Spelling suggestions: "subject:"lipschitzian"" "subject:"lipschitz""
1 |
Analyse et rectifiabilité dans les espaces métriques singuliersMunnier, Vincent 14 September 2011 (has links) (PDF)
Nous prouvons essentiellement, à partir du formalisme adopté dans les articles [Che] et [CK1], un théorème de di fférentiation de type Calderòn pour les applications des espaces de Hajlasz fondés sur des espaces métriques PI et à valeurs dans des espaces de Banach RNP. Grâce à toutes les techniques développées pour le théorème précédent, nous pouvons -par la suite- a ffaiblir la condition d'appartenance à un espace de Hajlasz surcritique (par rapport à la dimension homogène de l'espace métrique ambiant) en une condition d'intégrabilité locale sur la constante de Lipschitz ponctuelle supérieure. Nous montrons que ces théorèmes de di fférentiation entrent en jeu naturellement pour caractériser les espaces de Hajlasz fondés sur des espaces métriques PI. Ceci débouche sur des critères intégraux, dans la veine de [Br2], pour reconnaitre si des applications mesurables sont constantes ou non dans les espaces métriques PI. En fin, nous discutons certains types d'inégalités de Poincaré locales dépendant du centre et du rayon des boules. Dans ce cadre aff aibli, l'analyse menée précedemment est tout à fait possible mais sous des conditions topologiques et géométriques supplémentaires sur l'espace métrique ambiant.
|
2 |
Analyse et rectifiabilité dans les espaces métriques singuliers / Analysis and rectifiability in metric spaces with singular geometryMunnier, Vincent 14 September 2011 (has links)
Nous prouvons essentiellement, à partir du formalisme adopté dans les articles [Che] et [CK1], un théorème de di fférentiation de type Calderòn pour les applications des espaces de Hajlasz fondés sur des espaces métriques PI et à valeurs dans des espaces de Banach RNP. Grâce à toutes les techniques développées pour le théorème précédent, nous pouvons -par la suite- a ffaiblir la condition d'appartenance à un espace de Hajlasz surcritique (par rapport à la dimension homogène de l'espace métrique ambiant) en une condition d'intégrabilité locale sur la constante de Lipschitz ponctuelle supérieure. Nous montrons que ces théorèmes de di fférentiation entrent en jeu naturellement pour caractériser les espaces de Hajlasz fondés sur des espaces métriques PI. Ceci débouche sur des critères intégraux, dans la veine de [Br2], pour reconnaitre si des applications mesurables sont constantes ou non dans les espaces métriques PI. En fin, nous discutons certains types d'inégalités de Poincaré locales dépendant du centre et du rayon des boules. Dans ce cadre aff aibli, l'analyse menée précedemment est tout à fait possible mais sous des conditions topologiques et géométriques supplémentaires sur l'espace métrique ambiant. / In this thesis, we essentially prove the Cheeger-differentiability of some Hajlasz-Sobolev functions between PI metric spaces and RNP Banach spaces. Then, we prove a refinement. More precisely, we establish a kind of Rademacher-Stepanov Theorem in the same setting as above but under the simple condition that the upper lipschitz constant is in a Lp space. Then, all these differentiation Theorems are naturally used to give a precise and complete description of the Hajlasz-Sobolev spaces on PI metric spaces in term of an energy integral. This leads to some criteria to detect if a measurable function is constant or not. At the end, we discuss some topological consequences of some weak Poincaré inequalities, we mean that depend of the center and of the radius of the balls involved in these inequalities. In this context, we are able to give some new criteria but the price to pay is to suppose strong topological assumptions on the metric space.
|
3 |
Sur un problème inverse en pressage de matériaux biologiques à structure cellulaire / On an inverse problem in pressing of biological materials with cellular structureAhmed Bacha, Rekia Meriem 19 October 2018 (has links)
Cette thèse, proposée dans le cadre du projet W2P1-DECOL (SAS PIVERT), financée par le ministère de l’enseignement supérieur est consacrée à l’étude d’un problème inverse de pressage des matériaux biologiques à structure cellulaire. Le but est d’identifier connaissant les mesures du flux d’huile sortant, le coefficient de consolidation du gâteau de pressage et l’inverse du temps caractéristique de consolidation sur deux niveaux : au niveau de la graine de colza et au niveau du gâteau de pressage. Dans un premier temps, nous présentons un système d’équations paraboliques modélisant le problème de pressage des matériaux biologiques à structure cellulaire, il découle de l’équation de continuité de la loi de Darcy et d’autres hypothèses simplificatrices. Puis l’analyse théorique et numérique du modèle direct est faite dans le cas linéaire. Enfin la méthode des différences finies est utilisée pour le discrétiser. Dans un second temps, nous introduisons le problème inverse du pressage où l’étude de l’identifiabilité de ce problème est résolue par une méthode spectrale. Par la suite, nous nous intéressons à l’étude de stabilité lipschitzienne locale et globale. De plus une estimation de stabilité lipschitzienne globale, pour le problème inverse de paramètres, dans le cas du système d’équations paraboliques, à partir des mesures sur ]0,T[ est établie. Enfin l’identification des paramètres est résolue par deux méthodes, l’une basée sur l’adaptation de la méthode algébrique et l’autre formulée comme la minimisation au sens des moindres carrés d’une fonctionnelle évaluant l’écart entre les mesures et les résultats du modèle direct, la résolution de ce problème inverse se fait en utilisant un algorithme itératif BFGS, l’algorithme est validé puis testé numériquement dans le cas des graines de colza, en utilisant des mesures synthétiques. Il donne des résultats très satisfaisants, malgré les difficultés rencontrés à manipuler et exploiter les données expérimentales. / This thesis, proposed in the framework of the W2P1-DECOL project (SAS PIVERT) and funded by the Ministry of Higher Education, is devoted to the study an inverse problem of pressing biological materials with a cellular structure. The aim is to identify, of the outgoing oil flow, the coefficient of consolidation of the pressing cake and the inverse of the characteristic time of consolidation on two levels : at the level of the rapeseed and at the level of the pressing cake. First, we present a system of parabolic equations modeling the pressing problem of biological materials with cellular structure; it follows from the continuity equation of Darcy’s law and other simplifying hypotheses. Then a theoretical and numerical analysis of a direct model is made in the linear case. Finally the finite difference method is usedt o discretize it. In a second step, we introduce the inverse problem of the pressing where the study of the identifiability of this problem is solved by a spectral method. Later we are interested in the study of local and global Lipschitizian stability. Moreover, global Lipschitz stability estimate for the inverse problem of parameters in the case of the system of parabolic equations from the measures on ]0,T[ is established. Finally, the identification of the parameters is solved by two methods; one based on the adaptation of the algebraic method and the other formulated as the minimization in the least squares sense of a functional evaluating the difference between measurements and the results of the direct model; the resolution of this inverse problem is done using an iterative algorithm BFGS, the algorithm is validated and then tested numerically in the case of rapeseeds, using synthetic measures. It gives very satisfactory results, despite the difficulties encountered in handling and exploiting the experimental data.
|
4 |
Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustiqueEstecahandy, Elodie 19 September 2013 (has links) (PDF)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée.
|
5 |
Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique / Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problemEstecahandy, Elodie 19 September 2013 (has links)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée. / The determination of the shape of an elastic obstacle immersed in water from some measurements of the scattered field is an important problem in many technologies such as sonar, geophysical exploration, and medical imaging. This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its nonlinear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished here pertains to the mathematical and numerical analysis of the elasto-acoustic DP and of the IOP. More specifically, we have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.
|
Page generated in 0.069 seconds