• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 124
  • 55
  • 25
  • 13
  • 10
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 515
  • 176
  • 116
  • 97
  • 67
  • 64
  • 58
  • 56
  • 47
  • 41
  • 41
  • 40
  • 39
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Multi-body optimization method for the estimation of joint kinematics : prospects of improvement / Méthode d’optimisation multi-segmentaire pour l’estimation de la cinématique articulaire : propositions d’amélioration

Richard, Vincent 28 June 2016 (has links)
L'analyse du mouvement humain s'appuie généralement sur des techniques de suivi de marqueurs cutanés pour reconstruire la cinématique articulaire. Cependant, ces techniques d'acquisition présentent d'importantes limites dont les " artefacts de tissus mous " (i.e., le mouvement relatif entre les marqueurs cutanés et le squelette sous-jacent). La méthode d'optimisation multi-segmentaire viseà compenser ces artefacts en imposant aux trajectoires de marqueurs les degrés de liberté d'un modèle cinématique prédéfini. Les liaisons mécaniques modélisant classiquement les articulations empêchent toutefois une estimation satisfaisante de la cinématique articulaire. Cette thèse aborde des perspectives d'amélioration de la méthode d'optimisation multi-segmentaire pour l'estimation de la cinématique articulaire du membre inférieur,à travers différentes approches : (1) la reconstruction de la cinématique par suivi de la vitesse angulaire, de l'accélération et de l'orientation de centrales inertiellesà la place du suivi de marqueurs, (2) l'introduction d'un modèle articulaire élastique basé sur la matrice de raideur du genou, permettant une estimation physiologique de la cinématique articulaire et (3) l'introduction d'un modèle des artefacts de tissus mous " cinématique-dépendant ", visantà évaluer et compenser les artefacts de tissus mous simultanément avec l'estimation la cinématique articulaire. Ce travail a démontré la polyvalence de la méthode d'optimisation multi-segmentaire. Les résultats obtenus laissent espérer une amélioration significative de cette méthode qui devient de plus en plus utilisée en biomécanique, en particulier pour la modélisation musculo-squelettique / Human movement analysis generally relies on skin markers monitoring techniques to reconstruct the joint kinematics. However, these acquisition techniques have important limitations including the "soft tissue artefacts" (i.e., the relative movement between the skin markers and the underlying bones). The multi-body optimization method aims to compensate for these artefacts by imposing the degrees of freedom from a predefined kinematic model to markers trajectories. The mechanical linkages typically used for modeling the joints however prevent a satisfactory estimate of the joint kinematics. This thesis addresses the prospects of improvement of the multi-body optimization method for the estimation of joint kinematics of the lower limb through different approaches: (1) the reconstruction of the kinematics by monitoring the angular velocity, the acceleration and the orientation of magneto-inertial measurement units instead of tracking markers, (2) the introduction of an elastic joint model based on the knee stiffness matrix, enabling a physiological estimation of joint kinematics and (3) the introduction of a "kinematic-dependent" soft tissue artefact model to assess and compensate for soft tissue artefact concurrently with estimating the joint kinematics. This work demonstrated the versatility of the multi-body optimization method. The results give hope for significant improvement in this method which is becoming increasingly used in biomechanics, especially for musculoskeletal modeling
452

Etude théorique des effets relativistes induits par une impulsion lumineuse ultra-rapide dans la matière / Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

Hinschberger, Yannick 15 October 2012 (has links)
Ce travail de thèse s’intéresse aux corrections relativistes induites par une impulsion lumineuse ultra-brève et intense dans la matière condensée. Il s’inscrit dans la thématique nouvelle de la désaimantation ultra-rapide cohérente de systèmes ferromagnétiques induite par une impulsion laser femto-seconde [Nature 5, 515 (2009)] [1]. Un couplage de nature relativiste entre les spins et les photons a été proposé pour expliquer les résultats expérimentaux observés dans [1]. La première partie de ce travail étudie la limite non relativiste du formalisme de Dirac en présence d’un champ électromagnétique dépendant du temps. En utilisant la transformation de Foldy-Wouthuysen , le hamiltonien électronique de Dirac en présence d’un champ électromagnétique dépendant du temps est développé au cinquième ordre en 1/m. Les résultats obtenus ont permis de postuler une expression générale de l’interaction directe entre le spin et le champ électromagnétique sous la forme d’un développement en série entière. Un travail similaire est réalisé dans le cadre du problème relativiste à deux électrons en interaction coulombienne. La diagonalisation du hamiltonien de Breit au troisième ordre en 1/m fait apparaître une interaction singulière entre le spin, le champ coulombien et le champ électromagnétique externe dépendant du temps. Dans la deuxième partie, on propose un modèle classique pour modéliser une expérience de magnéto-optique non-linéaire réalisée sur des échantillons ferromagnétiques. Les prédictions théoriques des angles de rotation Faraday sont comparées aux résultats expérimentaux de la référence [1] et permettent d’ouvrir une discussion à propos des mécanismes physiques gouvernant les phénomènes magnéto-optiques observés. Le rôle joué par l’interaction spin-orbite entre les spins et le champ électrique du laser est discuté. / This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [ Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac’s formalism. By means of the Foldy–Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin–field electronic hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulombian interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined.
453

Synthèses, études structurales et physiques de doubles pérovskites ordonnées NaLnCoWO6 : recherche de nouveaux composés multiferroïques basés sur la ferroélectricité hybride impropre / Synthesis, structural and physical studies of doubly ordered perovskite NaLnCoWO6 : pursuing new multiferroics based on hybrid improper ferroelectricity

Zuo, Peng 10 October 2017 (has links)
Ce travail porte sur la synthèse et la caractérisation de nouveaux matériaux multiferroïques basés sur le concept très récent de la Ferroélectricité Hybride Impropre.Deux classes de matériaux ont été envisagées : les oxydes de type Ruddlesden-Popper NaRMO4 (R=Y, La; M= Mn, Cr) et les doubles pérovskites ordonnées NaLnCoWO6 (Ln= Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb). Les essais de synthèse sur la première classe n’ont pas permis d’obtenir les composés visés. Pour la seconde classe, l’ensemble des composés ont pu être obtenus par synthèse par voie solide à haute température. Les composés NaLnCoWO6 (Ln=La, Pr, Nd) ont été synthétisés à pression ambiante. L’usage des techniques de Hautes Pressions – Hautes Températures (HP-HT) a permis de stabiliser les composés contenant des terres rares plus petites et d’obtenir ainsi neuf nouveaux composés aux propriétés inédites.L’utilisation combinée de la diffraction sur poudre des rayons X au synchrotron et des neutrons a permis une étude structurale fine de la famille des doubles pérovskites ordonnées NaLnCoWO6. Les groupes d’espace ont été déterminés grâce aux affinements Rietveld des diffractogrammes de Rayons X sur poudre haute résolution. Les composés NaLnCoWO6 (Ln=La, Pr, Nd) cristallisent dans le groupe d’espace centrosymétrique C2/m tandis que les 9 nouveaux composés (Ln= Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) cristallisent dans le groupe d’espace polaire P21. Des mesures de génération de seconde harmonique confirment la structure non-centrosymétrique des nouveaux composés. L’analyse adaptée des modes de symétrie des composés cristallisant dans la structure polaire montre que l’amplitude du mode polaire induit augmente avec la diminution de la taille du cation Ln3+. La polarisation estimée à partir des affinements de la structure pourrait atteindre jusqu’à ~20µC/cm2.Une transition de phase présentant une très large hystérésis en température (~150K) a été observée par diffraction des neutrons pour le composé NaLaCoWO6. De plus, les images obtenues en Microscopie Electronique en Transmission révèlent la présence de bandes dans la phase haute température. Cette superstructure présente une périodicité de 12ap selon la direction [100]p ou [010]p . On a pu montrer à l’aide d’observations en STEM (microscopie à balayage en transmission) combinées avec des mesures en EELS (spectroscopie de pertes d’énergie des électrons) que ce contraste de bandes n’est pas lié à une variation de composition mais bien à une variation structurale. Différents modèles de rotations des octaèdres d’oxygènes ont été élaborés pour valider les données expérimentales obtenues par diffraction des rayons X et de neutrons. Le schéma de rotation qui décrit au mieux les données est a-a-c0. Concernant la phase basse température le groupe d’espace attribué est le groupe polaire P21.Les caractérisations magnétiques ont été réalisées pour toutes ces phases. Tous les composés NaLnCoWO6 s’ordonnent dans une configuration antiferromagnétique. Les températures de Néel varient entre 4 et 13K en fonction de la nature de la terre-rare. Les moments effectifs déterminés par la loi de Curie-Weiss sont en accord avec les moments théoriques attendus. Toutes les températures de Weiss sont négatives traduisant le fait que les interactions antiferromagnétiques sont prépondérantes dans ces systèmes. Les structures magnétiques ont été déterminées pour les composés Ln= Y, La, Tb, and Ho. Pour ces mêmes composés, des mesures diélectriques en fonction de la température et du champ magnétique ont permis de mettre en évidence un couplage magnéto-diélectrique conséquent pour Ln=Y and Ho. Les mesures de courant pyroélectrique autour de la transition magnétique montrent qu’il existe une polarisation induite par l’ordre magnétique dans le composé NaYCoWO6.. C’est la première mise en évidence expérimentale d’un couplage magnéto-électrique dans la famille des doubles pérovskites ordonnées AA’BB’O6. / In this study, new magneto-electric materials were synthesized on the basis of the very recently recognized ferroelectric inducing mechanism, hybrid improper ferroelectricity, and structural and physical properties characterizations were carried out on these new phases.Two classes of materials were focused on: the Ruddlesden-Popper oxides NaRMO4 (R=Y, La; M= Mn, Cr) and the doubly ordered perovskites NaLnCoWO6 (Ln= Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb). Attempts to synthesize the former class failed to give the target phases. All compounds in the latter class were prepared successfully by solid-state reactions at high temperature, among which the compounds NaLnCoWO6 (Ln=La, Pr, Nd) were prepared at ambient pressure while the other nine compounds were synthesized at high pressure.The structural study of the doubly ordered perovskite family NaLnCoWO6 was performed by synchrotron X-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD). Based on the Rietveld refinement of the SXRPD patterns, the space groups were assigned. NaLnCoWO6 (Ln=La, Pr, Nd) compounds crystallize in the centrosymmetric C2/m symmetry, whereas the other nine new compounds crystallize in the polar space group P21. Second harmonic generation measurements on powder confirmed the non-centrosymmetric structure of the new compounds. Symmetry mode analysis demonstrates that the amplitude of the induced polar mode increases with a decreasing Ln cation size. The amplitude of the polarization was estimated from the refined structures, and can be as large as ~20µC/cm2.A structural phase transition was observed by NPD in NaLaCoWO6 with a large temperature hysteresis of ~150K. In addition, stripes were observed on the high-resolution transmission electron microscopy (TEM) images in the high temperature phase. The periodicity of this superstructure is 12ap along either the [100]p or [010]p direction. Further investigations by scanning TEM and electron energy loss spectroscopy revealed that the contrast of the stripes is due to a structural modulation rather than a compositional variation. Octahedral tilt twinning models were built with different tilting schemes to fit the observed SXRPD and NPD patterns. The tilting scheme a-a-c0 describes successfully the data. The low temperature phase was unambiguously determined to possess the polar space group P21.Magnetic and electric properties were experimentally characterized. All NaLnCoWO6 compounds order antiferromagnetically below TN which is between 4 and 13K. Curie-Weill fits were performed for all compounds, yielding reasonable effective magnetic moments compared to the theoretical ones. Weiss temperatures were all determined to be negative further indicating that antiferromagnetic interactions are dominant in these systems. Magnetic structures were determined for four NaLnCoWO6 (Ln= Y, La, Tb, and Ho) compounds, of which two have non-magnetic Ln cations (Y and La) and two have magnetic ones (Tb and Ho). Magneto-dielectric coupling was experimentally observed in compounds NaLnCoWO6 (Ln=Y, Tb, Ho) by dielectric measurements as a function of temperature and magnetic field. Polarization was derived for the Y and Ho compounds from pyroelectric current measurement, however, only the NaYCoWO6 compound demonstrates a polar behavior which cannot be switched. This is the first evidence that electric polarization can be induced by the magnetic ordering in the AA’BB’O6 class materials.
454

Experiments on the 852 nm D2 Line of 133Cs with a Diode Laser System and their use in Measurement of the Permanent Electric Dipole Moment of the Electron

Ravi, Harish January 2016 (has links) (PDF)
We give a brief introduction to atomic physics and the motivation behind our experiments in the first chapter. The electron’s electric dipole moment is an interesting quantity which is yet to be measured. In the 3rd Chapter, we use the technique of chopped non-linear magneto-optic rotation (NMOR) in a room temperature Cs vapor cell to measure the permanent electric dipole moment (EDM) in the atom. The cell has paraffin coating on the walls to increase the relaxation time. The signature of the EDM is a shift in the Larmor precession frequency correlated with the application of an E field. We analyze errors in the technique, and show that the main source of systematic error is the appearance of a longitudinal magnetic field when an electric field is applied. This error can be eliminated by doing measurements on the two ground hyperfine levels. Using an E field of 2.6 kV/cm, we place an upper limit on the electron EDM of 2.9 × 10−22 e-cm with 95% confidence. This limit can be increased by 7 orders-of-magnitude—and brought below the current best experimental value. We give future directions for how this may be achieved. In chapter 4, we examine the Hanle effect for linear and circularly polarized light for different ground states and we find opposite behavior in the transmission signal. In one case, it shifts from enhanced transmission to enhanced absorption and vice-versa in the other case. In Chapter 5, we study the transmission spectrum at different temperatures and device a way to find the number density. We then verify the Clausius-Clapeyron equation and also find the latent heat of vaporization of Cs. Finally, we wrap up with conclusions and future directions.
455

Desenvolvimento de um microscópio óptico e magnetoóptico de varredura em campo-próximo / Development of a Magneto-optical Scanning Near-field Optical Microscope (MO-SNOM)

Jeroen Schoenmaker 26 April 2005 (has links)
Para o desenvolvimento da nanociência atual há forte demanda por equipamentos capazes de caracterizar sistemas em escalas da ordem nanométrica. Este contexto impulsionou o desenvolvimento de microscópios ópticos de varredura em campopróximo (Scanning Near-field Optical Microscope SNOM). Diferentemente da microscopia óptica tradicional, os SNOMs detectam a radiação eletromagnética evanescente e, conseqüentemente, a resolução não é limitada pelo critério de Rayleigh. No Laboratório de Materiais Magnéticos IFUSP desenvolvemos um SNOM sensível a efeitos Kerr magnetoópticos (MO-SNOM). Dessa maneira, associamos a alta resolução da técnica à alta sensibilidade dos efeitos magnetoópticos. Trata-se se uma área relativamente pouco explorada e carente de resultados sistemáticos na literatura. Utilizando o MO-SNOM, caracterizamos partículas microestruturadas de Co70.4Fe4.6Si15B10 amorfo com dimensões de 16x16x0.08 microm3 e 4x4x0.08 microm3. Os resultados compreendem dezenas de imagens de susceptibilidade magnetoóptica diferencial com resolução melhor que 200 nm e curvas de histerese local. Em primeira análise, a demonstração de resultados sistemáticos ajuda a estabelecer a técnica. O comportamento magnético das partículas, estudadas sob várias condições de campo aplicado, se mostrou determinado basicamente pela anisotropia de forma. As curvas de histerese local mostraram comportamentos intrinsecamente locais e motivaram uma interessante discussão sobre os parâmetros de caracterização magnética convencionais. As medidas realizadas indicam que o efeito Kerr magnetoótico transversal em campopróximo é similar ao campo-distante. Os resultados são fortemente sustentados por medidas de microscopia magnetoóptica de campo-distante, simulações micromagnéticas e medidas de microscopia de força magnética. Medidas complementares revelam o potencial do MO-SNOM para caracterizações de objetos extensos quanto a potenciais de pinning. Além disso, medidas em filmes finos de NiFe/FeMn acoplados por exchange-bias evidenciam a alta sensibilidade do MO-SNOM, estimada de DM ~ 2 x 10-12 emu. / To support nanosciences evolution, there is a strong demand for developing new instrumentation devoted to nano-scale characterization. In this context, the development of the Scanning Near-field Optical Microscope (SNOM) took place. In contrast to traditional optical microscopes, SNOM deals with evanescent electromagnetic radiation and, consequently, the resolution is no longer limited by the Rayleigh criterion. At Laboratório de Materiais Magnéticos (LMM) IFUSP a SNOM devoted to magneto-optical Kerr effect measurements (MO-SNOM) has been developed. The MOSNOM associates the high resolution of the near-field technique to the high sensibility of the magneto-optical Kerr effect. Near-field magneto-optical microscopy is not yet wellestablished and there is a lack of systematic results in the literature. Using the MO-SNOM, amorphous Co70.4Fe4.6Si15B10 particles with 16x16x0.08 microm3 and 4x4x0.08 microm3 dimensions were studied. With resolution better than 200 nm, several magneto-optical differential susceptibility images and local hysteresis loops were obtained. The systematic results uphold the establishment of this new technique. Under the different applied field conditions, the magnetic behavior of the particles was found to be determined by shape anisotropy. Local hysteresis loops presented shapes intrinsic of local field induced process. The unusual hystesesis loops motivated interesting discussion about the conventional magnetic parameters. The MO-SNOM measurements indicate that the near-field transverse magneto-optical Kerr effect is similar to the far-field case. The results are highly supported by far-field magneto-optical microscopy, micromagnetic simulations and magnetic force microscopy measurements. Complementary measurements indicate the MO-SNOM potential to extensive magnetic surface characterization related to pinning potential distribution. Furthermore, measurements on the exchange-bias coupled NiFe/FeMn thin films make evident the MO-SNOM high sensitivity, estimated to be DeltaM ~ 2 x 10-12 emu.
456

Robust Finite Element Strategies for Structures, Acoustics, Electromagnetics and Magneto-hydrodynamics

Nandy, Arup Kumar January 2016 (has links) (PDF)
The finite element method (FEM) is a widely-used numerical tool in the fields of structural dynamics, acoustics and electromagnetics. In this work, our goal is to develop robust FEM strategies for solving problems in the areas of acoustics, structures and electromagnetics, and then extend these strategies to solve multi-physics problems such as magnetohydrodynamics and structural acoustics. We now briefly describe the finite element strategies developed in each of the above domains. In the structural domain, we show that the trapezoidal rule, which is a special case of the Newmark family of algorithms, conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ‘energy-like measure’ in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics variants of the trapezoidal rule that incorporate ‘high-frequency’ dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid FEM framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacementbased and hybrid approaches against analytical solutions. We also present a monolithic formulation for the solution of structural acoustic problems based on the hybrid finite element approach. In the area of electromagnetics, since our goal is to ultimately couple the electromagnetic analysis with structural or fluid variables in a ‘monolithic’ framework, we focus on developing nodal finite elements rather than using ‘edge elements’. It is well-known that conventional nodal finite elements can give rise to spurious solutions, and that they cannot capture singularities when the domains are nonconvex and have sharp corners. The commonly used remedies of either adding a penalty term or using a potential formulation are unable to address these problems satisfactorily. In order to overcome this problem, we first develop several mixed finite elements in two and three dimensions which predict the eigenfrequencies (including their multiplicities) accurately, even for non-convex domains. In this proposed formulation, no ad-hoc terms are added as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of the finite element spaces for the different variables. For inhomogeneous domains, ‘double noding’ is used to enforce the appropriate continuity conditions at an interface. Although the developed mixed FEM works very accurately for all 2D geometries and regular Cartesian 3D geometries, it has so far not yielded success for curved 3D geometries. Therefore, for 3D harmonic and transient analysis problems, we propose and use a modified form of the potential formulation that overcomes the disadvantages of the standard potential method, especially on non-convex domains. Electromagnetic radiation and scattering in an exterior domain traditionally involved imposing a suitable absorbing boundary condition (ABC) on the truncation boundary of the numerical domain to inhibit reflection from it. In this work, based on the Wilcox asymptotic expansion of the electric far-field, we propose an amplitude formulation within the framework of the nodal FEM, whereby the highly oscillatory radial part of the field is separated out a-priori so that the standard Lagrange interpolation functions have to capture a relatively gently varying function. Since these elements can be used in the immediate vicinity of the radiator or scatterer (with few exceptions which we enumerate), it is more effective compared to methods of imposing ABCs, especially for high-frequency problems. We show the effectiveness of the proposed formulation on a wide variety of radiation and scattering problems involving both conducting and dielectric bodies, and involving both convex and non-convex domains with sharp corners. The Time Domain Finite Element Method (TDFEM) has been used extensively to solve transient electromagnetic radiation and scattering problems. Although conservation of energy in electromagnetics is well-known, we show in this work that there are additional quantities that are also conserved in the absence of loading. We then show that the developed time-stepping strategy (which is closely related to the trapezoidal rule) mimics these continuum conservation properties either exactly or to a very good approximation. Thus, the developed numerical strategy can be said to be ‘unconditionally stable’ (from an energy perspective) allowing the use of arbitrarily large time-steps. We demonstrate the high accuracy and robustness of the developed method for solving both interior and exterior domain radiation problems, and for finding the scattered field from conducting and dielectric bodies. In the field of magneto-hydrodynamics, we develop a monolithic strategy based on a continuous velocity-pressure formulation that is known to satisfy the Babuska-Brezzi (BB) conditions. The magnetic field is interpolated in the same way as the velocity field, and the entire formulation is within a nodal finite element framework. Both transient and steady-state formulations are developed for two- and three-dimensional geometries. An exact linearization of the monolithic strategy ensures that rapid (quadratic) convergence is achieved within each time (or load) step, while the stable nature of the interpolations used ensure that no instabilities arise in the solution. Good agreement with analytical solutions, even with the use of very coarse meshes, shows the efficacy of the developed formulation.
457

Magnetic and Magnetotransport Studies in Transition Metal Oxides : Role of Competing Interactions

Sow, Chanchal January 2013 (has links) (PDF)
There was a fame time for silicon in condensed matter physics, then the graphene era came and now topological insulators are gaining lot of attention, but magnetism in condensed matter physics has remained always fascinating starting from the ancient days up to now and it will remain as one of the core topic in basic or applied physics. The improvement in the modern techniques allows one to explore magnetism in different length scales as well as in different time scales. As an effect of the improvement in experimental techniques, different magnetic anomalies are unearthed. As a result theories are getting refined and the area of magnetism progresses. From the material point of view, oxides carry the most diverse nature in condensed matter starting from high temperature superconductivity (HTS), colossal magnetoresistance, metal insulator transition etc. to ferromagnetism (FM), anti-ferromagnetism (AFM), spin glass (SG) and so on. Among this list, SG and HTS are one of the least understood topics in magnetism till today. A large research community is involved in understanding the underlying physics behind these two, especially in transition metal oxides. It has drawn attention not only due to fundamental aspects but also due to various applications in day to day life. This thesis is an attempt to understand these two phenomena in transition metal oxides. As the title of this thesis suggest, it is all about magnetic and magneto-transport properties of certain transition metal oxide (crystalline) addressing the interplay between two competing order parameters to understand the underlying physics behind it from an experimental point of view. We have studied two different kinds of competing interactions: (i) the FM/AFM interplay either in bulk or at the interface of the two layers in thin films; (ii) the interplay between FM and superconductivity (SC) in superconductor (S)/ferromagnet (F) heterostructures. Basically both of these two kinds lead to non-equilibrium phenomena in these oxides. One of such competition is between FM and AFM leading to slow dynamics (glassy physics). Disorder and frustrations are the key ingredients for such slow dynamics. The spin frustration arises either due to geometry or due to competing interactions. For example, in a triangular antiferromagnet due to the triangular geometry spins gets frustrated. Now, if it prevails spin disorder as well then it satisfies both the criteria for a spin glass and hence it gives birth to glassiness. Another kind of competition is the interplay among SC and FM. It is known that SC and FM are two antagonistic quantum phenomena thus in a single material SC (singlet pairing) and FM does not co-exist. However one can realize this by making F/S heterostructures and observe the battle between these two competing order parameters. The spin polarized quasiparticle injection from F creates non equilibrium spin density inside S and thereby suppressing the order parameter of S. Also by choosing an appropriate ferromagnet the vortex motion inside S can be arrested to certain extent which can enhance the critical current density of S. Thus FM/SC interplay has become an alternative way to look at the high temperature superconductivity. This thesis is categorized into nine chapters. The summary of each chapter is as follows: Chapter: 1 contains certain concepts of magnetism and superconductivity which is useful to understand the topics and experiments described in this thesis. Chapter: 2 gives the underlying principles of the various experimental techniques used in this thesis. Chapter: 3 describes the magnetic properties of successfully synthesized five compositions of LixNi(2-x)O2 (0.67<x<0.99) which has five distinct ground states namely antiferromagnet (AF), spin glass (SG), cluster glass (CG), re-entrant spin glass (RSG) and ferromagnet (FM). The SG and CG ground state has been well described by the frequency dependent peak shift. From the power-law divergence of critical slowing down the estimated value of relaxation time indicates the presence of interacting macro spins (spin cluster) rather than individual spins in certain LixNi(2-x)O2 samples possessing CG ground state which is also supported by the Arrhenius law. The shift in the spin freezing temperature with the application of dc field obeys Almeida-Thouless line. It also exhibits memory effect which is generic to the slow dynamics. The remnant magnetization relaxation follows logarithmic decay. Interestingly, the sample having RSG ground state shows memory effect up-to 50K and behaves like a FM above that temperature. FC-ZFC M(T) curve shows a splitting at the ordering temperature. The critical analysis across the ferromagnetic-paramagnetic phase transition yields a self-consistent γ, β and δ value and the spin-spin interaction in this material follows long range mean field model. The critical exponents obey Widom scaling law: δ = 1 + γ β −1. The universality class of the scaling relations is also verified where the scaled m and scaled h collapses into two branches. Finally the magnetic phase diagram illustrates a vivid picture of the gradual evolution of ferromagnetism in LixNi(2-x)O2 through a glassy state. As a concluding remark, we think, the present study of glassy physics in magnetic insulator/semiconductor sets an example to compare them with the conventional metallic spin glass system. Chapter: 4 exhibits the results of the structural, magnetic and transport measurements to elucidate some of the most striking unusual physical responses of bulk SrRuO3. Two set of polycrystalline SrRuO3 samples with unique ordering temperature have been synthesized. In one case, we have taken the stoichiometric weight ratio of precursors that eventually resulted in Ru-deficient SrRuO3(SROD). In the other case, we have taken extra 2% wt. RuO2 deliberately to form stoichiometric SrRuO3(SRO). Both the samples are found to crystallize in orthorhombic crystal structure with Pnma space group. The low temperature magnetization is found to be well described by the Bloch T3/2 law and the magnetization near Tc is found to follow the scaling law; M~(Tc-T)β with β=0.35 and β=0.30 for SRO and SROD respectively, apparently showing the 3D Ising behaviour. This aspect will be elaborated in the next chapter. The magnetic ac susceptibility study exhibits a broad hump far below the ferromagnetic ordering temperature and the frequency dependence of this hump position exhibits the characteristics of multiple relaxations. Most strikingly, we notice a low temperature glassy magnetic behaviour clearly demonstrated by the time dependent memory effect. This is very surprising and unlikely to happen in systems, which have itinerant ferromagnetic character. However, we conjecture that slow domain growth and spin canting could be the cause for such effect. The transport study evidences a crossover from Fermi liquid (FL) to non-Fermi liquid (NFL) behaviour around 40 K and a slope change in dρ/dT vs. T plot in the vicinity of that temperature. Astonishingly, we observe two distinct dips (one around ferromagnetic ordering temperature and the other far below the ferromagnetic ordering temperature) in the temperature dependent MR response. In addition, we also observe the signature of an unusual dip in the temperature dependent coercive field towards low temperature side. The emergence of such unusual magnetic and transport response is strongly believed to be connected with hidden magnetic interactions. Our effort on neutron diffraction study has been able to trace the cause of such cryptic magnetic interaction. The findings of neutron diffraction study evidence the change in the unit cell lattice parameters around 75 K and that could be the central cause behind such anomalous low temperature magnetic responses. It also demonstrates that the octahedral tilt freezes around the FM transition and has a minimum around the low temperature glass transition temperature. Most remarkably we observe a decline in the total integrated magnetic intensity towards the low temperature side indicating the presence of antiferromagnetic like interaction in SrRuO3. Chapter: 5 resolves the ambiguity in determining the crritical exponents in SrRuO3. Most remarkably, the application of scaling law in the FC magnetization leads a systematic change in the values of critical exponent with the measuring field in SRO. The β value changes from 0 to o.44 to to 0.29 (corresponds to mean field to Ising) with the increase in the measurement field from 10 to 2500 Oe. However, the H→0 extrapolation fields β=0.5. In order to substantiate the actual nature, the critical behavior is studied across the phase transition from the M-H isotherms. The critical analysis yields a self-consistent β, γ and δ values and the spin-spin interaction follows long range mean field δ=γ β model 1+. The critical exponents also obey Widom scaling law: δ = 1 + γ β-1 The universality class of the scaling relations is verified where the scaled m and scaled h collapses into two branches. We have also found that Ru deficiency does not affect the nature of the spin-spin interaction (though ferromagnetism gets reduced). Further the directional dependence of the critical exponent reflects the isotropic nature of the magnetic interaction. In other words the spin-spin interaction found to be: i) three dimensional, ii) long range, iii) mean field type and iv) isotropic in SrRuO3. We have also found magnetocaloric effect (calculated from the M-H isotherms) that across the phase transition. The specific heat measurements find sharp jump at the ferromagnetic transition due to the magnetic contribution of the specific heat. Chapter: 6 describes the magnetism at the SrRuO3 (SRO)/LaAlO3 (LAO) interface where SRO is an itinerant ferromagnet (FM) and LAO is non-magnetic (NM) (rather diamagnetic). Most surprisingly SRO/LAO exhibits pronounced exchange bias (EB) effect realized by observing a shift in the field cooled M-H hysteresis. Further investigation results an increasing trend of the strength of the EB with the decreases in the thickness of ferromagnetic layer. This system also displays the training effect which essentially confirms that this effect is due to EB. EB arises due to the uncompensated spins at the FM/AFM interface hence the EB effect in SRO/LAO system is unconventional. However, the origin of such AFM interaction (responsible for EB effect in FM/NM system) at SRO/LAO interface is realized and explained through the temperature dependence of the EB effect. Further, we have extensively investigated EB effect in other analogous ferromagnets, FM/FM bilayers and FM/FM superlattices. We found that La0.7Sr0.3MnO3 (LSMO) grown on LAO exhibits the signature of EB. In contrast to that La0.5Sr0.5CoO3 (LSCO) does not show any signature of EB. All the bilayers (LSMO/SRO, LSMO/LSCO and LSCO/SRO) exhibit EB and have similar kind of temperature dependence. In order to gain more insight we have grown a (LSMO/SRO)8 superlattice and observed a complex magnetic behaviour. It exhibits partial inverted magnetic hysteresis. But the system shows EB effect characterized by the shift in the FC hysteresis and training effect. All these observations essentially demonstrate that the magnetic nature of various ferromagnetisms at the interfaces can be changed by choosing a proper partner (acts like adding perturbations into one of those system which lies close to the instability region). Chapter: 7 presents the magneto-transport properties of three SRO films grown on LAO (100) of thicknesses of 12, 24 and 48 nm are studied extensively. For a one to one comparison one of the sample is also grown on STO(100). The coercivity vs. temperature in SRO(48 nm)/LAO exhibits a plateau at ~40 K. The dR/dT exhibits the low temperature hump in all the samples which very much replicates with the bulk scenario that we observed in SRO. Most strikingly the 12 nm SRO sample exhibits NFL behaviour throughout the temperature range of measurement (10-150 K). Our careful investigation reveals a cross-over from FL to NFL in all SRO thin films. The cross-over temperature increases with the increase in thickness and eventually shifts towards the bulk cross-over value. It is apt to remind that in bulk SRO we have demonstrated (by employing temperature dependent neutron diffraction) that there is a presence of antiferromagnetic like interaction at low temperature giving birth to glassiness in bulk SRO. Further, an attempt is made to understand the low temperature magneto-transport anomaly by looking into the spin fluctuation through the low frequency 1/f noise measurements. It conveys a message that there are two types of magnetic ordering present in SRO giving rise to two peaks in the temperature dependence of the relative variance. Application of magnetic field suppresses both the peaks in the relative variance. This certainly indicates that the origin of such peak is caused by the spin fluctuations and thereby it is of magnetic origin. Further we have looked into the Hall effect of a structured (Hall patterned) SRO thin film and observed regular Hall effect (RHE) as well as anomalous Hall effect (AHE) in it. Most remarkably the temperature dependence of the RHE coefficient changes its sign close to the ferromagnetic transition temperature of SRO. This implies a change of the type of the carrier as the temperature is varied. Based on these results, the carrier concentration of SRO as a function of temperature is determined. Chapter: 8 is about the magnetic and magnetotransport studies on the successfully grown high quality S/F heterostructures. The oxygen content plays a vital role in superconductivity of oxide materials thus for studying FM/SC interplay in oxides we have discussed how to achieve a high quality sample (oxygen stoichiometric). We have observed a great influence of a FM in suppressing the superconductivity in YBa2Cu3O(7-δ) (YBCO) in FM/SC heterostructures. The analysis of the out of plane M-H hysteresis reveals a significant reduction of the critical fields (HC1 and HC2) of the SC (in SRO/YBCO bilayer) which might have a great significance to understand the superconductivity in a better way (from both the perspectives: theory and experiments). Most remarkably we have found 40% enhancement of the critical current density of YBCO in SRO/YBCO bilayer. We have demonstrated that in order to see the effect of spin polarizes quasiparticle (SPQP) injection into YBCO, one should not apply more than 20mA current since Joule heating contribution wins over pair breaking effect. The SPQP injection from SRO into YBCO exhibits pair breaking effect as the TC (of the SC) shift follows I2/3 law. The resistive transitions under various applied magnetic fields and the field dependence of the activation energy confirms that the vortices are in the 2D regimes (it follows power law, U0~Hα withα=0.5) in SRO/YBCO. To get a better insight into the FM/SC interplay we have looked into two of the FM/YBCO combinations (LSCO/YBCO and LSMO/YBCO). We observe that the degree of the spin polarizations of the FMs scales with the suppression of superconductivity in YBCO which means more the spin polarization more is the suppression. We have also found out that spin polarization is not the sole parameter in suppressing superconductivity in SRO/YBCO bilayers. It also depends upon the state of magnetization of the ferromagnet. Further, we observed a significant reduction (one order) of the activation energy in LSCO/YBCO compared to SRO/YBCO which clearly indicates that the vortex dynamics might depend on other aspects as well (of the FM). It also reveals the formation of decoupled pancake vortices (pure 2D regime) in LSCO/YBCO and LSMO/YBCO bilayers whereas in case of YBCO and SRO/YBCO it is of 2D coupled type. Chapter: 9 summarizes the whole work presented in this thesis. It also discusses about few research problems which one need to look at in future.
458

Relativistic theory of laser-induced magnetization dynamics

Mondal, Ritwik January 2017 (has links)
Ultrafast dynamical processes in magnetic systems have become the subject of intense research during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization dynamics. In particular, we build relativistic theory to explain the magnetization dynamics observed at short timescales in pump-probe magneto-optical experiments and compute from first-principles the coherent laser-induced magnetization. In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham equation that includes all relativistic effects related to spin and orbital magnetism as well as the magnetic exchange interaction and any external electromagnetic field. As it describes both particle and antiparticle, a separation between them is sought because we focus on low-energy excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that captures all relativistic contributions in first order; the most significant one is the full spin-orbit interaction (gauge invariant and Hermitian). Noteworthy, we find that this relativistic framework explains a wide range of dynamical magnetic phenomena. To mention, (i) we show that the phenomenological Landau-Lifshitz-Gilbert equation of spin dynamics can be rigorously obtained from the Dirac-Kohn-Sham equation and we derive an exact expression for the tensorial Gilbert damping. (ii) We derive, from the gauge-invariant part of the spin-orbit interaction, the existence of a relativistic interaction that linearly couples the angular momentum of the electromagnetic field and the electron spin. We show this spin-photon interaction to provide the previously unknown origin of the angular magneto-electric coupling, to explain coherent ultrafast magnetism, and to lead to a new torque, the optical spin-orbit torque. (iii) We derive a definite description of magnetic inertia (spin nutation) in ultrafast magnetization dynamics and show that it is a higher-order spin-orbit effect. (iv) We develop a unified theory of magnetization dynamics that includes spin currents and show that the nonrelativistic spin currents naturally lead to the current-induced spin-transfer torques, whereas the relativistic spin currents lead to spin-orbit torques. (v) Using the relativistic framework together with ab initio magneto-optical calculations we show that relativistic laser-induced spin-flip transitions do not explain the measured large laser-induced demagnetization. Employing the ab initio relativistic framework, we calculate the amount of magnetization that can be imparted in a material by means of circularly polarized light – the so-called inverse Faraday effect. We show the existence of both spin and orbital induced magnetizations, which surprisingly reveal a different behavior. We establish that the laser-induced magnetization is antisymmetric in the light’s helicity for nonmagnets, antiferromagnets and paramagnets; however, it is only asymmetric for ferromagnets.
459

Propriétés magnéto-optiques de nanotubes de carbone individuels suspendus / Magneto-optical properties of individual suspended carbon nanotubes

Gandil, Morgane 17 July 2017 (has links)
Cette thèse est consacrée à l’étude expérimentale des propriétés magnéto-optiques intrinsèques des nanotubes de carbone mono-paroi par spectroscopie de photoluminescence résolue en temps.Un dispositif de microscopie optique confocale de grande ouverture numérique (NA = 0.95),incluant un cryostat magnétique, permet l’étude de nanotubes suspendus à l’échelle individuelle,à température cryogénique (jusqu’à 2 Kelvin) et sous champ magnétique (jusqu’à 7 Tesla). L’évolution des spectres et des déclins de photoluminescence avec le champ magnétique montre l’influence de l’effet Aharonov-Bohm sur les deux excitons singulets de plus basse énergie, c’est à-dire l’exciton fondamental qui est optiquement inactif (exciton noir) et un exciton d’énergie supérieure séparé de quelques milliélectronvolts qui est optiquement actif (exciton brillant). L’interprétation de ces résultats à partir d’un modèle d’équations de taux qui intègre le couplage Aharonov-Bohm entre ces deux excitons permet de déterminer séparément les durées de vie excitoniques et de fournir des informations quantitatives sur la relaxation de l’énergie depuis les niveaux supérieurs photo-excités. La relaxation de l’énergie suite à la photo-excitation de la transition S22 conduit à une efficacité de peuplement de l’état brillant quatre fois plus faible que celle de l’état noir, mais qui augmente significativement lorsque la relaxation se produit depuis les niveaux excitoniques KK’. D’autre part, le bon rapport signal à bruit obtenu dans les spectres de photoluminescence permet de révéler l’existence d’un couplage intrinsèque en champ nul entre l’exciton noir et l’exciton brillant ainsi que le maintien de la mobilité excitonique dans les nanotubes suspendus à la température de l’hélium liquide. / This thesis is dedicated to the experimental study of the intrinsic magneto-optical properties of single-walled carbon nanotubes through time-resolved photoluminescence spectroscopy. Measurements are performed on suspended nanotubes samples at the single-object level using a home-built confocal optical microscope with a large numerical aperture (NA = 0.95) operating at cryogenic temperature (down to 2K) and high magnetic field (up to 7T). The evolution of the photoluminescence spectra and decay signals with increasing magnetic fields shows the influence of the Aharonov-Bohm effect on the two lowest-energy singlet excitons, namely the ground exciton which is optically inactive (dark exciton) and an exciton lying a few millielectron volts higher in energy which is optically active (bright exciton). A model of these results based on rate equations and including the Aharonov-Bohm coupling between these two excitons enables to determine separately the excitons lifetimes and to derive quantitative information on the energy relaxation from the photo-excited higher levels. The energy relaxation following the photo-excitation of the S22 transition leads to a bright state population efficiency four times lower than that of the dark state, but it significantly increases when energy relaxation occurs from the KK’ excitonic levels. Thanks to a good signal to noise ratio, the photoluminescence spectra also reveal the presence of an intrinsic zero-field coupling between the dark and the brightexcitons, as well as an excitonic mobility preserved at liquid helium temperature in suspended nanotubes.
460

Nanogravure et caractérisation structurale et électronique de rubans de graphène cristallins / Nanoetching and structural and electrical characterisation of cristalline graphene nanoribbons

Nunez Eroles, Marc 09 November 2015 (has links)
Les principaux objectifs de cette thèse sont la fabrication et la caractérisation structurale à haute résolution de nanorubans de graphène à bords atomiquement lisses ainsi que leur intégration dans des composants et l'étude du transport électronique. En premier lieu, nous montrons que des nanorubans de graphène cristallins de largeur inférieure à 100 nm et avec des qualités structurales supérieures l'état de l'art peuvent être découpé par un faisceau électronique focalisé d'énergie modérée en présence d'oxygène. Les caractéristiques des rubans obtenus sont également supérieures à l'approche précédente utilisant la vapeur d'eau. Dans un deuxième temps, la structure des nanorubans est caractérisée jusqu'à l'échelle atomique par microscopie électronique en transmission corrigée des aberrations sphériques. Nous montrons que la cristallinité des nanorubans, tant en leur centre que le long des bords de découpe, est préservée. Les performances de notre approche atteignent l'état de l'art et sa reproductibilité permet de fabriquer des rubans longs de plusieurs centaines de nanomètres mais de largeur aussi fine que 16 nm. Ensuite, nous avons transposé la découpe de nanoruban suspendus à une configuration partiellement suspendue sur substrat SiO2/Si permettant de les intégrer dans des composants adaptés aux mesures de transport électronique à basse température et sous champ magnétique. Le transport électronique dans les rubans contactés de 60 x 300 nm présente un gap et des oscillations en balayage de grille arrière qui sont en accord avec un mécanisme de blocage de Coulomb dans un domaine de taille de l'ordre de la taille du ruban. Si ces résultats montrent la persistance de barrières tunnel, ses bords semblent de qualité suffisante pour ne pas induire de confinement supplémentaire. Au-delà des composants mésoscopiques, notre méthode de fabrication des rubans par gravure électronique sous oxygène ouvre des perspectives dans deux domaines en émergence. Elle est compatible avec l'ultravide et parfaitement adaptée au développement d'une technologie atomique à base de graphène. Une caractérisation de la contamination du graphène ainsi qu'une caractérisation électrique de dispositifs de graphène qui a été fait par microscopie à effet tunnel multisonde en ultra vide. Enfin, les rubans de graphène que nous produisons ont les dimensions et qualités structurales requises pour observer un comportement plasmonique du graphène dans le visible et ainsi interagir avec des structures plasmoniques métalliques. Ce couplage a été examiné en étudiant le signal Raman du graphène au voisinage de colloïdes d'or. / The main objectives of this thesis are the fabrication and high-resolution structural characterisation of graphene nanoribbons with atomically smooth edges as well as their device integration and electronic transport study. In first place, we show that crystalline graphene nanoribbons with width under 100 nm and structural properties better than the state of the art can be patterned by a focused electron beam in presence of oxygen. The structural characteristics of the ribbons are also better than the old process using water vapour. Secondly, nanoribbons structure is characterized down to the atomic scale by spherical aberration corrected transmission electron microscopy. We show that the nanoribbons crystallinity, of the centre as well as along the cut edges, is preserved. The performance of our process reaches the state of the art and its reproducibility allows to produce ribbons with length of hundreds of nanometer but as narrow as 16 nm. After that, we have transposed the suspended nanoribbon etching to a partially suspended configuration on a SiO2/Si substrate allowing the integration in devices suitable for electronic transport measurements at low temperature and under magnetic field. The electronic transport in contacted ribbons of 60x300 nm shows a gap and oscillations on backgate scanning measurements that are in agreement with a Coulomb blockade mechanism with dot sizes in the range of the ribbon surface. Even though those results show the persistence of tunnel barriers, the edges quality look good enough to avoid additional confinement. Other than mesoscopic devices, our ribbon fabrication process by electronic beam under oxygen atmosphere opens perspectives in two emergent fields. The process is ultra high vacuum compatible and perfectly adapted to the development of an atomic graphene based technology. A characterisation of contaminants of graphene samples as well as electrical characterisation of graphene devices has been performed in a multiprobe scanning tunnelling microscope in ultra high vacuum. Finally, our graphene nanoribbons have the right dimensions and structural qualities required for the observation of plasmonic behaviour of graphene in visible light and so interact with metallic plasmonic structures. This coupling has been analysed by studying the Raman signal of graphene at the close environment of gold colloids.

Page generated in 0.056 seconds