• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 29
  • 4
  • 2
  • 1
  • Tagged with
  • 68
  • 40
  • 40
  • 29
  • 26
  • 17
  • 15
  • 15
  • 15
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Neuartige Wege zu C-Glycosiden und Nucleosid-Analoga

Riemann, Ingo. Unknown Date (has links)
Techn. Universiẗat, Diss., 2004--Darmstadt.
42

Schutz von Ofenwänden vor Schädigung durch Kondensate

Filounek, Axel 20 July 2006 (has links)
In porösen Dämmstoffen können Dämpfe bei Unterschreitung der Taupunkttemperatur kondensieren. Durch das entstehende Kondensat verändert sich u.a. das Temperaturfeld im porösen Dämmstoff. Die Kondensation wird normalerweise an der Wandaußenseite beginnen. Hierbei sind Schäden an den tragenden Elementen des Ofens zu erwarten. Durch entstehendes Kondensat werden außerdem die wärmetechnischen Eigenschaften des Dämmmaterials verändert. Der Dampftransport im Dämmmaterial findet auf verschiedene Weise statt. Die Hauptmechanismen sind Diffusion sowie Strömung. Poröse Dämmstoffe wie z.B. Fasermaterialien setzen dem Transport des Dampfes nur einen sehr geringen Widerstand entgegen. Bei der Diffusion liegen die Diffusionskoeffizienten in der gleichen Größenordnung wie die der reinen Gase. Der Dampftransport ist dementsprechend schnell. Die Menge des anfallenden Kondensats kann abgeschätzt werden.
43

Ein HPC-tauglicher Spektralelemente-Löser auf der Grundlage von statischer Kondensation und Mehrgittermethoden

Haupt, Lars 19 June 2019 (has links)
Arbeitstitel: Erweiterte mathematische Methoden zur Simulation von turbulenten Strömungsvorgängen auf parallelen Rechnern:Inhaltsverzeichnis 1 Einleitung 3 2 Numerische Simulation physikalischer Prozesse 6 2.1 Königsdisziplin - Turbulente Strömungssimulation 6 2.2 Vom mathematischen Modell zur numerischen Lösung 9 2.2.1 Räumliche und zeitliche Diskretisierung 9 2.2.2 Allgemeine Reduktion auf Poisson- und Helmholtz-Gleichungen 11 2.3 Anforderungen an effiziente Lösungsverfahren 12 3 Basiskomponenten des entwickelten Verfahrens 16 3.1 Spektralelemente-Methode 16 3.1.1 Grundlagen 17 3.1.2 Gewählte Ansatzfunktionen und Stützstellen 20 3.1.3 Struktur des linearen Operators 24 3.2 Statische Kondensation 25 3.3 Geometrisches Mehrgitterverfahren 26 4 Das Spektralelemente basierte Mehrgitterverfahren auf kondensierten Gittern 31 4.1 Stand der Forschung 31 4.2 Mehrgitterverfahren auf kondensierten Gittern 32 4.2.1 Konzeption wirkungsvoller Glätter 34 4.3 Nachweis optimaler Eigenschaften 41 4.3.1 Lineare Komplexität 41 4.3.2 Ausgezeichnete Konvergenzgeschwindigkeit 43 4.3.3 Robustheit gegenüber Gitterverfeinerung 46 5 Konzeption des parallelen Mehrgitterlösers 49 5.1 Parallelrechner und Leistungsbewertungskriterien 49 5.2 Stand der Forschung 52 5.3 Grundlegende Struktur und Parallelisierung 54 5.3.1 Analyse des Speicherbedarfs 54 5.3.2 Zwei- und dreidimensionale Zerlegung 58 5.3.3 Parallelisierung und Kommunikation 62 6 Ergebnisse 65 6.1 Implementierung des Lösers 65 6.2 Hardwarespezifikation des Testsystems 66 6.3 Bewertung der Implementierung 68 6.3.1 Sequentieller Anwendungsfall 68 6.3.2 Nachweis der Skalierbarkeit im parallelen Anwendungsfall 76 6.3.3 Vergleich mit etablierten Lösungsansätzen bzw. Lösern 87 7 Zusammenfassung und Ausblick 89 Abbildungsverzeichnis 92 Tabellenverzeichnis 94 Abkürzungsverzeichnis 95 Symbolverzeichnis 96 Literaturverzeichnis 98 A Weiterführende Messergebnisse 106 A.1 Relative Mehrkosten der parallelen Implementierung 106 A.2 Sequentielle Lösungszeiten ohne Nachglättung im 2D-Fall 107 A.3 Sequentielle Lösungszeiten ohne Nachglättung im 3D-Fall 108 / Die rechnergestützte Simulation physikalischer Prozesse ist ein fester Bestandteil im Alltag von Wissenschaftlern aus den unterschiedlichsten Wissensbereichen. Unabhängig davon, ob das Ziel die Vorhersage des Wetters von morgen, die Konzentrationsbestimmung von Fluidteilchen in Mischprozessen oder die Erschaffung von Werkstoffen mit optimalen Materialeigenschaften ist, ohne den Einsatz von leistungsfähigen Rechnern ist dieses Ziel nicht zu erreichen. Aus dieser inhärenten Kopplung lässt sich eine grundlegende Aussage bzgl. der Laufzeit durchzuführender Simulationen ableiten. Schnellere Rechentechnik reduziert automatisch die Laufzeit einer bereits bestehenden Simulation und somit auch die Wartezeit auf die potentiell zu erwartenden Erkenntnisse. Zeitgleich ist die so erreichte Reduktion der Berechnungszeit auch ein Maß für die mögliche Erhöhung des Detailgrades einer bestehenden Simulation und somit auch ein Indikator für den zusätzlich zu erwartenden Erkenntnisgewinn. Ein Blick auf die seit 1993 herausgegebene Top500-Liste der schnellsten Supercomputer zeigt ein annähernd gleichbleibend exponentielles Wachstum der Rechenleistung. Dieser durch eine Interpretation von „Moores-Law“ beschriebene Sachverhalt wird laut aktuellen Prognosen auch in den nächsten Jahren bestehen bleiben. Für die im Bereich der Simulation tätigen Wissenschaftler gleicht dies einem Versprechen, dass ohne deren Zutun auch in Zukunft mit stetig kürzeren Simulationszeiten zu rechnen ist. Immer vorausgesetzt, es können genug finanzielle Mittel für die neue Hardware akquiriert werden. Doch dieser Schein trügt. Eine genauere Analyse der Entwicklung der Rechentechnik der letzten Jahre zeigt zwei maßgebliche Veränderungen. Zum einen stagniert die maximale Taktrate einer einzelnen CPU seit Erreichen der 4 GHz Grenze im Jahr 2004 und zum anderen wird, insbesondere seit der Einführung der ersten Dual Core CPU’s 2005, gesteigerte Rechenleistung fast gänzlich durch die Verwendung einer Vielzahl von Rechenkernen erreicht. Das aktuell mit mehr als zehn Millionen Rechenkernen an Position 1 der Top500-Liste geführte System TaihuLight (deu. Licht der Göttlichkeit) verdeutlicht die Dimensionen dieser Entwicklung. Die für dieses System in Aussicht gestellte maximale Rechenleistung von circa 125 Billiarden gleitkommaoperationen pro Sekunde, kann dabei nur von einer perfekt parallelisierten Simulationsrechnung erreicht werden. „Amdahls-Law“ zeigt jedoch, dass dieser perfekte Zustand, aufgrund von unvermeidlichen sequentiellen Abschnitten in den einzelnen im Programm verwendeten Algorithmen, nicht zu erreichen ist. Die genaue Abweichung vom vollparallelisierten Idealzustand wird dabei durch die sogenannte parallele Effizienz quantifiziert. Deren Wert muss hierbei per Definition zwischen Null und Eins liegen. Dem Paradigma „eine hohe parallele Effizienz ergibt eine hohe Rechenleistung und dies führt zur kürzestmöglichen Simulationslaufzeit“ folgend, wurden in den letzten Jahren die unterschiedlichsten Simulationsprogramme auf eben diese Effizienz getrimmt. In den meisten Fällen wurden hierfür Codes verwendet, die auf eine sehr lange Historie zurückgreifen, so dass alte bestehende Strukturen und Algorithmen unabhängig von deren wirklicher Eignung parallelisiert wurden. Diese Entwicklung führt jedoch mehr und mehr dazu, dass die Entwickler den Blick für die Vielseitigkeit der Faktoren, die zu einer akzeptablen Simulationslaufzeit führen, verlieren. Werden zum Beispiel Methoden niederer Ordnung, wie dies etwa bei den Standard Finite-Differenzen-Verfahren der Fall ist, zur Diskretisierung des Simulationsgebietes eingesetzt, steigt die Zahl der für kleine Lösungsfehler benötigten Gitterpunkte so schnell an, dass jedweder Arbeitsspeicher vor Erreichen der benötigten Genauigkeit aufgebraucht ist. Im Gegensatz dazu sind Methoden höherer Ordnung, wie dies etwa bei den Standard Finite-Elemente-Verfahren der Fall ist, aufgrund ihrer suboptimalen numerischen Komplexität kaum besser geeignet. Ein ähnliches Bild ergibt sich bei den Algorithmen, mit denen die Gleichungssysteme in den einzelnen Simulationsschritten gelöst werden. Stellvertretend sei hier das Jacobi-Verfahren genannt, welches sich zwar durch eine parallele Effizienz nahe Eins auszeichnet, jedoch zum einen eine nicht optimale quadratische numerische Komplexität und zum anderen eine von der Auflösung des Simulationsgitters abhängige maximale Iterationszahl besitzt. Sofern die Anwender der etablierten Simulationsprogramme keine Kosten für den Zugang zu Hochleistungsrechnern zu erwarten haben und diese Rechner immer wieder massiv ausgebaut werden, stellen die genannten Einschränkungen fürs Erste nur bedingt ein Problem dar. Denn, eine Simulation die nach Hinzunahme einer bestimmten Zahl von Rechenkernen um annähernd diesen Faktor beschleunigt wird ist etwas Ausgezeichnetes. Werden den Anwendern jedoch, wie bereits von immer mehr Universitätsrechenzentren diskutiert und in der Industrie bereits gängige Praxis, die Kosten für den Energieverbrauch in Rechnung gestellt, ergibt sich ein gänzlich anderes Bild. Ein Bild, in dem der Effizienz, die die angewandten Methoden bzw. die eingesetzten Algorithmen erreichen, die größte Bedeutung zufällt. Die Effizienz einer Methode wird hierbei ungenauerweise oft nur anhand deren Implementierung als Algorithmus bestimmt. Jedoch kann eine effizient implementierte Methode mit numerisch ungünstigen Eigenschaften einer nicht effizient implementierten Methode mit numerisch optimalen Eigenschaften deutlich unterlegen sein. Demnach ist es offensichtlich, dass nur für eine effizient implementierte Methode mit optimalen numerischen Eigenschaften die kürzestmögliche Simulationslaufzeit erreicht werden kann. Der Fokus der vorliegenden Arbeit liegt deshalb zu allererst auf dem Nachweis der optimalen numerisch/mathematischen Eigenschaften der entwickelten Methode. Diese Eigenschaften sind: lineare numerische Komplexität, Robustheit des Verfahrens gegenüber Gitterverfeinerungen im Simulationsgebiet und eine bisher unerreichte Konvergenzrate. Abschließend wird zusätzlich die Eignung der Methoden bzgl. deren Verwendung auf aktuellen Hochleistungsrechnern unter Verwendung von Zehntausenden von Rechenkernen belegt und auch deren effiziente Implementierung bzw. Umsetzung dargelegt. Ziel dieser Arbeit ist die Entwicklung effizienter mathematischer Methoden zur numerischen Simulation von physikalischen Prozessen und deren hochskalierende Implementierung auf Hochleistungsrechnern. Unter allen denkbaren Aufgabenstellungen zählen hierbei insbesondere diejenigen zu den herausforderndsten, die der Strömungsmechanik zugeordnet sind. Besonders die direkte numerische Simulation (DNS), welche zur Analyse von turbulenten Strömungsphänomenen eingesetzt wird, stellt hierbei höchste Ansprüche an die eingesetzten numerischen Verfahren. Die Entwicklung und Umsetzung der im Rahmen dieser Arbeit vorgestellten Methoden ist deshalb auf die Anwendung im Rahmen der turbulenten Strömungssimulation ausgerichtet. Diese Fokussierung dient jedoch allein dem Beleg der Leistungsfähigkeit und stellt keine prinzipielle Einschränkung der Methode dar.:Inhaltsverzeichnis 1 Einleitung 3 2 Numerische Simulation physikalischer Prozesse 6 2.1 Königsdisziplin - Turbulente Strömungssimulation 6 2.2 Vom mathematischen Modell zur numerischen Lösung 9 2.2.1 Räumliche und zeitliche Diskretisierung 9 2.2.2 Allgemeine Reduktion auf Poisson- und Helmholtz-Gleichungen 11 2.3 Anforderungen an effiziente Lösungsverfahren 12 3 Basiskomponenten des entwickelten Verfahrens 16 3.1 Spektralelemente-Methode 16 3.1.1 Grundlagen 17 3.1.2 Gewählte Ansatzfunktionen und Stützstellen 20 3.1.3 Struktur des linearen Operators 24 3.2 Statische Kondensation 25 3.3 Geometrisches Mehrgitterverfahren 26 4 Das Spektralelemente basierte Mehrgitterverfahren auf kondensierten Gittern 31 4.1 Stand der Forschung 31 4.2 Mehrgitterverfahren auf kondensierten Gittern 32 4.2.1 Konzeption wirkungsvoller Glätter 34 4.3 Nachweis optimaler Eigenschaften 41 4.3.1 Lineare Komplexität 41 4.3.2 Ausgezeichnete Konvergenzgeschwindigkeit 43 4.3.3 Robustheit gegenüber Gitterverfeinerung 46 5 Konzeption des parallelen Mehrgitterlösers 49 5.1 Parallelrechner und Leistungsbewertungskriterien 49 5.2 Stand der Forschung 52 5.3 Grundlegende Struktur und Parallelisierung 54 5.3.1 Analyse des Speicherbedarfs 54 5.3.2 Zwei- und dreidimensionale Zerlegung 58 5.3.3 Parallelisierung und Kommunikation 62 6 Ergebnisse 65 6.1 Implementierung des Lösers 65 6.2 Hardwarespezifikation des Testsystems 66 6.3 Bewertung der Implementierung 68 6.3.1 Sequentieller Anwendungsfall 68 6.3.2 Nachweis der Skalierbarkeit im parallelen Anwendungsfall 76 6.3.3 Vergleich mit etablierten Lösungsansätzen bzw. Lösern 87 7 Zusammenfassung und Ausblick 89 Abbildungsverzeichnis 92 Tabellenverzeichnis 94 Abkürzungsverzeichnis 95 Symbolverzeichnis 96 Literaturverzeichnis 98 A Weiterführende Messergebnisse 106 A.1 Relative Mehrkosten der parallelen Implementierung 106 A.2 Sequentielle Lösungszeiten ohne Nachglättung im 2D-Fall 107 A.3 Sequentielle Lösungszeiten ohne Nachglättung im 3D-Fall 108
44

Benetzungseigenschaften und Keimbildung bei der Tropfenkondensation

Sablowski, Jakob 05 September 2022 (has links)
Die Tropfenkondensation ermöglicht im Vergleich zur Filmkondensation eine Steigerung des Wärmeübergangskoeffizienten um ein Vielfaches. Dieser Effekt ist im Sinne der Energie- und Ressourceneffizienz für zahlreiche verfahrenstechnische Anwendungen erstrebenswert. Eine Möglichkeit zur Umsetzung der Tropfenkondensation ist die Modifikation der Benetzungseigenschaften von Wärmeübertrageroberflächen durch geeignete Beschichtungen. Dadurch kann die Ausbildung eines geschlossenen Kondensatfilms verhindert werden und es bilden sich stattdessen immer wieder neue Tropfen auf freien Bereichen der Oberfläche. Die Keimbildungsvorgänge bei der Entstehung neuer Tropfen haben einen großen Einfluss auf den Wärmeübergang bei der Tropfenkondensation. Eine Kenntnis dieser Vorgänge ist daher für die Modellierung und Berechnung des Wärmeübergangs erforderlich. Derzeit mangelt es jedoch an geeigneten Methoden, um wichtige Parameter bei der Tropfenbildung messtechnisch zu erfassen. In diesem Zusammenhang liefert die vorliegende Arbeit einen Beitrag zur Bestimmung der Keimstellendichte bei der Tropfenkondensation von Wasser auf hydrophoben Dünnschichten. / Dropwise condensation has the potential to increase the heat transfer coefficient by a multiple compared to filmwise condensation. This effect is desirable for numerous process engineering applications in terms of energy and resource efficiency. One option to implement dropwise condensation is to modify the wetting properties of heat exchanger surfaces with suitable coatings. This prevents the formation of a condensate film. Instead, new drops continue to form on free areas of the surface. The nucleation processes involved in the formation of new drops have a major influence on heat transfer during dropwise condensation. Therefore, a knowledge of these processes is required for modeling and calculating the heat transfer. However, there are currently no adequate methods to measure important parameters during drop formation. In this context, the present work provides a contribution to the determination of the nucleation site density during dropwise condensation of water on hydrophobic thin coatings.
45

Thermodynamic characterization of heavy fermion systems and low dimensional quantum magnets near a quantum critical point

Radu, Maria Teodora 27 September 2005 (has links) (PDF)
We report experimentally results on the low temperature properties of two classes of materials with a special emphasizes near the QCP induced by substitution and magnetic 1.field: (1) the HF systems YbRh2(Si0.95Ge0.05)2, Yb1-yLayRh2Si2 (y = 0.05, 0.1),and YbIr2Si2 with tetragonal structures and CeIn3-xSnx (x = 0.55, 0.6, 0.65, 0.7, 0.8) with cubic structure; (2) the quantum spin systems: Cs2CuCl4 and Cs2CoCl4. In all the HF compounds we have observed NFL behavior in zero magnetic field close to the QCP. The La substituted system does not show an antiferromagnetic (AFM) transition down to the lowest accessible temperature (0.03 K) while in YbRh2(Si1-xGex)2 with x = 0 and x = 0.05 AFM transitions occur at TN =0.07 K and 0.02 K, respectively. For Yb0.9La0.1Rh2Si2 we observe below 0.07 K saturation of DeltaC/T indicating clearly a LFL state for this concentration. For YbIr2Si2, DeltaC/T saturates below 0.5 K. In contrast to the Yb based compounds in the vicinity of the QCP, CeIn3-xSnx shows no evidence of a divergence in Delta C/T, with B or with x. Furthermore, we used specic heat measurements in the mK temperature range and at high fields (up to 12 T) to probe the phase diagrams in the low dimensional quantum antiferromagnets Cs2CuCl4 and Cs2CoCl4. In applied magnetic field, we have presented experimental evidence that in Cs2CuCl4 the field dependence of the critical temperature Tc(B) ~ (Bc-B)^1-Phi close to the critical field Bc = 8.51 T is well described with Phi=1.5. This is in very good agreement with the exponent expected in the mean-field approximation and support the notion of a Bose-Einstein condensation of magnons in Cs2CuCl4.
46

Thermodynamic characterization of heavy fermion systems and low dimensional quantum magnets near a quantum critical point

Radu, Maria Teodora 13 October 2005 (has links)
We report experimentally results on the low temperature properties of two classes of materials with a special emphasizes near the QCP induced by substitution and magnetic 1.field: (1) the HF systems YbRh2(Si0.95Ge0.05)2, Yb1-yLayRh2Si2 (y = 0.05, 0.1),and YbIr2Si2 with tetragonal structures and CeIn3-xSnx (x = 0.55, 0.6, 0.65, 0.7, 0.8) with cubic structure; (2) the quantum spin systems: Cs2CuCl4 and Cs2CoCl4. In all the HF compounds we have observed NFL behavior in zero magnetic field close to the QCP. The La substituted system does not show an antiferromagnetic (AFM) transition down to the lowest accessible temperature (0.03 K) while in YbRh2(Si1-xGex)2 with x = 0 and x = 0.05 AFM transitions occur at TN =0.07 K and 0.02 K, respectively. For Yb0.9La0.1Rh2Si2 we observe below 0.07 K saturation of DeltaC/T indicating clearly a LFL state for this concentration. For YbIr2Si2, DeltaC/T saturates below 0.5 K. In contrast to the Yb based compounds in the vicinity of the QCP, CeIn3-xSnx shows no evidence of a divergence in Delta C/T, with B or with x. Furthermore, we used specic heat measurements in the mK temperature range and at high fields (up to 12 T) to probe the phase diagrams in the low dimensional quantum antiferromagnets Cs2CuCl4 and Cs2CoCl4. In applied magnetic field, we have presented experimental evidence that in Cs2CuCl4 the field dependence of the critical temperature Tc(B) ~ (Bc-B)^1-Phi close to the critical field Bc = 8.51 T is well described with Phi=1.5. This is in very good agreement with the exponent expected in the mean-field approximation and support the notion of a Bose-Einstein condensation of magnons in Cs2CuCl4.
47

In-vitro-Bewertung von Wurzelkanalfülltechniken mit 3-D-Röntgenmikrotomographie und Lichtmikroskopie

Wiedmann, Volker 27 July 2015 (has links) (PDF)
Das Ziel der hier durchgeführten Studie war es, die Möglichkeiten der zerstörungsfreien Untersuchungsmethode, 3-D-Röntgenmikrotomographie, bei der Bewertung von Wurzelkanalfüllungen anhand der modifizierten lateralen Kondensation, der lateralen Kondensation und bei Thermafil zu untersuchen. Es sollte gezeigt werden, dass die einzelnen Bestandteile der Wurzelkanalfüllung zu differenzieren und im Anschluss auch zu quantifizieren sind. Die ersten 21 mit dieser zerstörungsfreien Methode untersuchten Proben wurden im Anschluss nochmals mit einer klassischen Untersuchungsmethode, der Lichtmikroskopie, beurteilt. Die hier erzielten Ergebnisse wurden bei einem Methodenvergleich mit den Ergebnissen der 3-D-Röntgenmikrotomographie verglichen und auf eine mögliche Korrelation überprüft. Ziel war es zu überprüfen, ob verschiedene Methoden zur Qualitätsprüfung von Wurzelkanalfüllungen als gleichwertig angenommen werden können. Im Rahmen dieser Untersuchung wurde eine neue modifizierte laterale Kondensation eingeführt, die hinsichtlich ihrer Qualität anhand der bereits genannten Parameter mit zwei bereits eingeführten Wurzelkanalfüllmethoden verglichen werden sollte. Die 3-D-Röntgenmikrotomographie ermöglichte eine selektive Darstellung der einzelnen Komponenten in 400 bis 750 Ebenen, welche ebenfalls quantifizierbar waren. Es wurden Füllgrade zwischen 71 % und 92 % erzielt. Das Thermafil-System schien den auf lateraler Kondensation basierenden Systemen bezüglich der bestimmten Volumen vereinzelt signifikant überlegen. Bei der lichtmikroskopischen Auswertung ergaben sich diesbezüglich ähnliche Ergebnisse. Die Farbstoffpenetrationstiefen zeigten weder tendenzielle noch signifikante Unterschiede zwischen den einzelnen Fülltechniken. Beim Vergleich der Methoden zur Bewertung der Obturation bezüglich der erhobenen Volumen konnte keine Korrelation nachgewiesen werden. Auch beim Vergleich der Farbstoffpenetrationstiefen und der bestimmten Volumen bei der 3-D-Röntgenmikrotomographie konnten keine Korrelationen ermittelt werden. Unter Berücksichtigung der Grenzen dieser Untersuchung lässt sich festhalten, dass die Methode der 3-D-Röntgenmikrotomographie zur Bewertung und zum Vergleich von Wurzelkanalfüllungen geeignet ist. Die Ergebnisse korrelieren jedoch nicht mit denen der Lichtmikroskopie.
48

Siloxane und Silanole als Modellverbindungen für Oberflächendefekte: Hydrolyse- und Kondensationsreaktionen

Roesch, Philipp 14 February 2019 (has links)
Die vorliegende Arbeit befasst sich mit den Synthesen, Charakterisierungen und umfassenden Reaktivitätsstudien von unterschiedlich substituierten Organosilanolverbindungen, die ausgehend von den niedervalenten Siliziumverbindungen Tetramesityldisilen Mes2Si=SiMes2 (Mes = 2,4,6-Trimethylphenyl) und Hexakisarylcyclotrisilan (ArN2Si)3 (ArN = 2-[(Dimethylamino)methyl]phenyl) dargestellt wurden. Das durch Oxygenierung und Hydrolyse synthetisierte Tetramesitylsiloxandiol Mes2Si(OH)O(OH)SiMes2 wurde hinsichtlich seiner Reaktivität gegenüber Wasser und verschiedenen Ethern untersucht und dabei eingehend durch NMR- und IR-spektroskopische Analysen charakterisiert. Die Isolierung von Einkristallen ermöglichte darüber hinaus die Charakterisierung dreier polymerähnlicher Siloxandiol-Ether-Addukte im Festkörper. Neben Unterschieden der Struktur und Reaktivität in Lösung und im Festkörper konnte zusätzlich durch eine Kooperation mit Prof. Schalley (FU Berlin) anhand eines Gasphasenexperimentes des 18O-markierten Siloxandiolanions, in einem FT-ICR-ESI-Massenspektrometer der vollständige Austausch aller Sauerstoffatome durch Wassermoleküle nachgewiesen werden. Darüber hinaus führte die Einführung intramolekular stabilisierender Liganden wie in dem Siloxandiol ArN2(OH)Si(O)Si(OH)ArN2 zur vollständigen Austauschreaktion in organischen Lösemitteln. Ausgehend von dem [(Dimethylamino)methyl]phenylsubstituierten Cyclotrisilan (ArN2Si)3 konnte das Silylen-Lewispaar ArN2Si–B(C6F5)3 unter Einsatz der starken Lewis-Säure B(C6F5)3 isoliert werden. Durch Hydrolyse wird das Silanolboran ArN2H2OSi–B(C6F5)3 gebildet, das sich durch starke Wasserstoffbrückenbindungen zu den Aminsubstituenten auszeichnet. In Gegenwart von Base, H2O und Luft entsteht nach Dehydrogenierung und Kondensation das Borosiloxan [(HArN2(OB(C6F5)3)Si)2O]. Alle Verbindungen wurden isoliert und vollständig charakterisiert. Zusätzlich ergänzen DFT-Rechnungen (Prof. Kaupp, TU Berlin), die experimentell erhaltenen Beobachtungen. / The following thesis deals with the synthesis, characterization and detailed reactivity studies on differently substituted organosilanols, synthesized by the low valent silicon compounds tetramesityldisilene Mes2Si=SiMes2 (Mes = 2,4,6-trimethylphenyl) and hexakisarylcyclotrisilane (ArN2Si)3 (ArN = 2-[(dimethylamino)methyl]phenyl). Oxygenation and hydrolysis of tetramesityldisilene yielded tetramesitylsiloxanediol Mes2Si(OH)O(OH)SiMes2, the reaction behavior of which towards water and various ethers was studied by means of NMR and IR spectroscopy. Additionally, single crystal analysis delivered three different siloxanediol ether polymer-like structures in the solid state. Besides studies in solution and the solid state, gas phase reactions in a FT-ICR-ESI mass spectrometer of the 18O-labelled siloxanediol anion, showed complete exchange of all O-atoms in presence of gaseous water molecules (cooperation with Prof. Schalley, FU Berlin). Furthermore, we could show that altering the ligand system of the siloxanediol to the amine substituted siloxanediol ArN2(OH)Si(O)Si(OH)ArN2, resulted in a complete exchange of all oxygen atoms in solution when H217O was present. Starting from the [(dimethylamino)methyl]phenyl substituted cyclotrisilane (ArN2Si)3, formation of the Lewis acid stabilized silylene-borane ArN2Si–B(C6F5)3 was accomplished. In presence of water the silanolborane ArN2H2OSi–B(C6F5)3 was formed, showing characteristic strong intramolecular hydrogen bonding to its amino ligands. When reacted with a base and water under ambient air, a dehydrogenation reaction followed by condensation leads to the borosiloxane motif [(HArN2(OB(C6F5)3)Si)2O]. All compounds were isolated separately and fully characterized by means of NMR and IR spectroscopy, as well as X-ray diffraction analysis. In cooperation with Prof. Kaupp (TU Berlin), DFT-calculations were carried out to support the achieved experimental data.
49

Experiments with Bose-Einstein Condensates in Microgravity

Grzeschik, Christoph 12 July 2017 (has links)
Atominterferometer erlauben es, Beschleunigungen mit bisher nicht erreichter Präzision zu messen. Anwendungen in der Grundlagenforschung beinhalten Gravitationswellendetektoren, die Bestimmung von Naturkonstanten oder Tests des schwachen Äquivalenzprinzips. Die Sensitivität eines Sensors für Tests des schwachen Äquivalenzprinzips skaliert quadratisch mit der Zeit der freien Entwicklung der Atome während der Interferometersequenz. Durch die Verwendung von Bose-Einstein-Kondensaten mit stark reduzierter Ausdehnungsgeschwindigkeit sowie dem Betrieb in Schwerelosigkeit kann die Sensitivität um Größenordnungen verbessert werden. Das QUANTUS-2 Experiment stellt die zweite Generation eines mobilen Atominterferometers dar, welches am Fallturm in Bremen zum Einsatz kommt und dient als Wegbereiter für zukünftige Experimente mit kalten Atomen auf Satelliten. Durch differentielle Messung der Beschleunigung von Rubidium und Kalium mit Hilfe der Atominterferometrie soll das schwache Äquivalenzprinzip getestet werden. Im Rahmen dieser Arbeit wurde das auf mikro-integrierten Diodenlasern sowie einer kompakten Elektronik basierende Rubidiumlasersystem aufgebaut und qualifiziert. Nach erfolgter Integration in die QUANTUS-2 Kapsel, wurden über 200 Abwürfe und Katapultflüge am Fallturm absolviert. Diese demonstrieren die Robustheit des Experimentes unter Beschleunigungen von bis zu 43 g während eines Katapultfluges. Die Dynamik des Kondensates wurde in Schwerelosigkeit untersucht und die Ausbreitungsgeschwindigkeit in allen drei Raumrichtungen mit Hilfe einer magnetischen Linse verringert. Die dabei erreichten Ausbreitungsgeschwindigkeiten entsprechen effektiven Temperaturen von unter 120 pK eines thermischen Ensembles. Dieser stellt den niedrigsten in allen drei Raumrichtungen erreichten Wert dar. Die gezeigten Ergebnisse demonstrieren somit die Verfügbarkeit wichtiger Schlüsselkonzepte zukünftiger hochpräziser Quantensensoren auf Satelliten. / Atom interferometers offer the possibility to measure accelerations with unprecedented precision. Applications in fundamental research include gravitational wave detectors, the determination of physical constants, or tests of the weak equivalence principle. The sensitivity of an atom interferometer testing the weak equivalence principle scales quadratically with the time of free evolution of the atoms during the interferometer sequence. By using Bose-Einstein condensates with ultra-low expansion rates as test masses and operating the experiment in microgravity, one can enhance the sensitivity by orders of magnitude. QUANTUS-2 is the second generation mobile atom interferometer to be operated at the drop tower in Bremen and serves as a pathfinder for future cold atom experiments in space. It is envisaged to test the weak equivalence principle by a differential measurement of the acceleration of rubidium and potassium by means of atom interferometry. Within this thesis, the rubidium laser system was set up and qualified. It is based on micro-integrated laser modules and compact electronics. After integration into the QUANTUS-2 capsule, 200 drops and catapult flights were conducted at the drop tower. These are demonstrating the robustness of the complete experiment when being subjected to accelerations of up to 43 g during a catapult flight. The dynamics of the condensate were analyzed and the mean kinetic energy was reduced in all three dimensions by means of a magnetic lens. Expansion rates equivalent to a thermal ensemble having a temperature below 120 pK have been reached and represent the lowest value ever achieved in all three dimensions. The results prove the availability of relevant key concepts for future high-precision quantum sensors on a satellite platform.
50

In-vitro-Bewertung von Wurzelkanalfülltechniken mit 3-D-Röntgenmikrotomographie und Lichtmikroskopie

Wiedmann, Volker 29 June 2015 (has links)
Das Ziel der hier durchgeführten Studie war es, die Möglichkeiten der zerstörungsfreien Untersuchungsmethode, 3-D-Röntgenmikrotomographie, bei der Bewertung von Wurzelkanalfüllungen anhand der modifizierten lateralen Kondensation, der lateralen Kondensation und bei Thermafil zu untersuchen. Es sollte gezeigt werden, dass die einzelnen Bestandteile der Wurzelkanalfüllung zu differenzieren und im Anschluss auch zu quantifizieren sind. Die ersten 21 mit dieser zerstörungsfreien Methode untersuchten Proben wurden im Anschluss nochmals mit einer klassischen Untersuchungsmethode, der Lichtmikroskopie, beurteilt. Die hier erzielten Ergebnisse wurden bei einem Methodenvergleich mit den Ergebnissen der 3-D-Röntgenmikrotomographie verglichen und auf eine mögliche Korrelation überprüft. Ziel war es zu überprüfen, ob verschiedene Methoden zur Qualitätsprüfung von Wurzelkanalfüllungen als gleichwertig angenommen werden können. Im Rahmen dieser Untersuchung wurde eine neue modifizierte laterale Kondensation eingeführt, die hinsichtlich ihrer Qualität anhand der bereits genannten Parameter mit zwei bereits eingeführten Wurzelkanalfüllmethoden verglichen werden sollte. Die 3-D-Röntgenmikrotomographie ermöglichte eine selektive Darstellung der einzelnen Komponenten in 400 bis 750 Ebenen, welche ebenfalls quantifizierbar waren. Es wurden Füllgrade zwischen 71 % und 92 % erzielt. Das Thermafil-System schien den auf lateraler Kondensation basierenden Systemen bezüglich der bestimmten Volumen vereinzelt signifikant überlegen. Bei der lichtmikroskopischen Auswertung ergaben sich diesbezüglich ähnliche Ergebnisse. Die Farbstoffpenetrationstiefen zeigten weder tendenzielle noch signifikante Unterschiede zwischen den einzelnen Fülltechniken. Beim Vergleich der Methoden zur Bewertung der Obturation bezüglich der erhobenen Volumen konnte keine Korrelation nachgewiesen werden. Auch beim Vergleich der Farbstoffpenetrationstiefen und der bestimmten Volumen bei der 3-D-Röntgenmikrotomographie konnten keine Korrelationen ermittelt werden. Unter Berücksichtigung der Grenzen dieser Untersuchung lässt sich festhalten, dass die Methode der 3-D-Röntgenmikrotomographie zur Bewertung und zum Vergleich von Wurzelkanalfüllungen geeignet ist. Die Ergebnisse korrelieren jedoch nicht mit denen der Lichtmikroskopie.

Page generated in 0.1318 seconds