• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 196
  • 124
  • 55
  • 25
  • 13
  • 10
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 516
  • 176
  • 116
  • 97
  • 67
  • 64
  • 58
  • 56
  • 47
  • 41
  • 41
  • 40
  • 39
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Magnetization Dynamics in Nano-Contact Spin Torque Oscillators : Solitonic bullets and propagating spin waves

Bonetti, Stefano January 2010 (has links)
Magnetization dynamics in nano-contact spin torque oscillators (STOs) is investigated from an experimental and theoretical point of view. The fundamentals of magnetization dynamics due to spin transfer torque are given. A custom-made high frequency (up to 46 GHz) in large magnetic fields (up to 2.2 T) microwave characterization setup has been built for the purpose and described in this thesis. A unique feature of this setup is the capability of applying magnetic fields at any direction θe out of the sample plane, and with high precision. This is particularly important, because the (average) out-of-plane angle of the STO free magnetic layer has fundamental impact on spin wave generation and STO operation. By observing the spin wave spectral emission as a function of θe, we find that at angles θe below a certain critical angle θcr, two distinct spin wave modes can be excited: a propagating mode, and a localized mode of solitonic character (so called spin wave bullet). The experimental frequency, current threshold and frequency tuneability with current of the two modes can be described qualitatively by analytical models and quantitatively by numerical simulations. We are also able to understand the importance, so far underestimated, of the Oersted field in the dynamics of nano-contact STOs. In particular, we show that the Oersted field strongly affects the current tuneability of the propagating mode at subcritical angles, and it is also the fundamental cause of the mode hopping observed in the time-domain. This mode hopping has been observed both experimentally using a state-of-the-art real-time oscilloscope and corroborated by micromagnetic simulations. Micromagnetic simulations also reveal details of the spatial distribution of the spin wave excitations. By investigating the emitted power as a function of θe, we observed two characteristic behaviors for the two spin wave modes: a monotonic increase of the power for increasing out-of-plane angles in the case of the propagating mode; an increase towards a maximum power followed by a drop of it at the critical angle for the localized mode. Both behaviors are reproduced by micromagnetic simulations. The agreement with the simulations offers also a way to better understand the precession dynamics, since the emitted power is strongly connected to the angular variation of the giant magnetoresistance signal. We also find that the injection locking of spin wave modes with a microwave source has a strong dependence on θe, and reaches a maximum locking strength at perpendicular angles. We are able to describe these results in the theoretical framework of non-linear spin wave dynamics. / QC 20101130
302

Growth and characterization of advanced layered thin film structures : Amorphous SmCo thin film alloys

Roos, Andreas January 2012 (has links)
This report describes the growth and characterization of thin amorphous samarium-cobalt alloy films. The samarium-cobalt alloy was grown by DC magnetron sputtering in the presence of an external magnetic field parallel to the thin film. The external magnetic field induces a uniaxial in-plane magnetic anisotropy in the samarium-cobalt alloy. The thin films were characterized with x-ray scattering, and the magnetic anisotropy was characterized with the magneto optic Kerr effect. The measurements showed a uniaxial in-plane magnetic anisotropy in the samarium-cobalt alloy films. It is not clear how amorphous the samples really are, but there are indications of crystalline and amorphous areas in the alloys.
303

Levée de dégénérescence de spin dans le régime Hall quantique

Piot, Benjamin 01 December 2006 (has links) (PDF)
Ce travail porte sur l'étude de la levée de dégénérescence de spin dans le régime Hall quantique. Des mesures de magnétotransport à très basse température sont mises en oeuvre sur un ensemble d'hétérostructures AlGaAs/GaAs, afin de caractériser la densité d'états électronique sous champ magnétique et les interactions entre électrons. Les interactions d'échange se révèlent être principalement déterminées par la densité électronique, et deviennent de plus en plus importantes lorsque celle-ci diminue dans le domaine (1.10^11-1.10^12cm^-2). Un modèle simple sans paramètre d'ajustement prédit correctement le champ magnétique nécessaire pour observer la levée de dégénérescence de spin, démontrant que celle-ci est le résultat d'une compétition entre le coût de retournement des spins, induit par le désordre<br /> du système, et le gain d'énergie d'échange associé à l'état polarisé en spin. Dans ce modèle, l'énergie Zeeman ne joue aucun rôle, si bien que l'apparition de l'état polarisé en spin dans le plus haut niveau de Landau occupé peut être interprétée comme une transition de Stoner induite par le champ magnétique. Le cas d'une énergie Zeeman non-nulle, abordé en introduisant un champ magnétique supplémentaire dans le plan du gaz électronique bidimensionnel, peut également être décrit dans le cadre de ce modèle sans paramètre d'ajustement, confirmant la validité de l'approche initiale.
304

Multi-functional nanocomposites for the mechanical actuation and magnetoelectric conversion

Zhang, Jiawei 13 December 2011 (has links) (PDF)
Magnetoelectric (ME) interactions in matter correspond to the appearance of magnetization by means of an electric field (direct effect) or the appearance of electric polarization by means of a magnetic field (converse effect). The composite laminates which possess large ME coefficient, have attracted much attention in the field of sensors, modulators, switches and phase inverters. In this thesis, we report on the ME performances of the bi- and tri- layered composites. It is shown that their ME couplings can be achieved by combining magnetostrictive and piezoelectric layers. A model based on a driven damped oscillation is established for the piezoelectric/magnetostrictive laminated composite. It is used to simulate the mechanical coupling between the two layers. In addition, we report that the ME coupling can be achieved without magnetic phase but only with eddy current induced Lorentz forces in the metal electrodes of a piezoelectric material induced by ac magnetic field. The models based on the Lorentz effect inducing ME coupling in PZT unimorph bender, polyvinylidene fluoride (PVDF) film and PZT ceramic disc are thus established. The results show the good sensitivity and linear ME response versus dc magnetic field change. Thus, the room temperature magnetic field detection is achievable using the product property between magnetic forces and piezoelectricity. Besides, we report on the electrostrictive performance of cellular polypropylene electret after high-voltage corona poling. We use the Surface Potential test, Thermal Stimulated Depolarization Current experiment and Differential Scanning Calorimetry experiment to analyse its charge storage mechanism. The result show that the electrostrictive coefficient and relative permittivity of the charged samples increase. Last but not least, in order to explain this phenomenon, a mathematic model based on the charged sample has been established.
305

Formation of molecules in ultra-cold atomic gazes via quasi-resonant fields

Sokhoyan, Ruzan 07 June 2010 (has links) (PDF)
We study the nonlinear mean-field dynamics of diatomic molecule formation at coherent photo- and magneto-association of ultracold atoms focusing on the case when the system is initially in the all-atomic state. We show that in the limit of strongly nonlinear interaction between an ultra-cold atomic-molecular system and a quasi-resonant electromagnetic field, the molecule formation process, depending on the characteristics of the associating field, may evolve according two different scenarios, namely, weak- and strong-oscillatory regimes. In the first case the number of molecules increases without pronounced oscillations of atom-molecule populations, while in the second case high-amplitude Rabi-type oscillations arise. Assuming an arbitrary external field configuration, we construct analytical solutions to describe the system's temporal dynamics in the both interaction regimes. Further, we investigate the influence of inter-particle elastic scattering on the dynamics of coherent molecule formation subject to an external field configuration of the resonance-crossing Landau-Zener model. We derive an approximate solution which for the first time describes the whole temporal dynamics of the molecule formation in this general case.
306

Non-collinear magnetoeletronics in single wall carbon nanotubes

Crisan, Alina Dora 17 December 2013 (has links) (PDF)
Recent developments in the field of nanotechnology allowed the access to adequate length scale necesary to closely investigate spins and opened large prospects of using electrons spin degree of freedom in new generation electronic devices. This have lead to the development of a vibrant field dubbed spintronics.Here, we present experiments that combine two very promising materials: namely cardon nanotubes and palladium-nickel (PdNi), with the purpose to manipulate the electronic spin both in the classical and in the quantum regime. We implement a quantum dot connected to two non-collinear ferromagnetic leads that acts as a spin-valve device. The versatility of carbon nanotubes to fabricate quantum dots when connected to PdNi electrodes via tunneling barriers is combined with the particular transversal anisotropy of the PdNi when shaped in nanometric stripes.For devices exploiting actively the electronic spin, however control over classical or quantum spin rotations has still to be achieved. A detailed understanding of the magnetic characteristics of PdxNi 100-x alloy is crucial both for understanding the switching characteristics of such the spin-valve device and for optimizing its electronic properties. We present a magnetic study of Pd20Ni80 and Pd90Ni10 nanostripes by means of extraordinary Hall effect measurements, at low temperature, for various dimensions, thicknesses and capping films. In the case of Pd20Ni80, this experiment is a first at low temperature.The CNT-based device proposed here was tested both in linear and nonlinear transportregimes. While the linear spin dependent transport displays the usual signatures of electronicconfinement, the finite bias magnetoresistance displays an impressive magnetoresistance antisymmetric reversal in contrast with the linear regime. This effect can only be understood if electronic interactions are considered. It is accompanied by a linear dispersion of the zeromagnetoresistance point in the bias-field plane. Simulations based on a proposed model confirm a current induced spin precession, electrically tunable due to the quantum nature ofthe device.
307

Fibre Optic Magnetic Field Sensors Utilizing Iron Garnet Materials

Sohlström, Hans January 1993 (has links)
This thesis deals with the subject of fibre optic magnetic field sensors utilizing iron garnet materials. Such materials exhibit a large Faraday rotation which make them advantageous for application in compact mag­netic field sensors. After an introduction, in which fibre optic sensors and optical methods to measure electric current are reviewed, the original research work is summarized. A system for the measurement of the magneto-optic properties of trans­parent materials is described. Measurement results, showing the influence of temperature, magnetic field direction and sample treatment on the magneto-optical proper­ties of YIG-crystals, are presented. The proper­ties of thin magneto-optical waveguiding films have also been studied using different light coupling methods. Measurement results obtained for holo­graphic grating, prism and edge (end-fire) light coupling to different substituted YIG films are presented. It is shown that the launching method may affect the properties to be measured. The design and performance of several versions of extrinsic guided wave fibre optic magnetic field sensors are then reported. The sensors employ substi­tuted YIG (Yttrium Iron Garnet, Y3Fe5O12) thin film waveguides as sensing elements. Polari­zation maintaining fibres were used as feed and return to provide two signal channels. The signals were combined in a balanced measure­ment system, providing insensitivity to both fluctuations in optical power and loss. Sensors have been made both with separate fibres to guide the light to and from the sensing element and with a single fibre for both functions. The two fibre version, although less ”elegant”, is found to have a better performance. This version also makes it possible to determine both the magnitude and sign of the magnetic field. Measurement results indicate a usable measurement range of at least several mT with a noise equivalent magnetic field level of less than 8 nT/root(Hz). The design and performance of multimode fibre optic magnetic field sensors utilizing the Faraday effect in an epitaxially grown thick (YbTbBi)IG film is also described. This type of sensor is found to be linear over a range from 27 mT to less than 270 nT. Sensor prototypes suitable for current monitoring in high voltage transmission lines have also been developed. / QC 20111209 / YIG
308

Hydrogeophysics as a multidisciplinary tool on aquifer appraisal: Focus on AMT capabilities

Falgàs Parra, Ester 26 October 2007 (has links)
The shallow subsurface of the earth is an extremely important geological zone that yields much of our water resources, supports our agriculture and ecosystems. Safe and effective management of our natural resources is a major challenge, that is, not to overexploit and pollute the aquifer systems. The hydrogeophysics discipline has emerged in recent years to investigate the potential that geophysical methods hold for providing quantitative information about subsurface hydrogeological parameters and processes. Water is essential for life. It has been and will continue to be a hot topic in both the political and scientific fields for years to come.Chapter two, Hydrogeophysics, aims to review the actual state of the hydrogeophysical discipline showing the paramount perspectives of the geophysical methods applied to the hydrogeology discipline. Hydrogeophysical importance relies on its multidisciplinarity. That is, the joint interpretation of geophysical and hydrogeological data to get better approach and more constrained/reliable hydrogeologic models. The principal geophysical methods that have actually been applied to hydrogeology problems are reviewed, as well as their challenges, limitations and concerns. Electric and electromagnetic methods that provide electrical resistivity models have been examined in detail. The electrical resistivity is considered, given that this property is highly controlled by the hydrogeological properties of the media (lithology, porous structure, water content and quality). However, the complexity of the property contribution of the geophysical response made the transfer step from geophysical model to hydrological properties a complex issue. Chapter three, Audiomagnetotelluric method (AMT), presents further insights of the AMT frequency domain method. Firstly, theoretical basics of the AMT method, investigation depth and magnetotelluric family methods (frequency recording capability) are reviewed. Further on, the determinant mode modelling process is discussed in order to obtain a reasonable approach of three-dimensional media along two-dimensional profiles. This chapter demonstrates in detail Stratagem EH4 equipment, in particular, source effects, optimal transmitter receiver distance, and signal improvement of controlled electromagnetic source.Part II is composed of three different hydrogeophysical case studies at different scales where AMT plays a key role on the approach to each aquifer system.Chapter four, Tordera deltaic aquifer, Spain, is a hydrogeophysical application carried out on a porous aquifer media extensively affected by seawater intrusion. This chapter presents a multidisciplinary approach to a fluviodeltaic aquifer system. Hydrogeological information, AMT, seismic reflection and velocity tomography models have been evaluated together to provide spatially continuous information about aquifer properties processes and boundaries. Two and three-dimensional inverse models have been obtained and validated with hydrogeological data. In addition, an AMT monitoring experiment has been performed every four months to monitor seasonal seawater changes along the main seawater intrusion path. Chapter five, La Soutte, Vosges, France is based on the AMT study on "La Soutte", natural hydrogeophysical laboratory. In this case, 3D AMT forward model look into a small scale catchment area, aimed to provide a mesoscale framework for other geophysical applications carried out on the site. Combined use of AMT and DC surface resistivity has been also used to image different resolution and work scale of each method. Chapter six, Spring Valley, Nevada, USA presents the AMT study out on Spring Valley, a 110 km long valley on the Nevada Desert aimed to provide a structural framework for water resources exploration and hydrological modelling. Five 2D AMT profiles along the valley, together with gravity and magnetometry data have been analysed to map the aquifer bounding structure and sediment infill in a typical Basin and Range setting. Faults, stratigraphy, and estimates of depth to basement are valuable information for assessing groundwater potential.
309

Controle ótimo aplicado em modelo de suspensão veicular não-linear controlada através de amortecedor magneto-reológico / Application of optimal control in model of nonlinear vehicular suspension controlled through magneto-rheological damper

Tusset, Ângelo Marcelo January 2008 (has links)
Este trabalho apresenta uma proposta para o controle da suspensão veicular utilizando o amortecedor magneto-reológico, sendo o controle proposto composto pela associação de duas estratégias de controle, o controle ótimo e o controle fuzzy. O Controle ótimo é utilizado para determinar a força a ser utilizada pelo amortecedor magneto-reológico, e o controle fuzzy é utilizado para determinar a corrente elétrica, a ser utilizada no amortecedor magento-reológico e é obtido considerando o modelo de Mandani. Para o controle fuzzy, são consideradas duas entradas, a velocidade de deslocamento do pistão do amortecedor e a força prevista pelo controle ótimo, e uma saída, a corrente elétrica [A]. Para demonstrar a eficiência do controle proposto são consideradas simulações computacionais, utilizando um modelo matemático não-linear de um quarto de veículo. A análise do desempenho do controle é realizada, considerando excitações provocadas por irregularidades na pista, as irregularidades são representadas por entradas tipo degrau, impulso e senoidal. As simulações computacionais são realizadas, utilizando o Matlab® e o Simulink. Os resultados das simulações demonstram que o controle proposto aumenta a segurança do veículo e melhora sua dirigibilidade, reduzindo o deslocamento vertical do conjunto eixo e roda e o espaço de trabalho do amortecedor, quando comparado como o sistema passivo. Também contribui com o conforto dos passageiros, reduzindo as oscilações da carroceria, mantendo os níveis de aceleração abaixo dos considerados desconfortáveis pela norma BS 6841, 1987. Para verificar o comportamento do controle proposto, diante de incertezas, são realizadas simulações computacionais, considerando a possibilidade de erros paramétricos. As simulações, considerando os erros paramétricos, demonstram que o controle ótimo, mesmo quando sujeito a incertezas, permanece sendo estável e ótimo. / This work presents a proposal for control of vehicular suspension using the magneto-rheological damper, the proposed control is composed by association of two control strategy, the optimal control and the fuzzy control. The optimal control is used to determine the power to be applied by the magneto-rheological damper, and the fuzzy control is used to determine the electric current to be used in the magneto-rheological damper and is obtained considering the Mandani's model. For the fuzzy control two inputs are considered, the velocity of the piston's damper and the force provided by the optimal control, and one output, the electric current [A]. To demonstrate the efficiency of the proposed control, computational simulations are considered using a nonlinear mathematical model for a quarter-car. The performance of the control is analyzed considering excitements provoked by irregularities in the track, the irregularities are represented by entrances step type, pulse and sinusoidal. The computational simulations are performed using the Matlab® and the Simulink. The results of simulations show that the proposed control increases the vehicle security and improves the drive ability by reducing the vertical wheel displacement and the workspace to be used by the damper when compared to the passive system. It also helps with the comfort of passengers, reducing the bodywork oscillations, maintaining levels of accelerating below considered uncomfortable by standard BS 6841, 1987. To verify the behavior of the proposed control, in the face of uncertainty, computational simulations are carried out, considering the possibility of parametric errors. The simulations, show that the Optimal Control, even when subject to uncertainties, remains stable and optimal.
310

Capteur de courant à Magnéto-Impédance Géante (GMI) souple et portatif / Flexible and portable GMI current sensor

Nabias, Julie 14 February 2018 (has links)
La Magnéto-Impédance Géante (GMI pour Giant Magneto-Impedance) présente un certain nombre d’avantages, tels la haute sensibilité, la haute résolution de détection, la large bande passante et la flexibilité de l’élément sensible qui rendent cette technologie très prometteuse pour la réalisation de capteurs de courant flexibles, sans contact, capables de mesurer à la fois les courants continus (DC) et alternatifs (AC).Ce travail de thèse vise à explorer la faisabilité d’un capteur de courant flexible à base de GMI, en portant une attention particulière sur l’impact des paramètres d’influence qui conditionnent largement les solutions de mise en œuvre du capteur.Les effets de la température et des contraintes mécaniques de flexion et de torsion, qui s’appliquent dans un environnement de mesure réel, sont caractérisés en prenant en compte les grandeurs intrinsèques du fil nécessaires à la réalisation d’un capteur industriel. L’impact de la mise en œuvre et du conditionnement électronique vis-à-vis de ces grandeurs d’influence est aussi étudié. Les effets des perturbations magnétiques externes et de l’excentration du conducteur sous test dans la boucle de mesure sont quantifiés et une solution de blindage est proposée. Enfin, le prototype de capteur obtenu à l’issue de ces travaux est présenté, ainsi que ses performances, en dégageant les pistes d’optimisation et d’amélioration. / The GMI effect displays several advantages, such as high sensitivity, high detection resolution and bandwidth, and mechanical flexibility. These advantages predispose this technology to the implementation of flexible contactless current sensors measuring both DC and AC currents.This thesis work aims at exploring the feasibility of a flexible GMI current sensor. A particular attention to the impact of influence parameters which largely condition the design solutions of the sensor has been paid.The effects of temperature and mechanical constraints such as bending and torsion, which apply in a real measuring environment, are characterized by taking into account the intrinsic features which are necessary to the design of the sensor. The impact of the general measuring configuration and electronics are also studied. The effects of magnetic disturbances and of the position of the current-carrying conductor in the measuring loop are quantified and an adequate shielding method is proposed. Finally, the sensor prototype obtained at the end of this work is described with its performances and the possible optimization and enhancement ways.

Page generated in 0.0504 seconds