• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 98
  • 46
  • 38
  • 15
  • 10
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 629
  • 144
  • 101
  • 88
  • 63
  • 60
  • 57
  • 55
  • 53
  • 42
  • 41
  • 38
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Geoacoustic inversion : improvement and extension of the sources image method / Inversion géoacoustique : amélioration et extension de la méthode des sources images

Drira, Achraf 10 December 2015 (has links)
Ce travail de thèse propose d’analyser les signaux issus d’une source omnidirectionnelle sphérique réfléchis par un milieu sédimentaire stratifié et enregistré par une antenne d’hydrophones, en vue de caractériser quantitativement les sédiments marins aux moyennes fréquences, i.e. comprises entre 1 et 10 kHz. La recherche développée dans ce manuscrit propose une méthodologie facilitant la recherche des paramètres géoacoustiques du milieu avec la méthode des sources images, ainsi qu’un ensemble de solutions techniques appropriées afin d’améliorer cette méthode d’inversion récemment développée. La méthode des sources images repose sur une modélisation physique de la réflexion des ondes émises par une source sur un milieu stratifié sous l’approximation de Born. Par conséquent, la réflexion de l’onde sur le milieu stratifié peut être représentée par une collection de sources images, symétriques de la source réelle par rapport aux interfaces, dont les positions spatiales sont liées à la vitesse des ondes acoustiques et aux épaisseurs des couches. L’étude se décline en deux volets : traitements des signaux et inversion des paramètres géoacoustiques. La première partie du travail est focalisée sur le développement de la méthode des sources images. La méthode originelle se basait sur la construction de cartes de migration et de semblance de signaux pour déterminer les paramètres d’entrée de l’algorithme d’inversion qui sont des temps de trajet et des angles d’arrivée. Afin d’éviter cette étape, nous détectons les temps d’arrivée avec l’opérateur d’énergie de Teager-Kaiser (TKEO) et nous trouvons les angles par une méthode de triangulation. Le modèle d’inversion a été ensuite intégré en prenant en compte la possibilité de déformation de l’antenne. Cette partie se termine par une nouvelle approche qui combine TKEO et des méthodes temps fréquence afin d’avoir une bonne détection du temps d’arrivée dans le cas de signaux fortement bruités. Sur le plan du modèle et de l’inversion géoacoustique, nous proposons tout d’abord une description précise du modèle direct en introduisant le concept de sources images virtuelles. Cette étape permet de mieux comprendre l’approche développée. Ensuite, nous proposons une extension de la méthode des sources image pour l’inversion de paramètres géoacoustiques supplémentaires : la densité, l’atténuation et la vitesse des ondes de cisaillement. Cette extension est basée sur les résultats de l’inversion originelle (estimation du nombre de strates, de leur épaisseur, et de la vitesse des ondes de compression) ainsi que sur l’utilisation de l’amplitude des signaux réfléchis. Ces améliorations et extensions de la méthode des sources images sont illustrées par leur application sur des signaux synthétiques et des signaux réels issus d’expérimentations en cuve et à la mer. Les résultats obtenus sont très satisfaisants, tant au niveau des performances de calcul que de la qualité des estimations fournies. / This thesis aims at analyzing the signals emitted from a spherical omnidirectional source reflected by a stratified sedimentary environment and recorded by a hydrophone array in order to characterize quantitatively the marine sediments at medium frequencies, i.e. between 1 and 10 kHz. The research developed in this manuscript provides a methodology to facilitate the estimation of medium geoacoustic parameters with the image source method, and some appropriate technical solutions to improve this recently developed inversion method. The image source method is based on a physical modeling of the wave reflection emitted from a source by a stratified medium under the Born approximation. As result, the reflection of the wave on the layered medium can be represented by a set of image sources, symmetrical to the real source with respect to the interfaces, whose spatial positions are related to the sound speeds and the thicknesses of the layers. The study consists of two parts : signal processing and inversion of geoacoustic parameters. The first part of the work is focused on the development of the image source method. The original method was based on migration and semblance maps of the recorded signals to determine the input parameters of the inversion algorithm which are travel times and arrival angles. To avoid this step, we propose to determine the travel times with the Teager-Kaiser energy operator (TKEO) and the arrival angles are estimate with a triangulation approach. The inversion model is then integrated, taking into account the possible deformation of the antenna. This part concludes with a new approach that combines TKEO and time-frequency representations in order to have a good estimation of the travel times in the case of noisy signals. For the modeling and geoacoustic inversion part, we propose first an accurate description of the forward model by introducing the concept of virtual image sources. This idea provides a deeper understanding of the developed approach. Then, we propose an extension of the image sources method to the estimation of supplementary geoacoustic parameters : the density, the absorption coefficient, and the shear wave sound speed. This extension is based on the results of the original inversion (estimation of the number of layers, their thicknesses, and the pressure sound speeds) and on the use of the amplitudes of the reflected signals. These improvements and extents of the image source method are illustrated by their applications on both synthetic and real signals, the latter coming from tank and at-sea measurements. The obtained results are very satisfactory, from a computational point of view as well as for the quality of the provided estimations.
522

A Novel Cloud Broker-based Resource Elasticity Management and Pricing for Big Data Streaming Applications

Runsewe, Olubisi A. 28 May 2019 (has links)
The pervasive availability of streaming data from various sources is driving todays’ enterprises to acquire low-latency big data streaming applications (BDSAs) for extracting useful information. In parallel, recent advances in technology have made it easier to collect, process and store these data streams in the cloud. For most enterprises, gaining insights from big data is immensely important for maintaining competitive advantage. However, majority of enterprises have difficulty managing the multitude of BDSAs and the complex issues cloud technologies present, giving rise to the incorporation of cloud service brokers (CSBs). Generally, the main objective of the CSB is to maintain the heterogeneous quality of service (QoS) of BDSAs while minimizing costs. To achieve this goal, the cloud, although with many desirable features, exhibits major challenges — resource prediction and resource allocation — for CSBs. First, most stream processing systems allocate a fixed amount of resources at runtime, which can lead to under- or over-provisioning as BDSA demands vary over time. Thus, obtaining optimal trade-off between QoS violation and cost requires accurate demand prediction methodology to prevent waste, degradation or shutdown of processing. Second, coordinating resource allocation and pricing decisions for self-interested BDSAs to achieve fairness and efficiency can be complex. This complexity is exacerbated with the recent introduction of containers. This dissertation addresses the cloud resource elasticity management issues for CSBs as follows: First, we provide two contributions to the resource prediction challenge; we propose a novel layered multi-dimensional hidden Markov model (LMD-HMM) framework for managing time-bounded BDSAs and a layered multi-dimensional hidden semi-Markov model (LMD-HSMM) to address unbounded BDSAs. Second, we present a container resource allocation mechanism (CRAM) for optimal workload distribution to meet the real-time demands of competing containerized BDSAs. We formulate the problem as an n-player non-cooperative game among a set of heterogeneous containerized BDSAs. Finally, we incorporate a dynamic incentive-compatible pricing scheme that coordinates the decisions of self-interested BDSAs to maximize the CSB’s surplus. Experimental results demonstrate the effectiveness of our approaches.
523

[en] A THREE-DIMENSIONAL PIPE BEAM FINITE ELEMENT FOR NONLINEAR ANALYSIS OF MULTILAYERED RISERS OND PIPELINES / [pt] UM MODELO DE ELEMENTOS FINITOS DE PÓRTICO TRIDIMENSIONAL PARA ANÁLISE NÃO-LINEAR DE RISERS E DUTOS COM MULTICAMADAS

LUDIMAR LIMA DE AGUIAR 26 February 2019 (has links)
[pt] Neste trabalho, o comportamento tridimensional de tubos multicamadas com escorregamento entre camadas, sob grandes deslocamentos, para aplicação em análise global de risers e dutos é avaliado. Foi desenvolvido um novo elemento finito, considerando o modelo de viga de Timoshenko em cada camada. O elemento contempla os graus de liberdade axial, flexional e torcional, todos variando ao longo do elemento de acordo com as funções de interpolação de Hermite: carregamentos axial e torcional constantes e momentos fletores lineares. As deformações de cisalhamento também foram consideradas na formulação do elemento através de graus de liberdades generalizados, constantes ao longo do elemento. A formulação também considera modelos de contato não-lineares para representar várias possibilidades de atrito entre camadas, através da representação apropriada da relação constitutiva para as tensões de cisalhamento no material adesivo. O trabalho também apresenta os carregamentos hidrostáticos e hidrodinâmicos devidos aos fluidos interno e externo, atuando nos graus de liberdade das respectivas camadas. As forças de arrasto e de inércia devidas ao fluido externo foram calculadas através da fórmula de Morison. As matrizes de massa e amortecimento, associadas a cada camada do elemento, são obtidas através da consideração das respectivas contribuições na expressão do trabalho virtual desenvolvido pelo carregamento externo. O elemento finito desenvolvido permite a representação numérica de risers com camadas aderentes ou não aderentes, incluindo os efeitos de pequenos deslocamentos entre camadas. O problema de interação solo-estrutura também é tratado neste trabalho, sendo que dois modelos de contato entre o solo e o duto são propostos. A formulação do elemento e o seu desempenho numérico são avaliados através de alguns exemplos de aplicação e os resultados são comparados com outros resultados numéricos ou analíticos disponíveis na literatura. Os resultados mostram que o novo elemento é uma solução simples, robusta e confiável para análise de tubos em multicamadas. / [en] This work addresses the behavior of three-dimensional multilayered pipe beams with interlayer slip condition, under general three-dimensional large displacements, in global riser and pipeline analysis. A new finite element model, considering the Timoshenko beam for each element layer, has been formulated and implemented. It comprises axial, bending and torsional degrees-of-freedom, all varying along the element length according to discretization using Hermitian functions: constant axial and torsional loadings, and linear bending moments. Transverse shear strains due to bending are also considered in the formulation by including two generalized constant degrees-of-freedom. To represent various friction conditions between the element layers, nonlinear contact models are considered. These conditions are accounted in the model through a proper representation of the constitutive relation for the shear stresses behavior in the binding material. Derivations of hydrostatic and hydrodynamic loadings due to internal and external fluid acting on respective element layers are presented. The drag and inertia forces due to external fluid are calculated by using the Morison equation. Mass and damping matrices, associated to each element layer, are properly derived by adding their respective contributions to the expression of the virtual work due to external loading. The FE implementation allows for the numerical representation of either bonded or unbonded multilayered risers, including small slip effects between layers. Effects of the pipe-soil interaction are also addressed in this work with two contact models considering either no or full interaction between friction forces in longitudinal and lateral directions, respectively. The element formulation and its numerical capabilities are evaluated by some numerical testing, which are compared to other numerical or analytical solutions available in the literature. These tests results show that the proposed element provides a simple yet robust and reliable tool for general multilayered piping analyses.
524

Estudo da aplicação de hidróxidos duplos lamelares na remoção e liberação lenta de pesticidas / Study of aplication of Layered Double Hydroxides in removal and slow release of pesticides

Cardoso, Lucelena Patricio 13 September 2006 (has links)
A extensa utilização de pesticidas na agricultura moderna tem contribuído para um aumento na contaminação do meio ambiente. Os Hidróxidos Duplos Lamelares (HDLs) ou argilas aniônicas, apresentam uma estrutura lamelar na qual uma variedade de ânions podem ser intercalados entre as lamelas através de interações eletrostáticas. Estes materiais lamelares podem ser utilizados em processos de adsorção/sorção e como suporte para a liberação lenta de compostos químicos. Assim, os principais objetivos deste trabalho foram: o estudo da sorção de ânions orgânicos de herbicidas ácidos 2,4-D, MCPA e Picloram utilizados na agricultura nacional, pela regeneração de HDLs de Mg-Al-CO3 calcinado e por troca aniônica em HDLs de Mg-Al-Cl. Para isso foram investigados a cinética do processo de sorção, além da determinação das isotermas em dois valores diferentes de pH. Assim, estes herbicidas foram intercalados em HDLs de Mg-Al, utilizando dois métodos de síntese indireta: regeneração do material calcinado e troca aniônica em solução, além do método de síntese direta por coprecipitação, sendo os materiais devidamente caracterizados. Todos os materiais obtidos, intercalados com cada um dos herbicidas, foram utilizados para o estudo da cinética de liberação dos mesmos em água. Os materiais obtidos por regeneração contendo cada um dos três herbicidas foram utilizados também no estudo da lixiviação em colunas de solo e no estudo de bio-ensaio com plantas, para testar a eficiência dos HDLs como suportes na liberação lenta dos herbicidas. A partir do estudo da cinética do processo de sorção dos ânions orgânicos presentes em solução utilizando HDLs de Mg-Al contendo cloreto ou carbonato após a calcinação, observou-se que a remoção dos ânions ocorreu através dos processos de troca aniônica no caso do HDL contendo cloreto, ou de regeneração da estrutura lamelar no caso do HDL calcinado. A intercalação dos ânions orgânicos na posição vertical foi verificada no processo de adsorção/sorção, e se mostrou dependente da concentração do herbicida em solução. O HDL calcinado apresentou a maior eficiência na remoção dos ânions da solução. Os herbicidas suportados em HDLs, apresentaram uma liberação em água mais lenta do que os mesmos em sua forma livre, e não se mostrou dependente do método de preparação da matriz utilizada. Os resultados dos estudos de lixiviação utilizando como matriz o HDL obtido por regeneração, demonstraram que os HDLs são bons suportes para os herbicidas pois apresentaram uma liberação lenta do ingrediente ativo, principlamente para o herbicida Picloram. O bio-ensaio mostrou que a forma de liberação dos herbicidas suportados foi eficiente no controle da germinação das sementes de plantas em aplicações pré-emergenciais. / The extensive use of pesticides in modern agriculture has been contributing to an increase in environmental contamination. Layered Double Hydroxides (LDHs), or anionic clays, bear a layered structure, and a variety of anions can be intercalated between these layers through electrostatic interactions. These layered materials can be used in adsorption/sorption processes and in the slow release of chemical compounds. So this work aims at studing the sorption of the acid herbicides bearing organic anions 2,4-D, MCPA and Picloram, used in national agriculture, through regeneration of calcined Mg-Al-CO3 LDH and anion exchange of Mg-Al-Cl ? LDH. For this purpose, the kinetics of the sorption process was investigated, and the determination of isotherms in two different pH values was carried out. The herbicides were intercalated in Mg-Al ? LDH using two indirect synthesis methods: regeneration of the calcined material and anion exchange in solution; besides the direct synthesis method by coprecipitation. The obtained materials were properly characterized. All the obtained materials, intercalated with each of the herbicides, were used in a kinetic release study in water. The materials obtained by regeneration were also used in a leaching and in a bioassay study, to test the efficiency of LDHs as supports for the slow release of herbicides. From the kinetic sorption process of the organic anions in solution using Mg-Al ? LDH containing chloride or carbonate after calcination, it was observed that the removal of anions occurred through an anionic exchange process in the case of the LDH containing chloride, or through regeneration of the layered structure in the case of the calcined LDH. The intercalation of organic anions in a vertical position was observed in the adsorption/sorption process, and it was shown to be dependent on the herbicide concentration in solution. The calcined LDH was the most efficient for removal of anions in solution. The herbicides supported on LDHs, presented a slower release in water than the same compounds in their free form, and the release behavior was not dependent on the methodology used for the preparation of the matrix. Leaching study results using the LDH obtained by regeneration as matrix demonstrated a slow release of the active ingredient, mainly for the Picloram herbicide. The bioassay showed that the release behavior of the supported herbicides was efficient in the control of plant seeds germination at preemergence applications.
525

Modified layered double hydroxide (LDH) platelets as corrosion inhibitors reservoirs dispersed into coating for aluminun alloy 2024 / Système plaquettaire d'Hydroxyde Double Lamellaire (HDL) modifie comme reservoir d'inhibiteur de corrosion disperse dans un revetement pour l'aluminium 2024

Stimpfling, Thomas 21 October 2011 (has links)
L’alliage d’aluminium 2024 est très répandu dans l’industrie aéronautique et automobile. Le processus de corrosion peut entrainer des dommages irréversibles pouvant engendrer des issues fatales dans le domaine aéronautique. Ainsi plusieurs couches de revêtements sont déposées à la surface du métal à protéger pour prévenir le processus de corrosion. Depuis le début du 20ième siècle, le chrome hexavalent (CrVI) a été largement utilisé comme inhibiteur de corrosion dans les différentes couches du revêtement (prétraitement, primer et top-coat). La toxicité de ce composé envers l’homme et l’environnement a entrainé son interdiction et donc son remplacement comme agent de protection. Le confinement d’agent anticorrosif dans des nano-conteneurs a ainsi été reporté puisqu’un effet auto-réparant, en relargant sur demande, peut-être apporté : l’inhibiteur de corrosion agit quand le dommage apparait. Cette étude est focalisée sur l’utilisation de matériaux de type Hydroxydes Doubles Lamellaires (HDL) comme réservoir d’inhibiteurs de corrosion en raison leur propriété d’échange. Dans ce travail, plusieurs molécules ont été étudiées comme potentiel inhibiteur de corrosion. Celles-ci ont été tout d’abord caractérisées par DC-polarisation afin de déterminer la nature de leur comportement inhibiteur (anodique, cathodique ou les deux). Ensuite, ces agents anticorrosifs ont été intercalés dans des matrices HDL et leur capacité de relargage ainsi que leur comportement face au processus de corrosion ont été étudiés. Les particules HDL ainsi obtenues ont été dispersées dans la formulation d’un revêtement primaire et déposé directement sur l’alliage aluminium 2024. La résistance à la corrosion a été suivie par spectroscopie d’impédance complexe. Les propriétés d’auto-protection de notre revêtement (relargage d’agent anticorrosive encas de dommage) et leur propriété barrière, apportée par la morphologie lamellaire des nano-conteneurs, entrainant une diminution de la perméabilité aux espèces agressives (ex. eau, O2, électrolyte) responsable de l’apparition de cloques sur les revêtements, ont ainsi été caractérisées. / Aluminum alloy 2024 is widely used in aircraft and automotive industry. Corrosion processes can provide irreversible damage on the metal substrate which could have a tragic issue in the aircraft domain. Thus, several coating layers have been applied on the metal substrate to prevent corrosion process. Since the beginning of the 20th century, hexavalent chromate compounds have been extensively used as corrosion inhibitor agents for paint, primer and conversion coating. The toxicity for human health and environment has led to replace such compounds. The literature has reported different possibilities to replace such unfriendly compounds. Moreover, the entrapment of corrosion inhibitors in nanocontainer provides a self-healing effect by releasing, on demand, the active species when damage occurs. This study focuses on Layered Double Hydroxide (LDH) material as reservoir due to its exchange properties. This study has characterized several potential corrosion inhibitor molecules by DC-Polarization to determine the nature of the inhibitor compound (i.e. anodic, cathodic or both of them). Further, active anticorrosive species have been intercalated into LDH framework. Then, the release of inhibitor agents and their subsequent behaviour toward corrosion inhibition have been evaluated. Modified LDH materials have been further dispersed in the primer coating formulation and applied on aluminum alloys 2024 substrate. Corrosion inhibition has been followed by electrochemical impedance spectroscopy experiments on scratched and unscratched panel which have permitted to evaluate the self-healing property of these modified LDH materials when damage occurs and the barrier property provided by the lamellar morphology of the inorganic reservoir that is found to decrease the permeation by enhancing the tortuosity of the coating layer towards aggressive species (i.e. water, O2, electrolyte) responsible of the blistering phenomenon.
526

A Study of the Structure and Dynamics of Smectic 8CB Under Mesoscale Confinement

Benson, James January 2012 (has links)
The structure and dynamics of the smectic-A liquid crystal 8CB (4 cyano-4 octylbiphenyl) when sheared and confined to mesoscale gaps (with crossed cylindrical geometry and mica confining surfaces) were studied using a Surface Forces Apparatus (SFA). Triangular shear patterns with frequencies of 0.01, 0.1, 1.0 and 10 Hz, and amplitudes of 62.5 nm, 625 nm and 6.25 m were applied to samples at gap sizes of 0.5 and 5.0 m. The study was performed at room temperature (20.5C) and at two higher temperatures (22C and 27C). In order to minimize the thermal fluctuations within the test chamber and hence to allow for the rapid re-initialization of test runs, the SFA was modified to allow for quick, precise and remote control of the confining surfaces. The procedure maximized the number of tests that could be undertaken with a single pair of surfaces so that a single gap geometry could be maintained for the duration of the test run. In order to run the SFA remotely, scripts written with a commercial software package, LabVIEW, were used to control of the SFA components, its FECO-monitoring camera and all its peripheral electronic equipment as well. Samples were agitated to disrupt any shear-induced liquid crystal domain alignment from previous testing following each shear test, and methodologies were developed to ascertain the extent of confinement quickly and remotely following agitation. Separate methods were developed for gap sizes at each extreme of the mesoscale regime, where the transition from bulklike structure and dynamics to nano-confinement occurs (between 1 and 10 microns for smectic-A 8CB). The results revealed that the greater amplitude-gap aspect ratio and surface-to-domain contact associated with smaller gaps facilitated reorientation of the domains in the shear direction. Evidence was also presented of domains at the higher end or outside of the mesoscale regime that, while straining and accreting, were unable to reorient and thereby led to an overall increase of viscoelastic response. The effective viscosity was found to obey a simple power law with respect to shear rate, , and the flow behaviour indices, n, slightly in excess of unity indicate shear thickening occurs with large enough shear amplitude, and that the viscosity reached a plateau near unity over shear rates of 0.005 to 500 s-1 within the mesoscale regime. Different K and n values were observed depending on the shear amplitude used. Unlike bulk smectic 8CB, whose domains do not align well in the shear direction with large shear-strain amplitude, at mesoscale levels of confinement large amplitude shearing (up to 12.5 shear strain amplitude) was found to be very effective at aligning domains. In general domain reorientation is found to be much more rapid within the mesoscale regime than has been reported in bulk. Aggressive shearing was found to result in a complete drop in viscoelastic response within seconds, while gentler shearing is found to produce a very gradual increase that persists for more than six hours, with individual shear periods exhibiting frequent and significant deviations from the expected smooth shear path that may be a product of discrete domain reorientations. From these findings, certain traits of the smectic 8CB domain structures under mesoscale confinement were deduced, including how they respond to shear depending on the level of confinement, and how their reorientation due to shear varies not only with shear rate but also independently with shear amplitude. An equation describing the viscosity change as a function of both shear rate and shear amplitude is proposed. The shear amplitude dependence introduces the notion of shearing beyond the proposed smectic 8CB “viscoelastic limit”, which was shown to exhibit behaviour in accordance with Large Amplitude Oscillatory Shear (LAOS) techniques developed for Fourier Transform rheology. The findings provided an understanding of the behavioural changes that occur as one reduces the level of confinement of smectic materials from bulk to nanoconfinement.
527

Area and energy efficient VLSI architectures for low-density parity-check decoders using an on-the-fly computation

Gunnam, Kiran Kumar 15 May 2009 (has links)
The VLSI implementation complexity of a low density parity check (LDPC) decoder is largely influenced by the interconnect and the storage requirements. This dissertation presents the decoder architectures for regular and irregular LDPC codes that provide substantial gains over existing academic and commercial implementations. Several structured properties of LDPC codes and decoding algorithms are observed and are used to construct hardware implementation with reduced processing complexity. The proposed architectures utilize an on-the-fly computation paradigm which permits scheduling of the computations in a way that the memory requirements and re-computations are reduced. Using this paradigm, the run-time configurable and multi-rate VLSI architectures for the rate compatible array LDPC codes and irregular block LDPC codes are designed. Rate compatible array codes are considered for DSL applications. Irregular block LDPC codes are proposed for IEEE 802.16e, IEEE 802.11n, and IEEE 802.20. When compared with a recent implementation of an 802.11n LDPC decoder, the proposed decoder reduces the logic complexity by 6.45x and memory complexity by 2x for a given data throughput. When compared to the latest reported multi-rate decoders, this decoder design has an area efficiency of around 5.5x and energy efficiency of 2.6x for a given data throughput. The numbers are normalized for a 180nm CMOS process. Properly designed array codes have low error floors and meet the requirements of magnetic channel and other applications which need several Gbps of data throughput. A high throughput and fixed code architecture for array LDPC codes has been designed. No modification to the code is performed as this can result in high error floors. This parallel decoder architecture has no routing congestion and is scalable for longer block lengths. When compared to the latest fixed code parallel decoders in the literature, this design has an area efficiency of around 36x and an energy efficiency of 3x for a given data throughput. Again, the numbers are normalized for a 180nm CMOS process. In summary, the design and analysis details of the proposed architectures are described in this dissertation. The results from the extensive simulation and VHDL verification on FPGA and ASIC design platforms are also presented.
528

Contact Mechanics Of Layered Structures

Math, Souvik 01 1900 (has links)
Contact mechanical study of layered structures is useful to various fields of engineering, such as - mechanical engineering, civil engineering, materials engineering and biomechanics. Thin hard film coating on a compliant substrate used in cutting tool industry is an example of a layered structure. The protective coating saves the substrate from fracture and wear. However, due to film material brittleness, fracture in the films is of concern. We have developed an analytical model for a film-substrate bilayer system under normal contact loading, which helps us to obtain the stress distribution in the film and fracture behaviour. Our contact model is based on Hankel’s Transform technique, where we assume a Hertzian pressure boundary condition. At each depth of penetration of the indenter in the film-substrate system, we estimate effective modulus of the system based on Gao’s approach. We have validated our analysis by surface strain measurements and photoelastic stress study in the film on a substrate. Experimental observations from literatures show the dependence of different fracture modes in a thin hard film with columnar structure on film thickness and substrate plasticity. We perform fracture analysis, a parametric study of the fracture modes in the film under contact loading. When the film thickness is small and the substrate is relatively hard (e.g. tool steel), the film and the substrate deform conformally under contact loading and the columns of TiN slide against each other into the substrate. On the other hand, when the film is thicker and the substrate is soft (e.g. mild steel or aluminium), the strain mismatch between the film and substrate acts as an added traction at the interface and drives cracks, such as radial tensile stress driven bending cracks that start from the interface at the center of indentation; maximum shear stress driven inclined shear crack that starts inside the film and propagate at an angle to the indentation axis and tensile stress driven edge crack that starts from the free surface outside the contact. We can draw a fracture map based on these calculations which provides a guide to select film thickness depending on the substrate hardness, so that the benign mode of damage, i.e., columnar shear occurs in the film. Apart from generating the fracture map, we can obtain rationale for different fracture phenomenon in the film by studying the indentation stress field. Principal tensile stresses, responsible for driving edge cracks from the free surface outside the contact, become compressive as one approaches the substrate if the substrate is compliant. The cracks therefore do not penetrate deep into the film rather curve away from the axis of indentation. At the transition zone from one mode of damage to other in the fracture map, different modes of fracture may co-exist. The whole column may not shear, rather the shear can start from somewhere in the middle of the film, where the shear stress is maximum and it can end without reaching the interface. The indentation energy is then dissipated in other forms of damage. The contact analysis is further applied to TiN /AlTiN multilayered films having similar elastic properties. Experimental observations suggest that with decreasing layer thickness the fracture resistance of the multilayers increase and some plastic yielding occurs at the top layers of the film. However no substantial change in strain capacity (Hardness/ Young’s Modulus) of the film is observed. Hence we attribute the increase of fracture resistance of multilayers to film plasticity and mimic it by reducing the modulus of the film. The analysis validates the propensity of edge cracking and transgranular cracking as they decrease with increasing number of layers in a multilayer. We next extend our bilayer analysis to a more general trilayer problem where the moduli of the layers vary by several orders. The test system here is a mica-glue-glass system which is used in surface force apparatus experiments. Gao’s trilayer analysis is used to fit the experimental data obtained from surface force apparatus experiments, where a glass sphere indents the trilayer. The parallel spring model used in Gao’s approximation is found to be inadequate to rationalize the experimental data. We have modified Gao’s formulations by reducing the problem to a bilayer problem where the layers are the first layer (in contact) and an equivalent layer which has properties determined by a rule of mixture of the properties of all the layers excluding the top layer set out as a set of springs in series. The modified formulations give a better fit to the experimental data and it is validated from nanoindentation experiments on the same system. The formulation is used to obtain the compression of the glue, which contributes significantly to the deformation of the trilayer system in the SFA experiments. Thus, the analysis can be used to deconvolute the influence of glue in the actual mechanical response of the system in an SFA experiment, which has so far been neglected.
529

Étude de Li riche en oxydes lamellaires comme matériaux d'électrode positive pour des batteries lithium-ion

Koga, Hideyuki 30 January 2013 (has links) (PDF)
Les mécanismes mis en jeu lors du cyclage de batteries au Lithium Li//Li1.20Mn0.54Co0.13Ni0.13O2 ont été étudiés avec l'objectif de déterminer l'origine des capacités très élevées délivrées par les oxydes lamellaires " (1-x)LiMO2.xLi2MnO3 ". La caractérisation par diffraction des RX et des neutrons montre que la structure est maintenue et l'existence de fluctuations de composition qui peuvent être assimilées à l'existence de deux phases de compositions voisines. Les résultats des tests électrochimiques et les analyses menées au cours du cyclage en spectroscopie d'absorption des rayons X ont suggéré la participation de l'oxygène aux processus redox. Celle-ci a été confirmée par la préparation et la caractérisation de matériaux désintercalés et réintercalés chimiquement en lithium. Les analyses en microscopie électronique à transmission (HAADF-STEM) et en nanodiffraction, montrent qu'une densification associée à un dégagement d'oxygène a lieu à la périphérie des particules
530

A Study of the Structure and Dynamics of Smectic 8CB Under Mesoscale Confinement

Benson, James January 2012 (has links)
The structure and dynamics of the smectic-A liquid crystal 8CB (4 cyano-4 octylbiphenyl) when sheared and confined to mesoscale gaps (with crossed cylindrical geometry and mica confining surfaces) were studied using a Surface Forces Apparatus (SFA). Triangular shear patterns with frequencies of 0.01, 0.1, 1.0 and 10 Hz, and amplitudes of 62.5 nm, 625 nm and 6.25 m were applied to samples at gap sizes of 0.5 and 5.0 m. The study was performed at room temperature (20.5C) and at two higher temperatures (22C and 27C). In order to minimize the thermal fluctuations within the test chamber and hence to allow for the rapid re-initialization of test runs, the SFA was modified to allow for quick, precise and remote control of the confining surfaces. The procedure maximized the number of tests that could be undertaken with a single pair of surfaces so that a single gap geometry could be maintained for the duration of the test run. In order to run the SFA remotely, scripts written with a commercial software package, LabVIEW, were used to control of the SFA components, its FECO-monitoring camera and all its peripheral electronic equipment as well. Samples were agitated to disrupt any shear-induced liquid crystal domain alignment from previous testing following each shear test, and methodologies were developed to ascertain the extent of confinement quickly and remotely following agitation. Separate methods were developed for gap sizes at each extreme of the mesoscale regime, where the transition from bulklike structure and dynamics to nano-confinement occurs (between 1 and 10 microns for smectic-A 8CB). The results revealed that the greater amplitude-gap aspect ratio and surface-to-domain contact associated with smaller gaps facilitated reorientation of the domains in the shear direction. Evidence was also presented of domains at the higher end or outside of the mesoscale regime that, while straining and accreting, were unable to reorient and thereby led to an overall increase of viscoelastic response. The effective viscosity was found to obey a simple power law with respect to shear rate, , and the flow behaviour indices, n, slightly in excess of unity indicate shear thickening occurs with large enough shear amplitude, and that the viscosity reached a plateau near unity over shear rates of 0.005 to 500 s-1 within the mesoscale regime. Different K and n values were observed depending on the shear amplitude used. Unlike bulk smectic 8CB, whose domains do not align well in the shear direction with large shear-strain amplitude, at mesoscale levels of confinement large amplitude shearing (up to 12.5 shear strain amplitude) was found to be very effective at aligning domains. In general domain reorientation is found to be much more rapid within the mesoscale regime than has been reported in bulk. Aggressive shearing was found to result in a complete drop in viscoelastic response within seconds, while gentler shearing is found to produce a very gradual increase that persists for more than six hours, with individual shear periods exhibiting frequent and significant deviations from the expected smooth shear path that may be a product of discrete domain reorientations. From these findings, certain traits of the smectic 8CB domain structures under mesoscale confinement were deduced, including how they respond to shear depending on the level of confinement, and how their reorientation due to shear varies not only with shear rate but also independently with shear amplitude. An equation describing the viscosity change as a function of both shear rate and shear amplitude is proposed. The shear amplitude dependence introduces the notion of shearing beyond the proposed smectic 8CB “viscoelastic limit”, which was shown to exhibit behaviour in accordance with Large Amplitude Oscillatory Shear (LAOS) techniques developed for Fourier Transform rheology. The findings provided an understanding of the behavioural changes that occur as one reduces the level of confinement of smectic materials from bulk to nanoconfinement.

Page generated in 0.0582 seconds