• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 9
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 16
  • 16
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Própolis e natação na prevenção da aterogênese e hipertrofia ventricular esquerda de camundongos hipercolesterolêmicos / Própolis and swimming in the prevention of atherogenesis and left ventricular hypertrophy in hypercholesterolemic mice

Silva, Dênis Bueno da 31 August 2012 (has links)
Made available in DSpace on 2016-05-02T13:55:32Z (GMT). No. of bitstreams: 1 DenisBuenodaSilva-dissertacao.pdf: 548077 bytes, checksum: a0097266c1d6f0990023e8b0c828c0e4 (MD5) Previous issue date: 2012-08-31 / Inflammatory process, endothelial dysfunction and oxidative stress in cardiovascular environment resulting from dyslipidemia are the conditions that promote and sustain atherosclerosis and cardiac hypertrophy. The present study verified the effect of propolis alone and its association with swimming in dyslipidemia, left ventricular hypertrophy and atherogenesis of hypercholesterolemic mice that were receiving a high-fat diet. 40 LDLr-/- mice, fed with high fat diet (20% total fat, 1.25% cholesterol and 0.5% cholic acid) ad libitum for 75 days, were used in the study. The animals were divided into 4 groups (n=10): hyperlipidic group (HL), sedentary, subjected to aquatic stress; hyperlipidic + swimming group (HL+NAT), submitted to a swimming protocol (1 hour per day, 5 times per week) from the 16th day of the experiment; hyperlipidic + propolis group (HL+PRO), sedentary, submitted to aquatic stress and which received oral propolis (70 µL of the propolis alcoholic extract of 85,71% every weekday) from the 16th day of the experiment; HL+NAT+PRO group, submitted to swimming protocol (1 hour per day, 5 times per week) from the 16th day of the experiment and which received oral propolis (70 µL of the propolis alcoholic extract of 85,71% every weekday) from the 16th day of the experiment. After 75 days of the experiment, the animals were weighed and anesthetized. Blood was collected and laboratory analyzes were performed for total cholesterol and fractions, and triglycerides. After thoracotomy, heart and aorta were removed. The heart was weighed and dissected, the left ventricle isolated, the ratio between the ventricular weight (mg) and the animal weight (g), was calculated and after, it was histologically processed. Ventricle and aorta slides were stained with hematoxina and eosin (HE) and picrosirius red for histological and histochemical analyzes; other slides were treated immunohistochemically with anti-protein proinflammatory CD40L antibodies to evaluate the inflammatory process. The HL animals showed severe dyslipidemia, atherogenesis and left ventricular hypertrophy, associated with a decrease in serum high density lipoprotein (HDL) levels and subsequent development of cardiovascular anti-inflammatory process, characterized by increased expression of CD40L in the left ventricle and aorta. Swimming and propolis separated and / or associated prevented left ventricular hypertrophy (HVE), atherogenesis, ventricular and arterial inflammation, decreasing the expression of CD40L and increased plasma levels of HDL-C. A propolis alone or associated with regular physical activity is beneficial in cardiovascular protection by anti-inflammatory action. / O processo inflamatório, a disfunção do endotélio e o estresse oxidativo no ambiente cardiovascular decorrente das dislipidemias são as condições que promovem e sustentam a aterosclerose e a hipertrofia cardíaca. O presente estudo verificou o efeito da própolis isolada e da sua associação com a natação na dislipidemia, na hipertrofia ventricular esquerda e na aterogênese de camundongos hipercolesterolêmicos que já recebiam dieta hiperlipídica. Foram utilizados 40 camundongos LDLr-/- alimentados com dieta hiperlipídica (20% de gordura total, 1,25% de colesterol e 0,5% de ácido cólico) ad libitum por 75 dias. Os animais foram divididos em 4 grupos (n=10): grupo hiperlipídico (HL), sedentário, submetido ao estresse aquático; grupo hiperlipídico + natação (HL NAT), submetido a um protocolo de natação (1 hora por dia, 5 vezes por semana) a partir do 16º dia do experimento; grupo hiperlipidico/própolis (HL PRO), sedentário, submetido ao estresse aquático e que recebeu própolis via oral (70 µL do extrato alcoólico de própolis a 85,71% todos os dias da semana) a partir do 16º dia do experimento; grupo HL NAT PRO, submetido a um protocolo de natação (1 hora por dia, 5 vezes por semana) a partir do 16º dia do experimento e que recebeu própolis via oral (70 µL do extrato alcoólico de própolis a 85,71% todos os dias da semana) a partir do 16º dia do experimento. Após os 75 dias de experimento, os animais foram pesados e anestesiados. O sangue foi coletado e foram realizadas as análises laboratoriais de colesterol total e frações, e triglicerídeos. Após a toracotomia, o coração e a artéria aorta foram removidos. O coração foi pesado e dissecado, o ventrículo esquerdo isolado, calculou-se a razão entre peso ventricular (mg) e peso animal (g), e, em seguida, foi processado histologicamente. Lâminas do ventrículo e aorta foram coradas com hematoxina e eosina (HE) e picrosírius red para análise histológica e histoquímica; outras lâminas foram tratadas imunohistoquimicamente com anticorpos antiproteína pró-inflamatória (CD40L) para avaliar o processo inflamatório. Os animais HL apresentaram dislipidemia severa, aterogênese e hipertrofia ventricular esquerda associada a uma diminuição dos níveis séricos da lipoproteína de alta densidade (HDL) e consequente desenvolvimento de processo anti-inflamatório cardiovascular caracterizado pelo aumento da expressão CD40L no ventrículo esquerdo e na aorta. A natação e a própolis separadas e/ou associadas preveniu a hipertrofia ventricular esquerda (HVE), a aterogênese, a inflamação ventricular e arterial, diminuindo a expressão de CD40L e aumentando os níveis plasmáticos da HDLc. A própolis isolada ou associada com uma atividade física regular é benéfica na proteção cardiovascular por ação anti-inflamatória.
22

Étude de la Structure-Fonction du Prosegment et du domaine CHRD de la PCSK9 humaine

Luna Saavedra, Yascara Grisel 08 1900 (has links)
L’excès des particules de LDL dans le sang constitue un facteur de risque majeur dans le développement des maladies cardiovasculaires. Dans ce contexte, nous étudions la protéine PCSK9 qui favorise directement ce facteur de risque. Cette protéine est sécrétée en majorité au niveau du foie par les hépatocytes et possède la capacité de reconnaître et de lier le récepteur LDLR. Le rôle premier de ce dernier est d’éliminer les particules de LDL circulant dans le plasma. Ainsi, lorsque la PCSK9 forme un complexe avec le LDLR et l’amène à la dégradation, la conséquence directe de la diminution des ces récepteurs est une accumulation malsaine des particules LDL dans le plasma. L’importante implication de la PCSK9 dans le métabolisme des lipides nous a menés vers des recherches de caractérisation de cette protéine ainsi que dans l’étude de son mode d’action. La PCSK9 est composée de trois domaines et notre intérêt s’est porté sur l’étude structure-fonction des deux domaines dont la fonction était inconnue, soit le domaine en N-terminal : le prodomaine et de son domaine en C-terminal : CHRD. Le premier article présenté dans cette thèse révèle l’importance d’une région acide (acide aminés 33-58) régulatrice de l’activité de la PCSK9 localisée en N-terminal du prodomaine ainsi que l’effet du pH acide, équivalent à celui des endosomes tardifs, qui accroît la capacité de la PCSK9 à induire la dégradation du LDLR. Le deuxième article dissèque davantage la structure de la PCSK9 et met en lumière la différence des prérequis structurels de la région ‘’Hinge’’ ainsi que du module M2, composant du domaine CHRD, dans la voie intracellulaire et la voie extracellulaire d’activité de la PCSK9. La mutation R434W localisée dans la région ‘’Hinge’’ résulte dans une inhibition totale de l’activité intracellulaire de la PCSK9 tandis que son activité extracellulaire est réduite à ~70%. Contrairement, la perte du module M2 du domaine CHRD est bien tolérée par la PCSK9 lors de son activité intracellulaire mais totalement inhibitrice pour son activité extracellulaire. Le troisième article se distingue en présentant une nouvelle stratégie d’inhibition de l’activité de la PCSK9 en utilisant une chimère composée de la fraction Fc de l’immunoglobuline IgG1 humaine couplée avec le prodomaine de la PCSK9. La protéine fusion Fcpro lie directement la PCSK9, crée un encombrement structurel qui résulte dans une régulation négative l’activité de la PCSK9. En résumé, nous présentons dans cette thèse, trois manuscrits qui apportent une contribution à la connaissance des composantes structurelles de la PCSK9 et leur implication dans le rôle de la protéine en tant que régulateur négatif du LDLR. / Hypercholesterolemia is one of the major risk factors leading to cardiovascular disease. In this context, we focused our study on a protein that directly influences hypercholesterolemia: PCSK9. Since 2003, the coding gene for PCSK9 has been identified as the third locus responsible for familial hypercholesterolemia (FH3). PCSK9 is a protein secreted mostly from the liver by hepatocytes and has the capacity to recognize, bind and direct to degradation the LDLR receptor. The latter is responsible for the elimination the LDL particles from the plasma. The direct consequence of the LDLR degradation induced by PCSK9 is the harmful accumulation of the bad cholesterol in the blood. Since PCSK9 activity has undesirable consequences on lipid metabolism homeostasis, we directed our research to characterize this protein to better understand its mechanism of action. Three domains compose PCSK9 structure and we focused on the ‘’structure-function study’’ of two domains, of which roles were still unknown: the prodomain located at the N-terminal extremity and the CHRD domain at the C-terminus of PCSK9. The first manuscript presented in this thesis brings to light the importance of the acidic N-terminal sequence of the prosegment (amino acids 33-58) and its effect on the activity of PCSK9. It also presents a novel mechanism for fine-tuning the activity of PCSK9, which is enhanced at acidic pHs close to those of late endosomes. The second manuscript dissects further the PCSK9 structure, revealing that the structural requirements of the hinge and the M2 module located in the CHRD domain are not the same for the intracellular and extracellular pathways of PCSK9-induced LDLR degradation. Although the R434W natural mutation in the hinge region is absolutely deleterious for the intracellular activity of PCSK9, it reduces by ~70% the extracellular one. In contrast, the loss of M2 module of the CHRD domain is tolerated for the intracellular activity of PCSK9 but not for the extracellular one. The third manuscript demonstrates for the first time that a chimera containing the prosegment (Fcpro) directly binds PCSK9 and effectively acts as a negative regulator (inhibitor) of its ability to induce LDLR degradation. Our work presents a new strategy to develop such inhibitors by interfering with the structure of PCSK9 and exploiting the properties of the PCSK9 prosegment and the advantage of its fusion to a humanized Fc of IgG1. In summary, the present research data sheds new light on the functional contribution of the prodomain and the CHRD domain of PCSK9.
23

Étude de la Structure-Fonction du Prosegment et du domaine CHRD de la PCSK9 humaine

Luna Saavedra, Yascara Grisel 08 1900 (has links)
L’excès des particules de LDL dans le sang constitue un facteur de risque majeur dans le développement des maladies cardiovasculaires. Dans ce contexte, nous étudions la protéine PCSK9 qui favorise directement ce facteur de risque. Cette protéine est sécrétée en majorité au niveau du foie par les hépatocytes et possède la capacité de reconnaître et de lier le récepteur LDLR. Le rôle premier de ce dernier est d’éliminer les particules de LDL circulant dans le plasma. Ainsi, lorsque la PCSK9 forme un complexe avec le LDLR et l’amène à la dégradation, la conséquence directe de la diminution des ces récepteurs est une accumulation malsaine des particules LDL dans le plasma. L’importante implication de la PCSK9 dans le métabolisme des lipides nous a menés vers des recherches de caractérisation de cette protéine ainsi que dans l’étude de son mode d’action. La PCSK9 est composée de trois domaines et notre intérêt s’est porté sur l’étude structure-fonction des deux domaines dont la fonction était inconnue, soit le domaine en N-terminal : le prodomaine et de son domaine en C-terminal : CHRD. Le premier article présenté dans cette thèse révèle l’importance d’une région acide (acide aminés 33-58) régulatrice de l’activité de la PCSK9 localisée en N-terminal du prodomaine ainsi que l’effet du pH acide, équivalent à celui des endosomes tardifs, qui accroît la capacité de la PCSK9 à induire la dégradation du LDLR. Le deuxième article dissèque davantage la structure de la PCSK9 et met en lumière la différence des prérequis structurels de la région ‘’Hinge’’ ainsi que du module M2, composant du domaine CHRD, dans la voie intracellulaire et la voie extracellulaire d’activité de la PCSK9. La mutation R434W localisée dans la région ‘’Hinge’’ résulte dans une inhibition totale de l’activité intracellulaire de la PCSK9 tandis que son activité extracellulaire est réduite à ~70%. Contrairement, la perte du module M2 du domaine CHRD est bien tolérée par la PCSK9 lors de son activité intracellulaire mais totalement inhibitrice pour son activité extracellulaire. Le troisième article se distingue en présentant une nouvelle stratégie d’inhibition de l’activité de la PCSK9 en utilisant une chimère composée de la fraction Fc de l’immunoglobuline IgG1 humaine couplée avec le prodomaine de la PCSK9. La protéine fusion Fcpro lie directement la PCSK9, crée un encombrement structurel qui résulte dans une régulation négative l’activité de la PCSK9. En résumé, nous présentons dans cette thèse, trois manuscrits qui apportent une contribution à la connaissance des composantes structurelles de la PCSK9 et leur implication dans le rôle de la protéine en tant que régulateur négatif du LDLR. / Hypercholesterolemia is one of the major risk factors leading to cardiovascular disease. In this context, we focused our study on a protein that directly influences hypercholesterolemia: PCSK9. Since 2003, the coding gene for PCSK9 has been identified as the third locus responsible for familial hypercholesterolemia (FH3). PCSK9 is a protein secreted mostly from the liver by hepatocytes and has the capacity to recognize, bind and direct to degradation the LDLR receptor. The latter is responsible for the elimination the LDL particles from the plasma. The direct consequence of the LDLR degradation induced by PCSK9 is the harmful accumulation of the bad cholesterol in the blood. Since PCSK9 activity has undesirable consequences on lipid metabolism homeostasis, we directed our research to characterize this protein to better understand its mechanism of action. Three domains compose PCSK9 structure and we focused on the ‘’structure-function study’’ of two domains, of which roles were still unknown: the prodomain located at the N-terminal extremity and the CHRD domain at the C-terminus of PCSK9. The first manuscript presented in this thesis brings to light the importance of the acidic N-terminal sequence of the prosegment (amino acids 33-58) and its effect on the activity of PCSK9. It also presents a novel mechanism for fine-tuning the activity of PCSK9, which is enhanced at acidic pHs close to those of late endosomes. The second manuscript dissects further the PCSK9 structure, revealing that the structural requirements of the hinge and the M2 module located in the CHRD domain are not the same for the intracellular and extracellular pathways of PCSK9-induced LDLR degradation. Although the R434W natural mutation in the hinge region is absolutely deleterious for the intracellular activity of PCSK9, it reduces by ~70% the extracellular one. In contrast, the loss of M2 module of the CHRD domain is tolerated for the intracellular activity of PCSK9 but not for the extracellular one. The third manuscript demonstrates for the first time that a chimera containing the prosegment (Fcpro) directly binds PCSK9 and effectively acts as a negative regulator (inhibitor) of its ability to induce LDLR degradation. Our work presents a new strategy to develop such inhibitors by interfering with the structure of PCSK9 and exploiting the properties of the PCSK9 prosegment and the advantage of its fusion to a humanized Fc of IgG1. In summary, the present research data sheds new light on the functional contribution of the prodomain and the CHRD domain of PCSK9.
24

Prevention of Cardiometabolic Disease in Familial Hypercholesterolemia

Awan, Zuhier 11 1900 (has links)
L’hypercholestérolémie familiale (FH) est un désordre lipidique associé aux maladies cardiovasculaires les plus fréquentes. La FH est causée par des mutations dans les gènes LDLR, APOB et PCSK9. Toutefois, chez 20% des patients souffrant de FH, aucune mutation dans ces gènes n'a été détectée et ceci suggère que d’autres gènes seraient à l’origine de la FH. Actuellement, le seul traitement de la FH est une thérapie aux statines. En général les statines sont bien tolérées, cependant, une monothérapie ne permet pas d’atteindre des niveaux thérapeutiques acceptables et dans bien des cas, une thérapie combinée devient nécessaire. De plus, l’intolérance aux statines est présente dans environ 12% des patients. Dans les trois dernières décennies, la survie des patients avec la FH a augmentée de façon notoire mais on observe aussi l’apparition d’une calcification vasculaire sévère chez certains d’entre eux. Il est donc primordial de développer des nouvelles approches thérapeutiques afin de prévenir ces complications tardives. Dans cette thèse doctorat, nous présentons l’étude d’une famille avec un phénotype de FH sévère non causé par des mutations dans les gènes LDLR, APOB et PCSK9. Par des études biochimiques et par séquençage d’ADN utilisant les technologies de nouvelle génération (NextGenSeq), nous avons découvert une mutation dans le gène de l’APOE (Leu167del). Ceci nous permet de proposer le gène codant pour l’APOE comme le 4e locus responsable de la FH (FH4). Par la suite, nous avons effectué deux études de cohortes chez les patients atteints de FH. Premièrement, dans l’étude JUPITER, nous avons démontré que la rosuvastatin augmente les niveaux sanguins de la protéine PCSK9 et ceci limiterait l’efficacité du traitement aux statines. Nous avons aussi étudié l’influence du mutant naturel R46L (perte de fonction de la PCSK9) dans la réponse aux statines. Deuxièmement, nous avons examiné les effets de la perte de fonction de la PCSK9 sur le profil cardiométabolique au sein d’une population pédiatrique. Nous avons déterminé que le génotype de l’APOE est déterminant dans ce profil cardiométabolique. Enfin, nous avons étudié la calcification vasculaire chez les patients atteints de FH. Cette calcification vasculaire progresse de façon indépendante des niveaux de cholestérol sérique et n’est pas associée aux anomalies de l’homéostasie du calcium. En utilisant des modèles murins, nous avons démontré que les souris Ldlr-/- et Tg(Pcsk9) développent des calcifications vasculaires semblables à celles observées chez l’homme. De plus, nous avons confirmé l’implication de la voie de signalisation LRP5/Wnt dans la pathophysiologie de la calcification artérielle. Avec une étude interventionnelle, nous avons trouvé que l’inhibition de l’interleukine 1β (IL-1β) diminue fortement l’apparition de calcifications vasculaire dans notre modèle murin. En conclusion, nos études ont permis l’identification d’un nouveau gène impliqué dans la FH, ont démontré aussi que les statines augmentent les niveaux sériques de PCSK9 et que la perte de fonction de la PCSK9 altère le profil cardiométabolique. Enfin, nous avons établi que la calcification vasculaire représente une complication tardive chez les patients atteints de FH et que, dans notre modèle murin, la calcification vasculaire peut être retardée par l’inhibition d’IL-1β. Ces découvertes peuvent avoir d’importantes répercussions cliniques chez l’humain. / Familial Hypercholesterolemia (FH) is the most common lipoprotein disorder associated with premature cardiovascular disease. Mutations in the LDLR, APOB and PCSK9 genes cause the FH phenotype, but in 20% of FH patients, no mutations in these genes are identified, suggesting that mutations in other genes cause FH. Treatment with statins has been the cornerstone of therapy. While statins are generally well tolerated, statin intolerance is found in approximately 12% of patients. Furthermore, statin use may not allow reaching LDL-C goals and combination therapy is often required. Nevertheless, survival of FH patients over the past 3 decades has improved significantly. As FH patients live longer, severe vascular calcifications have been described as a late complication in these patients. Given the increased survival rate and late complications, novel approaches and therapies are needed. In the present thesis we examined a kindred with a severe FH phenotype, where sequencing of candidate genes failed to identify a causal mutation. Through biochemical analysis and next-generation exome sequencing we report a mutation (Leu167del) within the APOE gene that identifies the 4th locus causing FH (FH4). Next, we performed two cohort-based studies. Firstly, in the JUPITER trial we report that 20mg rosuvastatin treatment increases PCSK9 levels by 30%, thereby possibly limiting the efficacy of statin therapy. Then we show the effect of a loss-of-function (LOF) mutation of PCSK9, p.R46L, on the response to rosuvastatin. Secondly, we report that two PCSK9 gene variants, p.R46L and insLEU, were more frequent in French Canadian individuals. We also report that the APOE genotype determine the metabolic risk profile in these mutations. Finally, we studied vascular calcifications in FH individuals. These calcifications appear to progress independently of cholesterol levels and are not associated with disturbances in calcium homeostasis. Using mouse models, we show that Ldlr-/- and Tg(Pcsk9) mice develop aortic calcifications similar to that observed in humans. Furthermore, the involvement of the LRP5/Wnt pathway in the pathogenesis of calcification is illustrated. In a proof-of-concept experiment, inhibiting the upstream pro-inflammatory cytokine IL-1β attenuates calcification in mice. In conclusion, we have contributed to the identification of a novel locus responsible for FH, reported the increase in PCSK9 levels with a statins treatment and the associated altered cardiometabolic profile in PCSK9 LOF. Finally, we demonstrated that vascular calcifications represent a severe complication of FH that can be prevented by inhibiting IL-1β in a mouse model. The latter novel approach may have an important translational application in human.
25

Prevention of Cardiometabolic Disease in Familial Hypercholesterolemia

Awan, Zuhier 11 1900 (has links)
L’hypercholestérolémie familiale (FH) est un désordre lipidique associé aux maladies cardiovasculaires les plus fréquentes. La FH est causée par des mutations dans les gènes LDLR, APOB et PCSK9. Toutefois, chez 20% des patients souffrant de FH, aucune mutation dans ces gènes n'a été détectée et ceci suggère que d’autres gènes seraient à l’origine de la FH. Actuellement, le seul traitement de la FH est une thérapie aux statines. En général les statines sont bien tolérées, cependant, une monothérapie ne permet pas d’atteindre des niveaux thérapeutiques acceptables et dans bien des cas, une thérapie combinée devient nécessaire. De plus, l’intolérance aux statines est présente dans environ 12% des patients. Dans les trois dernières décennies, la survie des patients avec la FH a augmentée de façon notoire mais on observe aussi l’apparition d’une calcification vasculaire sévère chez certains d’entre eux. Il est donc primordial de développer des nouvelles approches thérapeutiques afin de prévenir ces complications tardives. Dans cette thèse doctorat, nous présentons l’étude d’une famille avec un phénotype de FH sévère non causé par des mutations dans les gènes LDLR, APOB et PCSK9. Par des études biochimiques et par séquençage d’ADN utilisant les technologies de nouvelle génération (NextGenSeq), nous avons découvert une mutation dans le gène de l’APOE (Leu167del). Ceci nous permet de proposer le gène codant pour l’APOE comme le 4e locus responsable de la FH (FH4). Par la suite, nous avons effectué deux études de cohortes chez les patients atteints de FH. Premièrement, dans l’étude JUPITER, nous avons démontré que la rosuvastatin augmente les niveaux sanguins de la protéine PCSK9 et ceci limiterait l’efficacité du traitement aux statines. Nous avons aussi étudié l’influence du mutant naturel R46L (perte de fonction de la PCSK9) dans la réponse aux statines. Deuxièmement, nous avons examiné les effets de la perte de fonction de la PCSK9 sur le profil cardiométabolique au sein d’une population pédiatrique. Nous avons déterminé que le génotype de l’APOE est déterminant dans ce profil cardiométabolique. Enfin, nous avons étudié la calcification vasculaire chez les patients atteints de FH. Cette calcification vasculaire progresse de façon indépendante des niveaux de cholestérol sérique et n’est pas associée aux anomalies de l’homéostasie du calcium. En utilisant des modèles murins, nous avons démontré que les souris Ldlr-/- et Tg(Pcsk9) développent des calcifications vasculaires semblables à celles observées chez l’homme. De plus, nous avons confirmé l’implication de la voie de signalisation LRP5/Wnt dans la pathophysiologie de la calcification artérielle. Avec une étude interventionnelle, nous avons trouvé que l’inhibition de l’interleukine 1β (IL-1β) diminue fortement l’apparition de calcifications vasculaire dans notre modèle murin. En conclusion, nos études ont permis l’identification d’un nouveau gène impliqué dans la FH, ont démontré aussi que les statines augmentent les niveaux sériques de PCSK9 et que la perte de fonction de la PCSK9 altère le profil cardiométabolique. Enfin, nous avons établi que la calcification vasculaire représente une complication tardive chez les patients atteints de FH et que, dans notre modèle murin, la calcification vasculaire peut être retardée par l’inhibition d’IL-1β. Ces découvertes peuvent avoir d’importantes répercussions cliniques chez l’humain. / Familial Hypercholesterolemia (FH) is the most common lipoprotein disorder associated with premature cardiovascular disease. Mutations in the LDLR, APOB and PCSK9 genes cause the FH phenotype, but in 20% of FH patients, no mutations in these genes are identified, suggesting that mutations in other genes cause FH. Treatment with statins has been the cornerstone of therapy. While statins are generally well tolerated, statin intolerance is found in approximately 12% of patients. Furthermore, statin use may not allow reaching LDL-C goals and combination therapy is often required. Nevertheless, survival of FH patients over the past 3 decades has improved significantly. As FH patients live longer, severe vascular calcifications have been described as a late complication in these patients. Given the increased survival rate and late complications, novel approaches and therapies are needed. In the present thesis we examined a kindred with a severe FH phenotype, where sequencing of candidate genes failed to identify a causal mutation. Through biochemical analysis and next-generation exome sequencing we report a mutation (Leu167del) within the APOE gene that identifies the 4th locus causing FH (FH4). Next, we performed two cohort-based studies. Firstly, in the JUPITER trial we report that 20mg rosuvastatin treatment increases PCSK9 levels by 30%, thereby possibly limiting the efficacy of statin therapy. Then we show the effect of a loss-of-function (LOF) mutation of PCSK9, p.R46L, on the response to rosuvastatin. Secondly, we report that two PCSK9 gene variants, p.R46L and insLEU, were more frequent in French Canadian individuals. We also report that the APOE genotype determine the metabolic risk profile in these mutations. Finally, we studied vascular calcifications in FH individuals. These calcifications appear to progress independently of cholesterol levels and are not associated with disturbances in calcium homeostasis. Using mouse models, we show that Ldlr-/- and Tg(Pcsk9) mice develop aortic calcifications similar to that observed in humans. Furthermore, the involvement of the LRP5/Wnt pathway in the pathogenesis of calcification is illustrated. In a proof-of-concept experiment, inhibiting the upstream pro-inflammatory cytokine IL-1β attenuates calcification in mice. In conclusion, we have contributed to the identification of a novel locus responsible for FH, reported the increase in PCSK9 levels with a statins treatment and the associated altered cardiometabolic profile in PCSK9 LOF. Finally, we demonstrated that vascular calcifications represent a severe complication of FH that can be prevented by inhibiting IL-1β in a mouse model. The latter novel approach may have an important translational application in human.
26

Prevention of atherosclerosis by modulating PCSK9 expression and function

Samami, Samaneh 04 1900 (has links)
L'hypercholestérolémie familiale autosomique dominante (ADH) est un trouble génétique caractérisé par des taux élevés de lipoprotéine de basse densité (LDL) plasmatique. Un niveau élevé de LDL plasmatique est connu pour contribuer au développement de l’athérosclérose, une cause majeure des crises cardiaques et des accidents vasculaires cérébraux. Le récepteur des LDL (LDLR) est la principale voie d’élimination des particules de LDL. En revanche, la proprotéine convertase subtilisine/kexine de type 9 (PCSK9), une glycoprotéine sécrétée par le foie, se lie au LDLR et augmente sa dégradation dans les lysosomes, ce qui entraîne une augmentation de LDL plasmatique et un risque plus élevé de maladie cardiovasculaire. En outre, des mutations de-perte-de fonction de PCSK9 peuvent considérablement réduire les niveaux de LDL plasmatiques et réduire le risque de maladie coronarienne jusqu'à ~ 88%. Toutes ces découvertes ont fait de PCSK9 une cible importante pour le traitement de l'hypercholestérolémie. Des anomalies génétiques du LDLR, de PCSK9 ou de l’apolipoprotéine B (apoB), le ligand du LDLR, peuvent provoquer l'ADH, mais dans certaines familles ADH il n'a pas été possible d'identifier de mutation de ces gènes, suggérant que d'autres anomalies génétiques pourraient également être impliquées dans la maladie. Dans la présente thèse, qui repose sur deux études (articles), nous avons étudié les protéines d’interaction de PCSK9 (premier article, chapitre 2) et l'effet de PCSK9 sur l'athérosclérose (deuxième article, chapitre 3). Dans notre première étude, l'analyse par spectrométrie de masse des protéines interagissant avec PCSK9 a révélé que la Golgi glycoprotéine 1 (GLG1) est une nouvelle protéine d’interaction de PCSK9. Leur co-immunoprécipitation révélée par immunobuvardage et leur co-localisation par microscopie confocale par immunofluorescence ont confirmé que GLG1 est un partenaire de PCSK9. De plus, nos résultats ont montré que GLG1 interagit aussi avec le LDLR et l'apoB. En utilisant un modèle murin, nous avons montré des taux sanguins plus faibles de PCSK9, de cholestérol et de triglycérides chez les souris knockdown GLG1. De plus, le déficit en GLG1 a réduit l'activité de la protéine de transfert des triglycérides microsomales (MTP) et induit l'agrégation périnucléaire de l'apoB, réduisant ainsi la sécrétion d'apoB. Dans notre deuxième étude, nous avons développé un modèle d'athérosclérose chez la souris pour étudier l'effet de l'absence de PCSK9 sur les plaques d’athérosclérose. Nous avons montré que la surexpression d'un mutant gain-de-fonction de PCSK9 dans le foie de souris a accéléré le développement de plaques d'athérosclérose dans la racine aortique et que celles-ci ont ensuite été réduites en induisant la régulation négative de PCSK9 en utilisant le système Tet-on. En conclusion, nous avons contribué à l'identification d'une nouvelle protéine interagissant avec PCSK9, GLG1, qui régule le taux plasmatique de cholestérol et représente une cible potentielle pour le traitement de l'hypercholestérolémie. Nous avons également démontré que la modulation du gène PCSK9 régule directement le niveau de plaques d'athérosclérose dans la racine de l'aorte. Ces études aideront à développer des thérapies efficaces pour réduire l'hypercholestérolémie et le risque de maladie cardiovasculaire / Autosomal dominant hypercholesterolemia (ADH) is a genetic disorder characterized by high plasma low-density lipoprotein (LDL) cholesterol levels. Elevated plasma LDL level is known to contribute to the development of atherosclerosis, a leading cause of heart attack and stroke. Liver LDL receptor (LDLR) acts as a primary pathway for endocytosis and clearance of LDL particles. In contrast, PCSK9, a liver-secreted glycoprotein, binds to LDLR and enhances its lysosomal degradation, resulting in increased plasma LDL concentrations and a higher risk of cardiovascular disease. Genetic defects in LDLR, PCSK9, and apolipoprotein B (apoB), the ligand of LDLR, can cause ADH, but in some ADH-families no mutations can be found in these genes, suggesting that other gene defects may also be involved in ADH. Furthermore, loss-of-function mutations in PCSK9 can greatly reduce plasma LDL levels and lower risk of coronary heart disease by up to ~88%. All these findings have made PCSK9 an attractive target for the treatment of hypercholesterolemia. In the present thesis, which is based on two studies (articles), we investigated protein interactors of PCSK9 (first article, chapter 2) and the effect of PCSK9 on atherosclerosis (Second article, chapter 3). In our first study, mass spectrometry analysis of PCSK9 interacting proteins revealed that Golgi glycoprotein 1 (GLG1) is a novel PCSK9 interactor. Co-immunoprecipitation, Western blotting, and colocalization by confocal immunofluorescence microscopy confirmed that GLG1 is an endogenous PCSK9 binding partner. We also demonstrated that LDLR and apoB interact with GLG1. Using a mouse model, we found lower levels of circulating PCSK9, cholesterol, and triglycerides in Glg1 knockdown mice. Moreover, GLG1 deficiency reduced microsomal triglyceride transfer protein (MTP) activity and induced perinuclear aggregation of apoB, thereby, reducing apoB secretion. In our second study, we developed a mouse model of atherosclerosis to investigate the effect of PCSK9 modulation on the regression of atherosclerotic plaques. We showed that overexpression of a PCSK9 gain-of-function in mouse liver accelerated the development of atherosclerotic lesions in the aortic root, which were then reduced by inducing PCSK9 downregulation using a Tet-on system. In conclusion, we have contributed to the identification of a novel PCSK9 interacting protein, GLG1, which regulates plasma level of cholesterol and represents a potential target for hypercholesterolemia treatment. We also demonstrated that PCSK9 gene modulation directly regulates the level of atherosclerotic plaques in the aortic root. We showed in our study that the wild-type mice, overexpressing PCSK9-D377Y in an inducible manner, is a useful mouse model for understanding the molecular role of PCSK9 on atherosclerotic plaques development. These studies will help to develop effective therapies to reduce hypercholesterolemia and the risk of cardiovascular disease.
27

Mechanisms of Xanthophyll Uptake in Retinal Pigment Epithelial Cells

Thomas, Sara E. January 2016 (has links)
No description available.
28

PCSK9 AS A DRIVER OF LIPID METABOLISM AND KIDNEY DISEASE

Byun, Jae Hyun January 2020 (has links)
The global prevalence of chronic kidney disease (CKD) has risen at an accelerating rate, increasing the global healthcare burden for long-term and chronic care costs. Multiple risk factors including hypertension, diabetes, and dyslipidemia synergistically induce the progression of CKD. Chief among these factors are dyslipidemia and obesity; increased free fatty acid uptake due to excess consumption of lipid-rich diets has been shown to promote intra-renal lipid accumulation in several in vivo models and in patients in various stages of CKD. Furthermore, patients with renal disease are also at a substantially higher risk for atherosclerotic cardiovascular disease (CVD). In the general population, as well as in patients with renal disease, circulating low-density lipoprotein cholesterol (LDLc) is a well-established driver of atherosclerotic lesion development and CVD progression. In 2003, the proprotein convertase subtilisin/kexin type-9 (PCSK9) was identified as the third locus of familial hypercholesterolemia and was further characterized for its ability to enhance the degradation of the low-density lipoprotein receptor (LDLR). Since this seminal discovery, the development of monoclonal antibodies targeted against PCSK9 demonstrated a significant reduction in LDLc and subsequent CVD risk, establishing the remarkable ‘bench to bedside’ transition. However, the inherent role of PCSK9 in regulating lipid homeostasis remained unknown in different pathological conditions. In the first chapter of my thesis, I demonstrate that PCSK9 regulates the LDLR as a feedback mechanism to protect against non-alcoholic steatohepatitis (NASH) progression induced by a high-fat diet (HFD) challenge. Since its seminal discovery, PCSK9 was also characterized to modulate a wide variety of receptors known to play a crucial role in lipid metabolism including the cluster of differentiation 36 (CD36), the very low-density lipoprotein receptor (VLDLR), and the apolipoprotein E receptor 2 (ApoER2). Previously, we have demonstrated that the absence of PCSK9 promotes diet-induced non-alcoholic steatohepatitis and liver injury through increased surface expression of CD36. Given that these same receptors are well-expressed on renal epithelia, the second chapter of my thesis demonstrates that PCSK9 is also able to modulate renal lipid metabolism by attenuating tubular lipid accumulation and subsequent renal injury. Furthermore, when PCSK9 was first characterized by Seidah and colleagues in 2003, in situ hybridization of murine PCSK9 demonstrated that it was primarily expressed in the liver, but also well-expressed in the kidney cortex, cerebellum, and small intestines. Despite its expression in a wide range of tissues, the secretion of PCSK9 was exclusive to the liver, thus, questioning what the intracellular role of PCSK9 may be. Hence, my last chapter of my masters studies lies in establishing the role of intracellular PCSK9 expression in a cellular process known as endoplasmic reticulum (ER) stress in the kidney. ER stress is a phenomena which primarily occurs due to increased accumulation of misfolded polypeptides, and has been implicated in numerous metabolic diseases including hepatic steatosis, CKD, and neurodegenerative pathologies. Previously, we have demonstrated that overexpressing wild-type and variants of PCSK9 in a Pcsk9-/- mouse does not induce the activation of the unfolded protein response (UPR) and attenuates hepatic ER stress. Using a well-established CKD model, I show that Pcsk9-/- mice exhibit increased renal ER stress and injury relative to wild-type controls. Overall, my findings demonstrate for the first time that both extracellular and intracellular PCSK9 has the ability to modulate renal injury using two distinct mechanism to protect against CKD progression. / Thesis / Master of Health Sciences (MSc)
29

Étude du trafic cellulaire de la convertase de proprotéine PCSK9 responsable de la dégradation du récepteur des lipoprotéines de faible densité (LDLR)

Ait Hamouda, Hocine 06 1900 (has links)
Les maladies cardiovasculaires (MCV) sont la principale cause de mortalité dans les pays industrialisés. L'hypercholestérolémie constitue un facteur de risque majeur pour les MCV. Elle est caractérisée par des niveaux élevés de lipoprotéines de faible densité (LDL, aussi appelé “mauvais cholestérol”). La présence prolongée de haut niveaux de LDL dans la circulation augmente le risque de formation de plaques athérosclérotiques, ce qui peut conduire à l'obstruction des artères et l'infarctus du myocarde. Le LDL est normalement extrait du sang par sa liaison au récepteur du LDL (LDLR) qui est responsable de son endocytose dans les hépatocytes. Des études génétiques humaines ont identifié PCSK9 (proprotein convertase subtilisin/kexin type 9) comme le troisième locus responsable de l'hypercholestérolémie autosomique dominante après le LDLR et son ligand l’apolipoprotéine B-100. PCSK9 interagit avec le LDLR et induit sa dégradation, augmentant ainsi les niveaux plasmatiques de LDL. Les mutations gain de fonction (GF) de PCSK9 sont associées à des niveaux plasmatiques élevés de LDL et à l'apparition précoce des MCV, alors que les mutations perte de fonction (PF) de PCSK9 diminuent le risque de MCV jusqu’à ~ 88% grâce à une réduction du LDL circulant. De ce fait, PCSK9 constitue une cible pharmacologique importante pour réduire le risque de MCV. PCSK9 lie le LDLR à la surface cellulaire et/ou dans l'appareil de Golgi des hépatocytes et provoque sa dégradation dans les lysosomes par un mécanisme encore mal compris. Le but de cette étude est de déterminer pourquoi certaines mutations humaines de PCSK9 sont incapables de dégrader le LDLR tandis que d'autres augmentent sa dégradation dans les lysosomes. Plusieurs mutations GF et PF de PCSK9 ont été fusionnées à la protéine fluorecente mCherry dans le but d'étudier leur mobilité moléculaire dans les cellules hépatiques vivantes. Nos analyses quantitatives de recouvrement de fluorescence après photoblanchiment (FRAP) ont montré que les mutations GF (S127R et D129G) avaient une mobilité protéique plus élevée (> 35% par rapport au WT) dans le réseau trans- Golgien. En outre, nos analyses quantitatives de recouvrement de fluorescence inverse après photoblanchiment (iFRAP) ont montré que les mutations PF de PCSK9 (R46L) avaient une mobilité protéique plus lente (<22% par rapport au WT) et une fraction mobile beaucoup plus petite (<40% par rapport au WT). Par ailleurs, nos analyses de microscopie confocale et électronique démontrent pour la toute première fois que PCSK9 est localisée et concentrée dans le TGN des hépatocytes humains via son domaine Cterminal (CHRD) qui est essentiel à la dégradation du LDLR. De plus, nos analyses sur des cellules vivantes démontrent pour la première fois que le CHRD n'est pas nécessaire à l'internalisation de PCSK9. Ces résultats apportent de nouveaux éléments importants sur le mécanisme d'action de PCSK9 et pourront contribuer ultimement au développement d'inhibiteurs de la dégradation du LDLR induite par PCSK9. / Coronary heart diseases (CHD) are a leading cause of death in Western societies. Hypercholesterolemia is a major risk factor for CHD. It is characterized by high levels of circulating low-density lipoprotein cholesterol (LDL, also called "bad cholesterol"). The prolonged presence of elevated levels of LDL in the circulation increases the risk of formation of atherosclerotic plaques, which can lead to obstruction of arteries and myocardial infarction. LDL is normally cleared from the blood through the binding of its sole protein constituent apolipoprotein B100 to hepatic LDL receptor (LDLR), which mediates its endocytosis in the liver. Human genetic studies have identified PCSK9 as the third gene responsible of autosomal dominant hypercholesterolemia after LDLR and its ligand apolipoprotein B100. PCSK9 interacts with the LDLR and induces its degradation thereby causing plasma LDL levels to rise. PCSK9 gain-of-function (GOF) mutations are associated with elevated plasma LDL levels and premature CHD while PCSK9 loss-offunction (LOF) mutations reduce the risk of CHD up to ~88% owing to reduction of circulating LDL. Accordingly, PCSK9 is recognized as a major pharmacological target to lower the risk of CHD. PCSK9 binds the LDLR at the cell surface and/or in the Golgi apparatus of hepatocytes and causes its degradation in lysosomes by a mechanism not yet clearly understood. The goal of this study was to determine why some human PCSK9 mutations fail to induce LDLR degradation while others increase it in lysosomes. Several PCSK9 LOF and GOF mutations were fused to the fluorescent protein mCherry to study their molecular mobility in living human liver cells. Our quantitative analysis of fluorescence recovery after photobleaching (FRAP) showed that PCSK9 GOF mutations S127R and D129G have a higher protein mobility (>35% compared to WT) at the trans- Golgi network (TGN). Our quantitative analysis of inverse fluorescence recovery after photobleaching (iFRAP) showed that PCSK9 LOF mutation R46L presented a much slower protein mobility (<22% compared to WT) and a much slower mobile fraction (<40% compared to WT). In addition, our confocal and electron microscopy analyses demonstrate for the first time that PCSK9 is localized and concentrated at the TGN of human hepatocytes. Furthermore, our results demonstrate that PCSK9 localization in the TGN is mediated through its C-terminal cysteine and histidine-rich domain (CHRD), which is essential for LDLR degradation. Also, our live-cell analyses demonstrate for the first time that the CHRD is not required for internalization of PCSK9. These results provide important new information on the mechanism of action of PCSK9 and may ultimately help in the development of inhibitors of the PCSK9-induced LDLR degradation.
30

Le médicament épigénétique 5-Azacytidine stabilise l’ARN messager du récepteur des lipoprotéines de basse densité (LDLR) via une voie IRE1α/EGFR/ERK1/2- dépendante

Mnasri, Nourhen 08 1900 (has links)
No description available.

Page generated in 0.0623 seconds