1 |
Role of U(1) Gauge Symmetry in the Semiconductor Bloch EquationsParks, Andrew 25 November 2022 (has links)
The semiconductor Bloch equations (SBEs) are an insightful and well-established formalism for studying light-matter interactions in solids. When Coulomb interactions between electrons are omitted, the SBEs are simplified to a single particle model. The SBEs in this single electron approximation have been used extensively to model strong-field interactions in condensed matter. The SBEs in the length gauge provide an intuitive and numerically efficient model of high harmonic generation (HHG) in solids. In this approach, the SBEs involve Berry connections and transition dipole moments, which are gauge dependent structural quantities. This thesis studies the role of gauge symmetry in the SBEs, and how it can be exploited to facilitate efficient numerical analysis of HHG in solids.
In the length gauge, the macroscopic current describing HHG can be decomposed into physically intuitive contributions. In particular, this leads to a contribution known as the "mixture" current, which has been overlooked by the HHG community until recently. We study the influence of this contribution using the analytic tight-binding model for gapped graphene. We derive an analytic gauge transformation that removes singular behaviour from the gapped graphene model, thus enabling efficient numerical integration of the SBEs.
We also present an alternative approach for simulating dynamics in tight-binding models. Instead of simulating the SBEs in the usual basis of Bloch functions, we transform to the basis in which the tight-binding Hamiltonian is represented. The dipole matrix elements necessarily vanish in this basis, and the SBEs can be integrated using only the Hamiltonian matrix elements. We first generalize the SBEs to accomodate a non-diagonal Hamiltonian matrix, and we demonstrate this formalism numerically using two different tight-binding models.
Finally, we derive a novel formulation of the SBEs which involve only gauge invariant matrix elements. Specifically, the Berry connections and transition dipole phases are replaced by a gauge invariant quantity known as the shift vector. This yields a fully gauge invariant description of HHG in solids, and the shift vector provides intuitive insight for HHG in systems with broken inversion symmetry. Further, the ability to describe HHG solely in terms of gauge invariant quantities raises new possibilities for tomographic reconstruction of crystal band structure, and this idea is discussed as a possible direction of future work.
|
2 |
Collective light-matter interactions via emergent order in cold atomsGreenberg, Joel January 2012 (has links)
<p>Collective behavior in many-body systems, where the dynamics of an individual element depend on the state of the entire ensemble, play an important role in both basic science research and applied technologies. Over the last twenty years, studies of such effects in cold atomic vapors have lead to breakthroughs in areas such as quantum information science and atomic and condensed matter physics. Nevertheless, in order to generate photon-mediated atom-atom coupling strengths that are large enough to produce collective behavior, these studies employ techniques that intrinsically limit their applicability. In this thesis, I describe a novel nonlinear optical process that enables me to overcome these limitations and realize a new regime of collective light-matter interaction.</p><p>My experiment involves an anisotropic cloud of cold rubidium atoms illuminated by a pair of counterpropagating optical (pump) fields propagating at an angle to the trap's long axis. When the pump beam intensities exceed a threshold value, a collective instability occurs in which new beams of light are generated spontaneously and counterpropagate along the trap's long axis. In order to understand the physical mechanism responsible for this behavior, I study first the system's nonlinear optical response when driven below the instability threshold. I find that the incident optical fields produce an optical lattice that causes the atoms to become spatially organized on the sub-wavelength length scale. This organization corresponds to the formation of an atomic density grating, which effectively couples the involved fields to one another and enables the transfer of energy between them. The loading of atoms into this grating is enhanced by my choice of field polarizations, which simultaneously results in cooling of the atoms from T~30 μK to T~3 μK via the Sisyphus effect. As a result, I observe a fifth-order nonlinear susceptibility χ^{(5)}=1.9x10^-12 (m/V)^4 that is 7 orders of magnitude larger than previously observed. In addition, because of the unique scaling of the resulting nonlinear response with material parameters, the magnitude of the nonlinearity can be large for small pump intensities (\ie, below the resonant electronic saturation intensity 1.6 mW/cm^2) while simultaneously suffering little linear absorption. I confirm my interpretation of the nonlinearity by developing a theoretical model that agrees quantitatively with my experimental observations with no free parameters.</p><p>The collective instability therefore corresponds to the situation where the cold vapor transitions spontaneously from a spatially-homogeneous state to an ordered one. This emergent organization leads to the simultaneous emission of new optical fields in a process that one can interpret either in terms of mirrorless parametric self-oscillation or superradiance. By mapping out the phase diagram for this transition, I find that the instability can occur for pump intensities as low as 1 mW/cm^2, which is approximately 50 times smaller than previous observations of similar phenomena. The intensity of the emitted light can be up to 20% of the pump beam intensity and depends superlinearly on the number of atoms, which is a clear signature of collective behavior. In addition, the generated light demonstrates temporal correlations between the counterpropagating modes of up to 0.987 and is nearly coherent over several hundred μs. The most significant attributes of the light, though, are that it consists of multiple transverse spatial modes and persists in steady-state. This result represents the first observation of such dynamics, which have been shown theoretically to lead to a rich array of new phenomena and possible applications.</p> / Dissertation
|
3 |
High Harmonic Generation in a Kronig-Penney Model SolidThorpe, Adam 16 December 2020 (has links)
In 2010 high harmonic generation (HHG) in solids was first observed where high order harmonics of a strong laser field's frequency were observed. HHG in solids is now a rapidly developing field that allows for exciting applications like fully solid state attosecond XUV sources and new ultrafast resolution imaging techniques for quantum dynamics in solids.
HHG in solids has been explained by two mechanisms: an interband mechanism, due to polarization associated with separate energy bands, and an intraband mechanism that results from nonlinearities and population changes associated with each individual band. While interband HHG has been seen in wide bandwidth semiconductors, intraband HHG has been observed in narrow bandwidth dielectrics. There has not yet been an explanation of the alternation of mechanisms with material differences. The main goal of this thesis is to attempt to provide a better understanding of the most important mechanisms and where they prevail. Although numerical modelling of HHG requires consideration of multiple energy bands, a two-band model consisting only of a valence band and a single conduction band can explain the most important mechanisms. This model requires a given material's band gap between its valence and conduction bands as well as dipole matrix elements between the bands. In this thesis we follow the Kronig-Penney model to develop a 1D delta-function potential model of solids to obtain these properties required of the two-band model. We implement this in a Wannier quasi-classical (WQC) model of interband HHG in semiconductors that explains the dominant dynamics leading to such through quasi-classical real space electron-hole pair trajectories. Although HHG in solids can be explained to be the result of a resonant process in which an electron-hole pair is generated in the first step, there are also virtual transition processes that lack consideration. These processes do not conserve energy and correspond to transitions to conduction bands resulting from field induced distortions of the ground state. We use methodology introduced by Keldysh for optical field ionization of atoms and solids along with the 1D delta-function potential model to quantify how both resonant and virtual transitions lead to HHG in solids for wide and low bandwidth solids.
|
4 |
Perforated Hollow Core Waveguides for Alkali Vapor-cells and Slow Light DevicesGiraud Carrier, Matthieu C 01 February 2016 (has links) (PDF)
The focus of this work is the integration of alkali vapor atomic vapor cells into common silicon wafer microfabrication processes. Such integrated platforms enable the study of quantum coherence effects such as electromagnetically induced transparency, which can in turn be used to demonstrate slow light. Slow and stopped light devices have applications in the optical communications and quantum computing fields. This project uses hollow core anti-resonant reflecting optical waveguides (ARROWs) to build such slow light devices. An explanation of light-matter interactions and the physics of slow light is first provided, as well as a detailed overview of the fabrication process. Following the discovery of a vapor transport issue, a custom capillary-based testing platform is developed to quantify the effect of confinement, temperature, and wall coatings on rubidium transport. A mathematical model is derived from the experimental results and predicts long transport times. A new design methodology is presented that addresses the transport problem by increasing the number of rubidium entry points. This design also improves chip durability and decreases environmental susceptibility through the use of a single copper reservoir and buried channel waveguides (BCWs). New chips are successfully fabricated, loaded, and monitored for rubidium spectra. Absorption is observed in several chips and absorption peaks depths in excess of 10% are reported. The chip lifetime remains comparable to previous designs. This new design can be expanded to a multi-core platform suitable for slow and stopped light experimentation.
|
5 |
Theoretical Description of Electronic Transitions in Large Molecular Systems in the Optical and X-Ray RegionsList, Nanna Holmgaard January 2015 (has links)
The size and conformational complexity of proteins and other large systems represent major challenges for today's methods of quantum chemistry.This thesis is centered around the development of new computational tools to gain molecular-level insight into electronic transitions in such systems. To meet this challenge, we focus on the polarizable embedding (PE) model, which takes advantage of the fact that many electronic transitions are localized to a smaller part of the entire system.This motivates a partitioning of the large system into two regions that are treated at different levels of theory:The smaller part directly involved in the electronic process is described using accurate quantum-chemical methods, while the effects of the rest of the system, the environment, are incorporated into the Hamiltonian of the quantum region in an effective manner. This thesis presents extensions of the PE model with theaim of expanding its range of applicability to describe electronic transitions in large molecular systemsin the optical and X-ray regions. The developments cover both improvements with regardto the quantum region as well as the embedding potential representing the environment.Regarding the former, a damped linear response formulation has been implemented to allow for calculations of absorption spectra of large molecular systems acrossthe entire frequency range. A special feature of this development is its abilityto address core excitations that are otherwise not easily accessible.Another important development presented in this thesis is the coupling of the PE model to a multi-configuration self-consistent-field description of the quantum region and its further combination with response theory. In essence, this extends the PE model to the study of electronic transitions in large systems that are prone to static correlation --- a situation that is frequently encountered in biological systems. In addition to the direct environmental effects on the electronic structure of the quantum region, another important component of the description of electronic transitions in large molecular systems is an accurate account of the indirect effects of the environment, i.e., the geometrical distortions in the quantum region imposed by the environment. In thisthesis we have taken the first step toward the inclusion of geometry distortions in the PE frameworkby formulating and implementing molecular gradients for the quantum region. To identify critical points related to the environment description, we perform a theoretical analysis of the PE model starting from a full quantum-mechanicaltreatment of a composite system. Based on this, we present strategies for an accurate yet efficient construction of the embedding potentialcovering both the calculation of ground state and transition properties. The accurate representation of the environment makes it possible to reduce the size of the quantum region without compromising the overall accuracy of the final results. This further enables use of highly accurate quantum-chemical methods despite their unfavorable scaling with the size of the system. Finally, some examples of applications will be presented to demonstrate how the PE model may be applied as a tool to gain insight into and rationalize the factors influencing electronic transitions in large molecular systems of increasing complexity. / <p>The dissertation was awarded the best PhD thesis prize 2016 by the Danish Academy of Natural Sciences.</p><p></p><p>QC 20170209</p>
|
6 |
Étude de l'effet laser dans les structures à plasmon Tamm / Study of lasing in Tamm plasmon structureLheureux, Guillaume 11 December 2015 (has links)
Ce travail de thèse porte sur l'étude expérimentale de structures à plasmons Tamm actives, composées d'une couche d'argent déposée sur un miroir de Bragg semiconduc teur AlGaAs/GaAs contenant des puits quantiques InGaAs. Après une description des modes Tamm et de leurs propriétés planaires, nous nous sommes intéressés plus parti culièrement aux structures à plasmons Tamm confinés par un micro-disque de métal. Des mesures de photoluminescence ont permis de mettre en évidence un effet laser dans ces structures. Une étude approfondie a montré une évolution du seuil laser en fonction du diamètre du disque, résultant d'un compromis entre confinement et pertes. Dans un second temps, nous avons étudié la réponse optique de structures à plasmon Tamm asy métriques, où le plasmon Tamm est confiné par des micro-rectangles. Cette asymétrie lève la dégénérescence en énergie qui existe entre les deux modes linéairement polarisés de la structure. Ceci, associé à un fort désaccord spectral entre l'émission des puits et le plasmon Tamm, permet d'obtenir une émission laser linéairement polarisée . Enfin, nous présentons l'étude d'une structure à plasmon Tamm comportant un réseau permettant le couplage du plasmon Tamm au plasmon de surface de l'interface air/argent. Grâce à des mesures tirant parti de l'aspect propagatif des modes, nous avons mis en évidence un battement entre plasmon Tamm et plasmon de surface / This thesis focuses on the experimental study of actives Tamm plasmons structures, consisting in a layer of silver deposited on a AlGaAs/GaAs semiconductor Bragg mir ror which con.tains InGaAs quantum wells. After describing Tamm planar modes and their properties, we focused particularly on structures where Tamm plasmons are la terally confined by a metallic micro-disk. Photoluminescence measurements have been carried out in order to demonstrate lasing in these structures. A comprehensive study has shown a change in the lasing threshold with the diameter of the disk, resulting from a compromise between the confinement and the lasses. Secondly, we studied the optical response of asymmetric Tamm plasmon structures, where the Tamm plasmon is confined by micro-rectangles. This asymmetry lifts the degeneracy of energy between the two linearly polarized modes of the structure. Combined with a strong spectral de tuning between the quantum wells emission and the Tamm plasmon, this allows linearly polarized laser emission to set-up. Finally, we present the study of a Tamm plasmon structure comprising a gratting to couple the Tamm plasmon to the surface plasmon at the silver/air interface. Thanks to propagation measurements, we have highlighted the beating between Tamm plasmon and surface plasmon modes
|
7 |
Nanoscale Photonics / From single molecule nanofluidics to light-matter interaction in nanostructuresGhosh, Siddharth 15 August 2016 (has links)
No description available.
|
8 |
Study of Light-Matter Interaction at the Nanoscale with Quantum Dots in Photonic and Plasmonic MetamaterialsIndukuri, S R K Chaitanya January 2016 (has links) (PDF)
Optical properties of nanoscopic materials have been intensively pursued over last couple of decades due to their tunable optical properties. Recent interests in this field have been mainly focused on the preparation of ordered arrays of nano materials and study of their optical properties. These interests have been motivated by the applications of such systems for nano photonic devices. Theoretical predictions from such systems reveal complex absorption and emission properties, different from individual ones mainly because of energy transfer between them. These properties can be controlled further by preparing hybrid arrays of nanostructures, including nano crystals of different types. Hybrid arrays with semiconductor quantum dots and metallic nanoparticles are an example of such system. Optical properties of such a system can be tuned by controlling the interaction between excitons and plasmons. This thesis presents the experimental studies on optical properties of polymer capped nanoparticles, quantum dot arrays and hybrid arrays with semi conducting quantum dot and metal nanoparticles. A brief summary of the experimental methods and results have been highlighted below.
In this thesis, we study the controlling decay dynamics of CdSe quantum dots by 2D photonic-plasmonic and metamaterial templates. In Chapter 1 we provide a detailed background on the theoretical methods of Light-Matter interaction at nano scale. We also have given the detailed information on both weak and strong coupling region in the light-matter interaction. This chapter includes the discussion controlling light-matter interaction with both photonic crystals and plasmonic materials with some appropriate examples from the literature. In this chapter we have also explained the relevance of our work in this area and organization of the chapters and there importance has given. In chapter 2 we provide details about various experimental methods used in this thesis. A brief introduction is given on the materials used, their synthesis and the preparation of different type of self assembled plasmonic-photonic templates. This chapter starts with an explanation of the materials used along with the justification; moves on to the preparation of different 2D wire metamaterial. The characterization techniques for these different types of templates like spectroscopic ellipsometer, atomic force spectroscopy, scanning electron microscopy and transmission electron microscopy are discussed. We also discussed optical spectroscopic techniques like confocal optical microscopy and near field optical microscopy techniques. The first two chapters form the basis of all the experiments discussed in the forth coming chapters. In chapter 3 Finite difference time domain (FDTD) simulations were performed on two different plasmonic sub wavelength photonic templates embedded with CdSe quantum dots. Tunable loading of these templates with plasmonic nano antenna allowed control of the emission from the embedded quantum dots. We discuss how large loading of nano antenna can effectively control the optical density of states for the quantum dots leading to enhancement of their radiative decay rates as observed in experiments. On the other hand, at low level of loading, while FDTD fails to capture the observed enhancement of decay rates in experiment, an alternative mechanism is suggested to exist in such cases. Thus, subtle interplay of multiple mechanisms engineered by appropriate placement and loading of plasmonic nano antenna in such templates is demonstrated as an effective method to control optical density of states and hence spontaneous emission of embedded quantum dots. In Chapter 4 we report results of controlled tuning of the local density of states (LDOS) in versatile, flexible and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nano antenna within a polymer template randomly dispersed with quantum dots, we show how the photo-luminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. In chapter 5 we reported enhancement optical properties of quantum dot monolayers on top of the functional, flexible and hierarchical self-assembled plasmonic template using extremely small gold (Au) nanoparticles of diameter 5 nm. We reported how the LODS changes with different polarizations for CdSe quantum dot present on top of the template. We observed the enhanced radiative LDOS from the nano antenna filled pores indicating plasmonic enhanced emission from these templates. The difference in spectral and spatial profile of LDOS and Pur-cells with polarization of quantum dot emission results in the anisotropic emission in these templates. In chapter 6 we reported the emergence of strong coupling between quantum emitters and 2D hyperbolic metamaterials (HMM). We studied both spectral dependence and effect of filling fraction of the HMM on strong interaction. We also show the controlling of the transition from weak coupling region to strong coupling region by changing the distance between QD monolayer and HMM. By using FDTD simulation we are able to calculate both spectral function S(!) and coupling efficiency. In chapter 7 as a conclusion we concluded the work done in this thesis. We also indicated the future directions in this field and possible application.
|
9 |
Bose-Einstein Condensates in Synthetic Gauge Fields and Spaces: Quantum Transport, Dynamics, and Topological StatesChuan-Hsun Li (7046690) 14 August 2019 (has links)
<p>Bose-Einstein condensates (BECs) in
light-induced synthetic gauge fields and spaces
can provide a highly-tunable platform for quantum simulations. Chapter 1 presents
a short introduction to the concepts of BECs and our BEC machine. Chapter 2 introduces
some basic ideas of how to use light-matter interactions to create
synthetic gauge fields and spaces for neutral atoms. Three main research topics
of the thesis are summarized below.</p>
<p>Chapter 3:
Recently, using bosonic quasiparticles (including their condensates) as spin
carriers in spintronics has become promising for coherent spin transport over macroscopic
distances. However, understanding the effects of spin-orbit (SO) coupling and
many-body interactions on such a spin transport is barely explored. We study the
effects of synthetic SO coupling (which can be turned on and off, not allowed
in usual materials) and atomic interactions on the spin transport in an atomic
BEC.</p>
<p>Chapter 4:
Interplay between matter and fields in physical spaces with nontrivial geometries
can lead to phenomena unattainable in planar spaces. However, realizing such
spaces is often impeded by experimental challenges. We synthesize real and curved
synthetic dimensions into a Hall cylinder for a BEC, which develops symmetry-protected
topological states absent in the planar counterpart. Our work opens the door to
engineering synthetic gauge fields in spaces with a wide range of geometries and
observing novel phenomena inherent to such spaces.</p>
<p>Chapter 5:
Rotational properties of a BEC are important to study its superfluidity. Recent
studies have found that SO coupling can change a BEC's rotational and superfluid
properties, but this topic is barely explored experimentally. We study rotational
dynamics of a SO-coupled BEC in an effective rotating frame induced by a synthetic
magnetic field. Our work may allow for studying how SO coupling modify a BEC's
rotational and superfluid properties.</p>
<p>Chapter 6 presents
some possible future directions.</p>
|
10 |
Exact nonadiabatic many-body dynamicsFlick, Johannes 23 August 2016 (has links)
Chemische Reaktionen in der Natur sowie Prozesse in synthetischen Materialien werden oft erst durch die Wechselwirkung von Licht mit Materie ausgelöst. Üblicherweise werden diese komplexen Prozesse mit Hilfe von Näherungen beschrieben. Im ersten Teil der Arbeit wird die Gültigkeit der Born-Oppenheimer Näherung in einem vibronischen Modellsystem (Trans-Polyacetylene) unter Photoelektronenspektroskopie im Gleichgewicht sowie zeitaufgelöster Photoelektronenspektroskopie im Nichtgleichgewicht überprüft. Die vibronische Spektralfunktion zeigt aufgrund des faktorisierten Anfangs- und Endzustandes in der Born-Oppenheimer Näherung zusätzliche Peaks, die in der exakten Spektralfunktion nicht auftreten. Im Nichtgleichgewicht zeigen wir für eine Franck-Condon Anregung und eine Anregung mit Pump-Probe Puls, wie die Bewegung des vibronischen Wellenpaktes im zeitabhängigen Photoelektronenspektrum verfolgt werden kann. Im zweiten Teil der Arbeit werden sowohl die Materie als auch das Licht quantisiert behandelt. Für eine volle quantenmechanische Beschreibung des Elektron-Licht Systems, verwenden wir die kürzlich entwickelte quantenelektrodynamische Dichtefunktionaltheorie (QEDFT) für gekoppelte Elektron-Photon Systeme. Wir zeigen erste numerische QEDFT-Berechnungen voll quantisierter Atome und Moleküle in optischen Kavitäten, die an das quantisierte elektromagnetische Feld gekoppelt sind. Mit Hilfe von Fixpunktiterationen berechnen wir das exakte Kohn-Sham Potential im diskreten Ortsraum, wobei unser Hauptaugenmerk auf dem Austausch-Korrelations-Potential liegt. Wir zeigen die erste Näherung des Austausch-Korrelations-Potentials mit Hilfe eines optimierten effektiven Potential Ansatzes angewandt auf einen Jaynes-Cummings-Dimer. Die dieser Arbeit zugrunde liegenden Erkenntnisse und Näherungen ermöglichen es neuartige Phänomene an der Schnittstelle zwischen den Materialwissenschaften und der Quantenoptik zu beschreiben. / Many natural and synthetic processes are triggered by the interaction of light and matter. All these complex processes are routinely explained by employing various approximations. In the first part of this work, we assess the validity of the Born-Oppenheimer approximation in the case of equilibrium and time-resolved nonequilibrium photoelectron spectra for a vibronic model system of Trans-Polyacetylene. We show that spurious peaks appear for the vibronic spectral function in the Born-Oppenheimer approximation, which are not present in the exact spectral function of the system. This effect can be traced back to the factorized nature of the Born-Oppenheimer initial and final photoemission states. In the nonequilibrium case, we illustrate for an initial Franck-Condon excitation and an explicit pump-pulse excitation how the vibronic wave packet motion can be traced in the time-resolved photoelectron spectra as function of the pump-probe delay. In the second part of this work, we aim at treating both, matter and light, on an equal quantized footing. We apply the recently developed quantum electrodynamical density-functional theory, (QEDFT), which allows to describe electron-photon systems fully quantum mechanically. We present the first numerical calculations in the framework of QEDFT. We focus on the electron-photon exchange-correlation contribution by calculating exact Kohn-Sham potentials in real space using fixed-point inversions and present the performance of the first approximate exchange-correlation potential based on an optimized effective potential approach for a Jaynes-Cummings-Hubbard dimer. This work opens new research lines at the interface between materials science and quantum optics.
|
Page generated in 0.175 seconds