazon: patterns, agents, networks

Müller-Hansen, Finn 18 October 2018 (has links)
Die Doktorarbeit untersucht, wie sich Mensch-Umwelt-Interaktionen am Beispiel von Abholzung und Landnutzungsänderungen im Amazonas analysieren und modellieren lassen. Die Abholzung tropischer Wälder bedroht die Stabilität artenreicher Ökosysteme, lokaler Wettergeschehen und des globalen Klimas. Drei Hauptteile erforschen das Thema mit Konzepten der theoretischen Physik und Netzwerktheorie. Der erste Teil gibt einen kritischen Überblick über Modellansätze, die Entscheidungen und menschliches Verhalten beschreiben. Agentenbasierte Netzwerkmodelle ergeben sich als vielversprechender Ansatz um sozial-ökologische Systeme zu modellieren. Der zweite Teil identifiziert Muster in satellitengestützten Landbedeckungsdaten im brasilianischen Amazonas. Basierend auf der Theorie der Markov-Ketten werden Übergangsraten zwischen verschiedenen Typen von Landbedeckung berechnet und Übergangsmatrizen für Teilgebiete mit Clusteralgorithmen verglichen. Angrenzende Teilgebiete weisen ähnliche Übergänge auf. Die identifizierten Cluster decken sich mit Erkenntnissen aus Feldstudien. Auf Grundlage der geschätzten Übergangsrate ergeben sich Projektionen für die Entwicklung der Landbedeckungsanteile. Der dritte Teil entwickelt ein agentenbasiertes Modell um zu untersuchen, unter welchen Bedingungen die Intensivierung der Viehhaltung im Amazonas die Abholzung reduzieren kann. Das Modell kombiniert ökologische, ökonomische und soziale Prozesse und modelliert Landnutzungsstrategien mit Heuristiken. Die Modellanalyse zeigt, dass eine Intensivierung die Abholzung nur dann verringert, wenn der lokale Viehmarkt saturiert. Unter anderen ökonomischen Bedingungen kann Intensivierung die Abholzung erhöhen. Die Arbeit demonstriert, dass eine Kombination von Methoden aus der Theorie komplexer Systeme mit sozialwissenschaftlichen Theorien zu einem besseren Verständnis der emergenten Dynamik sozial-ökologischer Systeme führen kann – eine Grundvoraussetzung, um solche Systeme nachhaltig zu bewirtschaften. / This thesis investigates how to model and analyze human-nature interactions using the example of deforestation and land-use change in the Brazilian Amazon. Deforestation of tropical forests threatens the stability of species-rich ecosystems, local weather patterns, and global climate. The three main parts of the thesis study different aspects of this topic using concepts from theoretical physics and network theory. The first part reviews modeling approaches to human decision making and behavior. From the review, networked agent-based models emerge as promising tools to capture the dynamics of social-ecological systems such as the land system. The second part of the thesis combines Markov-chain and cluster analyses to detect patterns in satellite-derived land-cover maps of the Brazilian Amazon. I compute transition rates between different land-cover types and apply clustering algorithms to find spatial patterns. The analysis shows that neighboring subregions undergo similar transitions and identifies clusters corresponding to findings from field surveys. Markov-chain models, parameterized with the transition rates, are used to compute land-cover projections. In the third part, I develop an agent-based model to investigate under which conditions the intensification of cattle ranching can reduce deforestation in the Amazon. The model captures stylized environmental, economic, as well as social processes, and uses heuristic decision theory to represent different land management strategies. A detailed analysis reveals that fast intensification can only lower deforestation rates if local cattle markets saturate. Under other economic conditions intensification may increase deforestation. The contributions of this thesis demonstrate that combining modeling tools from complexity science with social-science theories allow better understanding the emergent dynamics of social-ecological systems, which is a prerequisite for their sustainable management.

Page generated in 0.0676 seconds