• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 98
  • 46
  • 38
  • 15
  • 10
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 629
  • 144
  • 101
  • 88
  • 63
  • 60
  • 57
  • 55
  • 53
  • 42
  • 41
  • 38
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Diversity-Multiplexing Gain Tradeoff Of Cooperative Multi-hop Networks

Birenjith, P S 07 1900 (has links)
We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP) networks and layered networks. KPP networks can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4. For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks. For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable. Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes. Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT.
142

Nanocompósitos orgânico-inorgânicos de polímero biodegradável e estruturas lamelares / Organic-inorganic nanocomposites based on biodegradable polymer and layered structures

Gustavo Frigi Perotti 17 May 2013 (has links)
O presente trabalho de Doutorado tem como objetivo investigar a influência de materiais lamelares prístinos e modificados e a influência de diferentes rotas sintéticas nas propriedades físico-químicas do amido termoplástico, utilizando glicerol como plastificante. Para tanto, empregou-se para a produção dos materiais híbridos uma argila sintética da família das hectoritas (Laponita RD) na forma prístina e também modificada com íons berberine e carnosina, além de um hidróxido duplo lamelar (HDL) constituído por íons Zn2+/Al3+ intercalado com carboximetilcelulose (CMC). O amido e o material lamelar foram combinados, utilizando as metodologias de casting e extrusão, nas concentrações de 2,5 e 5,0 % (m/m) de argila ou HDL com relação ao polissacarídeo. Já quantidade de plastificante empregada foi variável, dependendo da rota de preparação empregada, sendo de aproximadamente 20 % (m/m) via casting e 30 % (m/m) via extrusão com relação ao amido. Conforme mostram os difratogramas de raios X dos filmes obtidos pelo método casting, todos os filmes contendo argila em sua composição exibem um sinal largo de difração na região de baixo ângulo de 2θ, embora pouco intenso, indica a existência de certa quantidade de nanocompósito do tipo intercalado. Já para os materiais obtidos via extrusão, os sinais de difração em baixo ângulo são consideravelmente alargados e muito pouco intensos. A propriedade térmica do amido termoplástico foi piorada em todos os casos estudados nos materiais contendo argila ou HDL em sua composição. A presença de carga inorgânica na formulação dos materiais híbridos preparados não retardou o processo de decomposição não-oxidativo do amido. A presença de uma maior quantidade de glicerol nos materiais obtidos por extrusão resultou em uma antecipação ainda maior no principal evento de perda de massa, em comparação com os mesmos materiais obtidos via casting. Devido à alta característica hidrofílica do amido, materiais lamelares intercalados com espécies que possuem maior caráter hidrofílico, como a Laponita prístina (contendo apenas íons Na+) e a carnosina mostraram uma melhor dispersão pela matriz polimérica, através da análise por técnicas de microscopia. Adicionalmente, observou-se uma melhor homogeneidade de distribuição da fase lamelar na fase polimérica nos filmes obtidos por casting em comparação com os materiais obtidos por extrusão. Os resultados mecânicos de todos os materiais híbridos analisados mostram tendências pouco conclusivas com relação ao amido termoplástico. Em geral, observa-se uma melhora muito sutil na máxima resistência a tração com a presença de material lamelar na composição dos materiais testados, além de uma diminuição na elongação máxima. Da mesma forma, a permeabilidade a gases dos filmes contendo argila ou HDL em sua composição mostrou resultados pouco conclusivos com relação ao amido termoplástico, geralmente exibindo uma redução modesta na permeabilidade. A investigação do perfil de biodegradação dos materiais contendo fase lamelar em sua composição mostrou que apenas a amostra contendo Laponita modificada com carnosina obtida por extrusão foi capaz de retardar significativamente a conversão do carbono das cadeias poliméricas em CO2, com relação ao amido termoplástico. / This present Thesis aimed to investigate the influence of pristine and modified layered materials and the influence of different preparation routes on the physicochemical properties of thermoplastic starch, using glycerol as plasticizer. To reach this goal, it was used to produce hybrid materials a synthetic clay belonging to the hectorite family (Laponite RD) in both pristine form and modified with berberine and carnosine ions and also a layered double hydroxide (LDH) comprised of Zn2+/Al3+ ions intercalated with carboxymethylcellulose (CMC). Both starch and the layered material were combined using casting and extrusion methodologies, using concentrations of 2.5 and 5.0 % (w/w) of clay or LDH relative to starch. The amount of plasticizer utilized was variable, depending on the preparation route employed. It was used approximately 20 % (w/w) of glycerol on casting route and 30 % (w/w) on extrusion route relative to starch. According to X ray diffractograms of the films obtained by casting route, all hybrid films that contain clay in their composition exhibit a large diffraction signal at low 2θ angle values, albeit its low intensity, indicates the existence of a certain contribuition of a intercalated nanocomposite. On the other hand, the hybrid materials obtained through extrusion method, these low angle diffraction signals are very broad and possess very low intensity. The thermal properties of thermoplastic starch were worsened in all studied cases after combined with clay or LDH. The presence of inorganic filler on the formulation of hybrid materials does not postpone the beginning of the non-oxidative decomposition process of starch. A higher amount of glycerol on the final materials obtained through extrusion resulted in an even greater anticipation on the main mass loss event in comparison to the analogous materials obtained using casting technique. Due to the high hydrophilic nature of starch, layered materials intercalated with ionic species that show higher hydrophilicity such as pristine Laponite (containing solely Na+ ions) and carnosine exhibited better dispersion through the polymer matrix, after being analyzed with microscopic techniques. Additionaly, it was observed a higher homogeneity of distribution of the layered phase over the polymer phase on the films obtained through casting in comparison to the materials obtained through extrusion. The tensile tests of all analyzed hybrid materials show a poorly conclusive trend in comparison to thermoplastic starch. In general, it was observed a subtle improvement on the maximum tensile strength of the materials containing layered material in their composition and also a decrease in the maximum elongation. In a same trend, gas permeability of the films was poorly conclusive in comparison to thermoplastic starch, generally resulting in a subtle reduction of permeability values. The investigation of biodegradation profile of the materials containing inorganic filler show that only Laponite modified with carnosine ions was able to postpone significatively the conversion of carbon from the polymer chains to CO2 in comparison to thermoplastic starch.
143

Mg-Al Layered Double Hydroxide: A Potential Nanofiller and Flame-Retardant for Polyethylene

Costa, Francis Reny 09 November 2007 (has links)
The presented research report deals with the investigation of magnesium aluminum based layered double hydroxide (LDH) as a potential nanofiller and flame-retardant for polymers with special reference to polyethylene. LDH is a mixed hydroxide of di- and trivalent metal ions that crystallizes in the form of mineral brucite. The basic reason for selecting LDH or more specifically magnesium-aluminum based LDH (Mg-Al LDH) is their typical metal hydroxide-like chemistry and conventional clay-like layered crystalline structure. The former is helpful in the direct participation in flame inhibition through endothermic decomposition and stable char formation. On the other hand, the later makes LDH suitable for polymer nanocomposite preparation, which can address the poor dispersibility problem associated with conventional metal hydroxide type fillers in polyolefin matrix. Besides, unlike layered silicate type clays (often reported for their capability to improve flame retardancy of polymers), LDH being reactive during combustion has higher efficiency to reduce the heat released during combustion of the composites. LDH clay with fixed Al:Mg ratio was synthesized using urea hydrolysis method and characterized. The organic modification of Mg-Al LDH using anionic surfactants has been studied in details. The main purpose of such modification is to enlarge the interlayer distance and to render it more organophilic. The surfactants were selected based on their functionality, chain length, etc and the modification was carried out by regeneration method. In the modified LDHs, the surfactants anions are arranged as a monolayer in the interlayer region and expand the interlayer distance according to their tail size. PE/LDH nanocomposites were prepared by melt-compounding method using a co-rotating tightly intermeshed twin-screw extruder and the morphological, mechanical and flammability properties of the nanocomposites were investigated in details. The X-ray diffraction analysis and electron microscopic analysis show a complex LDH particle morphology with hierarchy of particle size and shape starting from exfoliated particles fragments to particle aggregates over few hundred nm size. The exfoliated LDH platelets are distributed both in the vicinity of large particles and also in the bulk matrix. The melt rheological characterization of the nanocomposites also reflects the similar complex particle morphology. The dynamic oscillatory shear experiments showed that with increasing LDH concentration, the rheological behavior of the nanocomposite melts deviates strongly from that of the unfilled polyethylene. Thermogravimetric analysis (TGA) shows that LDH significantly improves the thermal stability of the polymer matrix in comparison to the unfilled polymer. The flammability studies of the PE/LDH nanocomposites have been reported in terms of various standard methods, like limited oxygen index (LOI), cone-calorimetry and UL-94 vertical and horizontal burn tests. The cone-calorimetric investigation shows that the nanocomposites have significantly lower burning rate and heat released during combustion. With increasing concentration of LDH though the LOI value of the nanocomposite increases marginally, the burning behavior, like dripping, rate of burning, etc are significantly improved. The flammability performance of LDH in combination with other commonly used flame-retardant (magnesium hydroxide) was also investigated. It has been observed that in polyethylene, a 50 wt% combination filler (4:1 weight ratio of magnesium hydroxide and LDH) can provide similar flammability ratings (like V0 rating in UL94 test, no dripping, etc) as that observed with 60 wt% magnesium hydroxide alone.
144

TOWARDS CATALYTIC OXIDATIVE DEPOLYMERIZATION OF LIGNIN

Mobley, Justin K. 01 January 2016 (has links)
Lignin is one of the most abundant and underutilized biopolymers on earth. Primarily composed on three monolignol units (sinapyl, coniferyl, and p-coumaryl alcohol), lignin is formed through a radical pathway resulting in an assortment of linkages, of which the β-O-4 linkage is the most prevalent (up to 60% in some hardwood species). In planta, lignin plays an important role in water transport and in protecting plants from chemical and biological attack. Traditional attempts to depolymerize lignin have focused on the cleavage of β-O-4 linkages via thermal or reductive routes. However these pathways lead to low-value, unstable product mixtures. Moreover, typical product yields are low and the highly corrosive reaction medium results in added expense. More recently, catalytic oxidations have been studied as a viable means to lignin utilization. The present work will review the state-of-the-art of lignin oxidations, and focus on stoichiometric and catalytic attempts to oxidize lignin and lignin model compounds in order achieve selective stepwise depolymerization of lignin. Specifically, activated dimethyl sulfoxides and LDH catalysts were evaluated for lignin and/or lignin model compound oxidations leading, in some cases, to unexpected products.
145

Investigating the Role of Multibiometric Authentication on Professional Certification E-examination

Smiley, Garrett 01 January 2013 (has links)
E-learning has grown to such an extent that paper-based testing is being replaced by computer-based testing otherwise known as e-exams. Because these e-exams can be delivered outside of the traditional proctored environment, additional authentication measures must be employed in order to offer similar authentication assurance as found in proctored, paper-based testing. This dissertation addressed the need for valid authentication in e-learning systems, in e-examinations in particular, and especially in professional certification e-examinations. Furthermore, this dissertation proposed a more robust method for learner authentication during e-examination taking. Finally, this dissertation extended e-learning research by comparing e-examination scores and durations of three separate groups of exam takers using different authentication methods: Online Using Username/Password (OLUP), In-Testing Center (ITC), and Online with Multibiometrics (OLMB) to better understand the role as well as the possible effect of continuous and dynamic multibiometric authentication on professional certification e-examination scores and durations. The sample used in this study was based on participants who were all professional members of a technology professional certification organization. The methodology used to collect data was a posttest only, multiple, non-equivalent groups quasi-experiment, where age, gender, and Information Technology Proficiency (ITP) were also recorded. The analyses performed in this study included pre-analysis data screening, reliability analyses for each instrument used, and the main analysis to address each hypothesis. Group affiliation, i.e. type of authentication methods, was found to have no significant effect on differences among exam scores and durations. While there was a clear path of increased mean e-examination score as authentication method was relaxed, it was evident from the analysis that these were not significant differences. Age was found to have a significant effect on exam scores where younger participants were found to have higher exam scores and lower exam durations than older participants. Gender was not found to have a significant effect on exam scores nor durations. ITP was found to have a significant effect on exam scores and durations where greater scores with the ITP instrument indicated greater exam scores and lower exam durations. This study's results can help organizations better understand the role, possible effect, and potential application of continuous and dynamic multibiometric authentication as a justifiable approach when compared with the more common authentication approach of User Identifier (UID) and password, both in professional certification e-examinations as well as in an online environment.
146

PROTOCOL LAYERING

Grebe, David L. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The advent of COTS based network-centric data systems brings a whole new vocabulary into the realm of instrumentation. The Communications and computer industries have developed networks to a high level and they continue to evolve. One of the basic techniques that has proven itself useful with this technology is the use of a “layered architecture.” This paper is an attempt to discuss the basic ideas behind this concept and to give some understanding of the vocabulary that has grown up with it.
147

CHOOSING NETWORK STANDARDS

Jones, Sid 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / There are many network standards in the commercial market today. The layered concept works so well, a developer can implement exactly the capability they desire through careful selection of standards and protocols. This brings up an interesting question of where we draw the line between standardizing on a single implementation and allowing the flexibility of all there is to offer? There are valid arguments for both sides. The telemetry community cannot afford to let this question fall through the cracks. We have the chance to identify what we need to do and how we should do it for both the specific application and the overall system.
148

EFFICIENT INTEGRAL EQUATION METHOD FOR 2.5D MICROWAVE CIRCUITS IN LAYERED MEDIA

Tang, Wee-Hua 01 January 2005 (has links)
An efficient integral equation method based on a method of moment (MoM) discretization of the Mixed-Potential Integral Equation (MPIE) for the analysis of 2.5D or 3D planar microwave circuits is presented. The robust Discrete Complex Image Method (DCIM) is employed to approximate the Greens functions in layered media for horizontal and vertical sources of fields, where closed-form formulations of the z-integrations are derived in the spectral domain. Meanwhile, an efficient and accurate numerical integration technique based on the Khayat-Wilton transform is used to integrate functions with 1/R singularities and near singularities. The fast iterative solver - Quadrature Sampled Pre-Corrected Fast Fourier Transform (QSPCFFT) - is associated with the MoM formulation to analyze electrically large, dense and complex microwave circuits.
149

FFT and multigrid accelerated integral equation solvers for multi-scale electromagnetic analysis in complex backgrounds

Yang, Kai, 1982- 19 September 2014 (has links)
Novel integral-equation methods for efficiently solving electromagnetic problems that involve more than a single length scale of interest in complex backgrounds are presented. Such multi-scale electromagnetic problems arise because of the interplay of two distinct factors: the structure under study and the background medium. Both can contain material properties (wavelengths/skin depths) and geometrical features at different length scales, which gives rise to four types of multi-scale problems: (1) twoscale, (2) multi-scale structure, (3) multi-scale background, and (4) multi-scale-squared problems, where a single-scale structure resides in a different single-scale background, a multi-scale structure resides in a single-scale background, a single-scale structure resides in a multi-scale background, and a multi-scale structure resides in a multi-scale background, respectively. Electromagnetic problems can be further categorized in terms of the relative values of the length scales that characterize the structure and the background medium as (a) high-frequency, (b) low-frequency, and (c) mixed-frequency problems, where the wavelengths/skin depths in the background medium, the structure’s geometrical features or internal wavelengths/skin depths, and a combination of these three factors dictate the field variations on/in the structure, respectively. This dissertation presents several problems arising from geophysical exploration and microwave chemistry that demonstrate the different types of multi-scale problems encountered in electromagnetic analysis and the computational challenges they pose. It also presents novel frequency-domain integral-equation methods with proper Green function kernels for solving these multi-scale problems. These methods avoid meshing the background medium and finding fields in an extended computational domain outside the structure, thereby resolving important complications encountered in type 3 and 4 multi-scale problems that limit alternative methods. Nevertheless, they have been of limited practical use because of their high computational costs and because most of the existing ‘fast integral-equation algorithms’ are not applicable to complex Green function kernels. This dissertation introduces novel FFT, multigrid, and FFT-truncated multigrid algorithms that reduce the computational costs of frequency-domain integral-equation methods for complex backgrounds and enable the solution of unprecedented type 3 and 4 multi-scale problems. The proposed algorithms are formulated in detail, their computational costs are analyzed theoretically, and their features are demonstrated by solving benchmark and challenging multi-scale problems. / text
150

Structural investigation of Nb-based layer sulfides

Grippa, Alexander January 2004 (has links)
<p>In this work we have investigated the intercalation of electron-donors between NbS<sub>2</sub> slabs in Nb-based layer sulfides.</p><p>Two series of Sr substituted Nb-based misfit sulfides belonging to the 1.5Q/1H and 1Q/1H series of misfit layer compounds have been synthesised. For large lanthanides (Ln=La, Ce), only the 1Q/1H compounds formed whereas for smaller lanthanides and yttrium, both types of phases can be obtained. The crystal structure of misfit sulfide (Pr<sub>0.55</sub>Sr<sub>0.45</sub>S)<sub>1.15</sub>NbS<sub>2</sub> has been refined using the composite approach. In the Q-slab, Pr-atoms are partly replaced by Sr with a random distribution over one cation position. The crystal structure of misfit sulfide [(Sm<sub>1/3</sub>Sr<sub>2/3</sub>S)<sub>1.5</sub>]<sub>1.15</sub>NbS<sub>2</sub> belonging to the 1.5Q/1H series have also been determined. The obtained results suggest a preferred occupancy of the cation positions in the slab where Sr atoms mainly occupy positions on the exterior of the slab while Sm atoms are in the center of the slab. The (La<sub>1-x</sub>Sr<sub>x</sub>S)<sub>1.15</sub>NbS<sub>2</sub> solid solution (0.1<x<0.9) has also been studied. It was found that the maximum value of Sr substitution is 40-50% and therefore, the minimal value of charge transfer to stabilize this structure type is about 0.6ē per Nb atom. </p><p>An attempt to synthesize Sr<sub>x</sub>NbS<sub>2</sub> (0.1≤x≤0.5) intercalates was made but single phases were not obtained and increasing the temperature from 1000<sup>о</sup>С to 1100<sup>о</sup>С leads to the decomposition of these intercalates. Single crystals of Sr<sub>0.22</sub>Nb<sub>1.05</sub>S<sub>2</sub> and Sr<sub>0.23</sub>NbS<sub>2</sub> were found and their structures were determined. The structures belong to two different types of packings with statistical distribution of Sr between layers.</p><p>A new superconducting sulfide, "EuNb<sub>2</sub>S<sub>5</sub>", was investigated by ED and HREM and its structure model consisting of Nb<sub>7</sub>S<sub>14</sub> and (Eu<sub>3</sub>S<sub>4</sub>)<sub>2</sub> slabs alternating along the c-axis is suggested. An attempt to suggest a model for the structure of "SrNb<sub>2</sub>S<sub>5</sub>" by means of X-ray single crystal diffraction was made. The proposed structure consists of two types of slabs: a Nb<sub>7</sub>S<sub>14</sub> and a [Sr<sub>6</sub>(NbS<sub>4</sub>)<sub>2</sub>S] slab with niobium in tetrahedral coordination. It is shown that "SrNb<sub>2</sub>S<sub>5</sub>" and "EuNb<sub>2</sub>S<sub>5</sub>" are have similar structures.</p><p>For the first time, single crystals of the complex sulfide BaNb<sub>0.9</sub>S<sub>3</sub> have also been studied by means of X-ray single crystal diffraction. The single crystal refinement and EDX analysis showed the existence of cation vacancies at the niobium position. BaNb<sub>0.9</sub>S<sub>3</sub> has also been studied by ED and no superstructure was found which implies that and the vacancies are statistically distributed.</p><p>No improvement of the magnetic properties of the studied compounds was observed in comparison to NbS<sub>2</sub>.</p>

Page generated in 0.0409 seconds