• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 13
  • 13
  • 3
  • 1
  • Tagged with
  • 107
  • 107
  • 107
  • 22
  • 21
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Avaliação numérica do efeito de variação de área sobre as características operacionais de quimadores porosos radiantes

Mazzochi, Gilmar January 2014 (has links)
Nesse trabalho, é investigada a combustão pré-misturada de metano e ar em um queimador poroso radiante com área de seção transversal variável. A estabilidade de chama e a eficiência de radiação neste tipo de queimador são analisadas através de simulação numérica. O problema considerado para análise é de um queimador unidimensional de área variável com perdas de calor por radiação em suas extremidades. A metodologia numérica usada para resolver o conjunto de equações de conservação é o método dos volumes finitos com o sistema de coordenadas cartesianas. Os resultados mostram que, o aumento da área da seção transversal proporciona um aumento na faixa de estabilidade de chama do queimador quando comparado com um de área constante. A eficiência de radiação também é influenciada positivamente pela variação de área, ou seja, um aumento na área da seção de saída do dispositivo resulta em um aumento na eficiência. Também é testada uma modelagem alternativa baseada no método de curvas de nível (level-set method). Nesse modelo as equações das espécies químicas são substituídas pela equação-G, a qual descreve a dinâmica de uma frente de chama infinitamente fina. Os resultados numéricos das simulações bem como as vantagens e as limitações do modelo de curvas de nível são discutidas. Em linhas gerais os resultados do modelo de curvas de nível não foram capazes de reproduzir adequadamente o comportamento obtido com o modelo convencional. / In this work, the premixed combustion of methane and air in a porous radiant burner with a variable cross-sectional area is investigated. The flame stability and the radiant efficiency in this kind of burner are analyzed through numerical simulation. The problem considers a variable area one-dimensional burner with radiation heat losses in its extremities. The numerical method used to solve the set of conservation equations is the finite volume method with the Cartesian coordinate system. The results show that an increase of the cross-sectional area promotes an increase of the flame stability range when compared with a constant area burner. The radiant efficiency is also positively influenced by the area variation, i.e., the increase of the outlet area results in an enhanced efficiency. An alternative modelling based on the level-set method is also tested. In this model the equations of chemical species are replaced by the G-Equation, which describes the dynamics of an infinitely thin flame front. The numerical results of simulations as well as advantages and limitations of the level-set model are discussed. In general the results of the level-set model were not able to reproduce in a suitable way the behavior obtained with the conventional model.
52

Avaliação numérica do efeito de variação de área sobre as características operacionais de quimadores porosos radiantes

Mazzochi, Gilmar January 2014 (has links)
Nesse trabalho, é investigada a combustão pré-misturada de metano e ar em um queimador poroso radiante com área de seção transversal variável. A estabilidade de chama e a eficiência de radiação neste tipo de queimador são analisadas através de simulação numérica. O problema considerado para análise é de um queimador unidimensional de área variável com perdas de calor por radiação em suas extremidades. A metodologia numérica usada para resolver o conjunto de equações de conservação é o método dos volumes finitos com o sistema de coordenadas cartesianas. Os resultados mostram que, o aumento da área da seção transversal proporciona um aumento na faixa de estabilidade de chama do queimador quando comparado com um de área constante. A eficiência de radiação também é influenciada positivamente pela variação de área, ou seja, um aumento na área da seção de saída do dispositivo resulta em um aumento na eficiência. Também é testada uma modelagem alternativa baseada no método de curvas de nível (level-set method). Nesse modelo as equações das espécies químicas são substituídas pela equação-G, a qual descreve a dinâmica de uma frente de chama infinitamente fina. Os resultados numéricos das simulações bem como as vantagens e as limitações do modelo de curvas de nível são discutidas. Em linhas gerais os resultados do modelo de curvas de nível não foram capazes de reproduzir adequadamente o comportamento obtido com o modelo convencional. / In this work, the premixed combustion of methane and air in a porous radiant burner with a variable cross-sectional area is investigated. The flame stability and the radiant efficiency in this kind of burner are analyzed through numerical simulation. The problem considers a variable area one-dimensional burner with radiation heat losses in its extremities. The numerical method used to solve the set of conservation equations is the finite volume method with the Cartesian coordinate system. The results show that an increase of the cross-sectional area promotes an increase of the flame stability range when compared with a constant area burner. The radiant efficiency is also positively influenced by the area variation, i.e., the increase of the outlet area results in an enhanced efficiency. An alternative modelling based on the level-set method is also tested. In this model the equations of chemical species are replaced by the G-Equation, which describes the dynamics of an infinitely thin flame front. The numerical results of simulations as well as advantages and limitations of the level-set model are discussed. In general the results of the level-set model were not able to reproduce in a suitable way the behavior obtained with the conventional model.
53

An efficient analysis of resin transfer molding process using extended finite element method / Une analyse efficace du procédé RTM à l’aide de la méthode XFEM

Jung, Yeonhee 02 September 2013 (has links)
Le procédé de fabrication par RTM (Resin Transfer Molding) a été étudié numériquement à l’aide de la méthode XFEM (eXtended Finite Element Method) combinée avec la méthode Level set. La méthode XFEM permet d’obtenir une bonne précision numérique de la pression près du front d’écoulement, où son gradient est discontinu. Les fonctions de forme enrichies de la méthode XFEM sont proposées à l’aide des valeurs de Level set en vue de décrire correctement l’interpolation avec le front d’écoulement. En plus, la méthode de Level set est utilisée pour transporter le front d’écoulement à chaque pas de temps durant le remplissage du moule. Les valeurs de Level set sont calculées à l’aide d’une méthode de Galerkin implicite. Le solveur multi-frontal d’IPSAP a été utilisé pour la résolution du système. Cette étude a été validée en comparaison avec les solutions analytiques.En outre, une méthode de localisation avec XFEM et la méthode Level set a été proposée afin d’améliorer l’efficacité de calcul. Elle permet de réduire le domaine de calcul près du front d’écoulement. Par conséquent, le temps de calcul est fortement réduit grâce à cette méthode. Un test d’efficacité a été fait avec des modèles simples en écoulement laminaire ou radial.Quelques exemples d’application sont présentés pour illustrer la capacité de cette méthode. Une pale d’éolienne a également traitée comme application industrielle. Enfin, une interface d’utilisateur graphique a été développée en vue de fournir une facilité des pré- et post-processus. / Numerical simulation for Resin Transfer Molding (RTM) manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions.Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with simple channel or radial flow models. Several application examples are analyzed to demonstrate ability of this method. A wind turbine blade is also treated as industrial application. Finally, a Graphic User Interface (GUI) tool is developed so as to make easy the pre/post-processing of the simulation.
54

Shape optimization for contact and plasticity problems thanks to the level set method / Optimisation de forme pour des problèmes de contact et de plasticité à l'aide de la méthode des lignes de niveaux

Maury, Aymeric 02 December 2016 (has links)
Cette thèse porte sur l'optimisation de forme via la méthode des "level sets" pour deux comportements mécaniques induisant des déplacements non différentiables par rapport à la forme: le contact et la plasticité. Pour y remédier, nous utilisons des problèmes approchés issus de méthode de pénalisation et de régularisation.Dans la première partie, nous présentons quelques notions fondamentales d'optimisation de forme (chapitre 1). Puis nous exposons les résultats qui seront utiles à l'analyse des deux problèmes mécaniques considérés et nous illustrons ces résultats.La deuxième partie introduit les modèles statiques de contact (chapitre 3) et le modèle statique de plasticité (chapitre 4) que nous utilisons dans le manuscrit. Pour chacun, nous donnons les bases de la modélisation mécanique, une analyse mathématique des inéquations variationnelles associées et nous expliquons quels solveurs nous avons implémentés.La dernière partie se focalise sur l'optimisation de forme. Dans chacun des chapitres nous donnons les versions pénalisées et régularisées des modèles, prouvons, pour certains, leur convergence vers les modèles exactes, calculons leurs gradients de forme et proposons des exemples 2D et, en contact, 3D. Ainsi, dans le chapitre 5, traitons-nous du contact et considérons deux sortes de problèmes: le premier dans lequel la zone de contact est fixe, le second dans lequel la zone de contact est optimisable. Pour ce dernier, nous introduisons deux méthodes pour résoudre du contact sans discrétiser la zone de contact. Dans le chapitre 6, nous abordons le modèle de Hencky que nous approximons grâce à une pénalisation de Perzyna ainsi que grâce à un modèle de notre crue. / The main purpose of this thesis is to perform shape optimisation, in the framework of the level set method, for two mechanical behaviours inducing displacement which are not shape differentiable: contact and plasticity. To overcome this obstacle, we use approximate problems found by penalisation and regularisation.In the first part, we present some classical notions in optimal design (chapter 1). Then we give the mathematical results needed for the analysis of the two mechanical problems in consideration and illustrate these results.The second part is meant to introduce the five static contact models (chapter 3) and the static plasticity model (chapter 4) we use in the manuscript. For each chapter we provide the basis of the mechanical modeling, a mathematical analysis of the related variational inequations and, finally, explain how we implement the associated solvers.Eventually the last part, consisting of two chapters is devoted to shape optimisation. In each of them, we state the regularised versions of the models, prove, for some of them, the convergence to the exact ones, compute shape gradients and perform some numerical experiments in 2D and, for contact, in 3D. Thus, in chapter 5, we focus on contact and consider two types of optimal design problems: one with a fixed contact zone and another one with a mobile contact zone. For this last type, we introduce two ways to solve frictionless contact without meshing the contact zone. One of them is new and the other one has never been employed in this framework. In chapter 6, we deal with the Hencky model which we approximate thanks to a Perzyna penalised problem as well as a home-made one.
55

Structural optimization of actuators and mechanisms considering electrostatic-structural coupling effects and geometric nonlinearity / 静電-構造連成効果および幾何学的非線形性を考慮したアクチュエータと機構の構造最適化

Kotani, Takayo 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18585号 / 工博第3946号 / 新制||工||1606(附属図書館) / 31485 / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 西脇 眞二, 教授 田畑 修, 教授 松原 厚 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
56

Long-Pulsed Laser-Induced Cavitation: Laser-Fluid Coupling, Phase Transition, and Bubble Dynamics

Zhao, Xuning 29 February 2024 (has links)
This dissertation develops a computational method for simulating laser-induced cavitation and investigates the mechanism behind the formation of non-spherical bubbles induced by long-pulsed lasers. The proposed computational method accounts for the laser emission and absorption, phase transition, and the dynamics and thermodynamics of a two-phase fluid flow. In this new method, the model combines the Navier-Stokes (NS) equations for a compressible inviscid two-phase fluid flow, a new laser radiation equation, and a novel local thermodynamic model of phase transition. The Navier-Stokes equations are solved using the FInite Volume method with Exact two-phase Riemann solvers (FIVER). Following this method, numerical fluxes across phase boundaries are computed by constructing and solving one-dimensional bi-material Riemann problems. The new laser radiation equation is derived by customizing the radiative transfer equation (RTE) using the special properties of laser, including monochromaticity, directionality, high intensity, and a measurable focusing or diverging angle. An embedded boundary finite volume method is developed to solve the laser radiation equation on the same mesh created for the NS equations. The fluid mesh usually does not resolve the boundary and propagation directions of the laser beam, leading to the challenges of imposing the boundary conditions on the laser domain. To overcome this challenge, ghost nodes outside the laser domain are populated by mirroring and interpolation techniques. The existence and uniqueness of the solution are proved for the two-dimensional case, leveraging the special geometry of the laser domain. The method is up to second-order accuracy, which is also proved, and verified using numerical tests. A method of latent heat reservoir is developed to predict the onset of vaporization, which accounts for the accumulation and release of latent heat. In this work, the localized level set method is employed to track the bubble surface. Furthermore, the continuation of phase transition is possible in laser-induced cavitation problems, especially for long-pulsed lasers. A method of local correction and reinitialization is developed to account for continuous phase transitions. Several numerical tests are presented to verify the convergence of these methods. This multiphase laser-fluid coupled computational model is employed to simulate the formation and expansion of bubbles with different shapes induced by different long-pulsed lasers. The simulation results show that the computational method can capture the key phenomena in the laser-induced cavitation problems, including non-spherical bubble expansion, shock waves, and the ``Moses effect''. Additionally, the observed complex non-spherical shapes of vapor bubbles generated by long-pulsed laser reflect some characteristics (e.g., direction, width) of the laser beam. The dissertation also investigates the relation between bubble shapes and laser parameters and explores the transition between two commonly observed shapes -- namely, a rounded pear-like shape and an elongated conical shape -- using the proposed computational model. Two laboratory experiments are simulated, in which Holmium:YAG and Thulium fiber lasers are used respectively to generate bubbles of different shapes. In both cases, the predicted bubble nucleation and morphology agree reasonably well with the experimental observation. The full-field results of laser radiance, temperature, velocity, and pressure are analyzed to explain bubble dynamics and energy transmission. It is found that due to the lasting energy input, the vapor bubble's dynamics is driven not only by advection, but also by the continued vaporization at its surface. Vaporization lasts less than 1 microsecond in the case of the pear-shaped bubble, compared to over 50 microseconds for the elongated bubble. It is thus hypothesized that the bubble's morphology is determined by a competition between the speed of bubble growth due to advection and continuous vaporization. When the speed of advection is higher than that of vaporization, the bubble tends to grow spherically. Otherwise, it elongates along the laser beam direction. To test this hypothesis, the two speeds are defined analytically using a model problem and then estimated for the experiments using simulation results. The results support the hypothesis and also suggest that when the laser's power is fixed, a higher laser absorption coefficient and a narrower beam facilitate bubble elongation. / Doctor of Philosophy / Laser-induced cavitation is a process where laser beams create bubbles in a liquid. This phenomenon is widely applied in research and microfluidic applications for precise control of bubble dynamics. It also naturally occurs in various laser-based processes involving liquid environments. Understanding laser-induced cavitation is important for enhancing the effectiveness and safety of related technologies. However, experimental studies encounter limitations, highlighting the development of numerical methods to advance the understanding of laser-induced cavitation. The laser-induced cavitation can be roughly described as localized boiling through thermal radiation. The detailed physics involves the absorption of laser light by a liquid, the formation of vapor bubbles due to localized heating, and the dynamics of both the bubbles and the surrounding liquid. The first part of the dissertation introduces a new computational method for modeling these phenomena. The dynamics of the two-phase flow are modeled by the Navier-Stokes equations, which are solved using the FInite Volume method with Exact two-phase Riemann solvers (FIVER). The absorption of the laser light is modeled by a new laser radiation equation, which is derived from laser energy conservation and special properties of the laser. An embedded boundary finite volume method is developed to solve this equation on the same mesh created for the NS equations. Additionally, a method of latent heat reservoir is developed to predict the onset of vaporization. In this work, the level set method is employed to track the bubble surface, and a method of local correction and reinitialization is developed to account for possible continuous phase transitions. After developing this new method, several test cases are simulated. The simulation results show that the method can capture the key phenomena in the laser-induced cavitation problems, including the absorption of laser light, non-spherical bubble expansion, and shock waves. When the laser pulse is comparable to or longer than the acoustic time scale (long-pulsed laser), vapor bubbles generated often have complex non-spherical shapes. The bubble shapes reflect some characteristics (e.g., direction, width) of the laser beam. The second part of the dissertation investigates the relation between bubble shapes and laser parameters. Two laboratory experiments are simulated, in which two different lasers are used to generate bubbles of different shapes, namely, a rounded pear-like shape and an elongated conical shape. In both cases, the simulated bubbles exhibit shapes and sizes that reasonably match the experimental results. The simulation results of temperature, pressure, and velocity fields are analyzed to explain bubble dynamics and energy transmission. The analysis shows that the expansion of bubbles induced by long-pulsed lasers is determined not only by advection but also by the continued vaporization at its surface. Vaporization lasts less than $1$ microsecond in the case of the pear-shaped bubble, compared to over $50$ microseconds for the elongated bubble. It is thus hypothesized that the bubble expansion is determined by a competition between the speed of bubble growth due to advection and continuous vaporization. When the speed of advection is higher than that of vaporization, the bubble tends to grow spherically. Otherwise, it elongates along the laser beam direction. To test this hypothesis, the two speeds are defined analytically using a model problem and then estimated for the experiments using simulation results. The results support the hypothesis and also suggest that when the laser's power is fixed, a higher laser absorption coefficient and a narrower beam facilitate bubble elongation.
57

Level set numerical approach to anisotropic mean curvature flow on obstacle / 障害物上の非等方的平均曲率流のための等高面方法による数値解法

Gavhale, Siddharth Balu 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23677号 / 理博第4767号 / 新制||理||1683(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 SVADLENKA Karel, 教授 泉 正己, 教授 坂上 貴之 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
58

A Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid (RKDG-DGF) Method to Near-field Early-time Underwater Explosion (UNDEX) Simulations

Park, Jinwon 22 September 2008 (has links)
A coupled solution approach is presented for numerically simulating a near-field underwater explosion (UNDEX). An UNDEX consists of a complicated sequence of events over a wide range of time scales. Due to the complex physics, separate simulations for near/far-field and early/late-time are common in practice. This work focuses on near-field early-time UNDEX simulations. Using the assumption of compressible, inviscid and adiabatic flow, the fluid flow is governed by a set of Euler fluid equations. In practical simulations, we often encounter computational difficulties that include large displacements, shocks, multi-fluid flows with cavitation, spurious waves reflecting from boundaries and fluid-structure coupling. Existing methods and codes are not able to simultaneously consider all of these characteristics. A robust numerical method that is capable of treating large displacements, capturing shocks, handling two-fluid flows with cavitation, imposing non-reflecting boundary conditions (NRBC) and allowing the movement of fluid grids is required. This method is developed by combining numerical techniques that include a high-order accurate numerical method with a shock capturing scheme, a multi-fluid method to handle explosive gas-water flows and cavitating flows, and an Arbitrary Lagrangian Eulerian (ALE) deformable fluid mesh. These combined approaches are unique for numerically simulating various near-field UNDEX phenomena within a robust single framework. A review of the literature indicates that a fully coupled methodology with all of these characteristics for near-field UNDEX phenomena has not yet been developed. A set of governing equations in the ALE description is discretized by a Runge Kutta Discontinuous Galerkin (RKDG) method. For multi-fluid flows, a Direct Ghost Fluid (DGF) Method coupled with the Level Set (LS) interface method is incorporated in the RKDG framework. The combination of RKDG and DGF methods (RKDG-DGF) is the main contribution of this work which improves the quality and stability of near-field UNDEX flow simulations. Unlike other methods, this method is simpler to apply for various UNDEX applications and easier to extend to multi-dimensions. / Ph. D.
59

Simulation numérique de feux de forêt avec réinitialisation et contournement d’obstacles

Desfossés Foucault, Alexandre 01 1900 (has links)
Ce travail présente une technique de simulation de feux de forêt qui utilise la méthode Level-Set. On utilise une équation aux dérivées partielles pour déformer une surface sur laquelle est imbriqué notre front de flamme. Les bases mathématiques de la méthode Level-set sont présentées. On explique ensuite une méthode de réinitialisation permettant de traiter de manière robuste des données réelles et de diminuer le temps de calcul. On étudie ensuite l’effet de la présence d’obstacles dans le domaine de propagation du feu. Finalement, la question de la recherche du point d’ignition d’un incendie est abordée. / This work presents a forest fire simulation model which uses the Level-Set method. We use a partial differential equation to deform a surface on which our flame front is inscribed. The mathematical foundations of the Level-set method are presented. We then explain a reinitialization method that allows us to treat in a robust way real data and to reduce the calculation time. The effect of the presence of barriers in the fire propagation domain is also studied. Finally, we make an attempt to find the ignition point of a forest fire.
60

Simulation numérique directe multiphasique de la déformation d’un alliage Al-Cu à l’état pâteux – Comparaison avec des observations par tomographie aux rayons X in situ en temps réel / Direct and multiphase numerical simulation of the Al-Cu alloy deformation in the mushy state – Comparison with in situ and real-time X-ray tomography observations

Zaragoci, Jean-François 09 July 2012 (has links)
La fissuration à chaud est un défaut majeur rencontré en solidification des alliages d'aluminium. Elle est liée à l'incapacité du liquide de s'écouler dans les zones où des porosités sont présentes, ne permettant pas de les refermer avant qu'elles gagnent en volume. Pour comprendre la fissuration à chaud, il est crucial de développer nos connaissances du comportement mécanique de la zone pâteuse. Pour cela, il est très utile d'effectuer des expériences de microtomographie aux rayons X et des simulations mécaniques sur des volumes élémentaires représentatifs. Dans cette thèse, nous proposons de coupler les deux approches en initialisant une simulation par éléments finis grâce à des données de microtomographie issues d'un test de traction isotherme d'un alliage d'aluminium-cuivre à l'état pâteux. Cette approche originale nous donne directement accès à la réalité expérimentale et permet des comparaisons des évolutions numérique et expérimentale de l'éprouvette. Nous expliquons dans un premier temps comment obtenir la représentation numérique à l'aide de l'algorithme des marching cubes et de la méthode d'immersion de volume. Nous présentons ensuite notre modèle numérique qui s'appuie sur une résolution monolithique des équations de Stokes. Une fois le champ de vitesse obtenu dans l'ensemble des phases solide, liquide et gazeuse, nous utilisons une méthode level set dans un formalisme eulérien afin de faire évoluer la morphologie de notre échantillon numérique. Malgré la simplicité du modèle, les résultats expérimentaux et numériques montrent un accord raisonnable en ce qui concerne la propagation de l'air à l'intérieur de l'échantillon. / Hot tearing is a major defect arising during solidification of aluminium alloys. This defect is associated with the inability of liquid to feed areas where voids have started to appear, not allowing to heal small defects before they grow bigger. To understand hot tearing, it is mandatory to develop a good knowledge of the semi-solid mechanical behaviour. It is thus very useful to carry out X-ray microtomographies experiments and mechanical simulations on representative elementary volumes. In this work, we couple the both approaches by initialising a finite element simulation with the help of microtomography data obtained during an isothermal tensile testing of an aluminium-copper alloy in the mushy state. This innovative approach gives a direct access to the experimental reality and allows comparisons of numerical and experimental evolutions of the sample. We explain in a first time how to get the numerical representation thanks to a marching cubes algorithm and the immersed volume method. Then, we present our numerical model for which we solve the Stokes equations in a monolithic way. Once the velocity computed in all the solid, liquid and gaseous phases, we use a level set method in a Eulerian formalism to obtain the morphological evolution of our numerical sample. Despite the model simplicity, numerical and experimental results show a reasonable agreement concerning the air propagation inside the sample.

Page generated in 0.083 seconds