• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 74
  • 14
  • 2
  • Tagged with
  • 302
  • 302
  • 210
  • 187
  • 178
  • 133
  • 123
  • 123
  • 61
  • 36
  • 35
  • 31
  • 29
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Deep Learning for Geospatial Environmental Regression / Deep Learning für Regressionsmodelle mit georäumlichen Umweltdaten

Steininger, Michael January 2023 (has links) (PDF)
Environmental issues have emerged especially since humans burned fossil fuels, which led to air pollution and climate change that harm the environment. These issues’ substantial consequences evoked strong efforts towards assessing the state of our environment. Various environmental machine learning (ML) tasks aid these efforts. These tasks concern environmental data but are common ML tasks otherwise, i.e., datasets are split (training, validatition, test), hyperparameters are optimized on validation data, and test set metrics measure a model’s generalizability. This work focuses on the following environmental ML tasks: Regarding air pollution, land use regression (LUR) estimates air pollutant concentrations at locations where no measurements are available based on measured locations and each location’s land use (e.g., industry, streets). For LUR, this work uses data from London (modeled) and Zurich (measured). Concerning climate change, a common ML task is model output statistics (MOS), where a climate model’s output for a study area is altered to better fit Earth observations and provide more accurate climate data. This work uses the regional climate model (RCM) REMO and Earth observations from the E-OBS dataset for MOS. Another task regarding climate is grain size distribution interpolation where soil properties at locations without measurements are estimated based on the few measured locations. This can provide climate models with soil information, that is important for hydrology. For this task, data from Lower Franconia is used. Such environmental ML tasks commonly have a number of properties: (i) geospatiality, i.e., their data refers to locations relative to the Earth’s surface. (ii) The environmental variables to estimate or predict are usually continuous. (iii) Data can be imbalanced due to relatively rare extreme events (e.g., extreme precipitation). (iv) Multiple related potential target variables can be available per location, since measurement devices often contain different sensors. (v) Labels are spatially often only sparsely available since conducting measurements at all locations of interest is usually infeasible. These properties present challenges but also opportunities when designing ML methods for such tasks. In the past, environmental ML tasks have been tackled with conventional ML methods, such as linear regression or random forests (RFs). However, the field of ML has made tremendous leaps beyond these classic models through deep learning (DL). In DL, models use multiple layers of neurons, producing increasingly higher-level feature representations with growing layer depth. DL has made previously infeasible ML tasks feasible, improved the performance for many tasks in comparison to existing ML models significantly, and eliminated the need for manual feature engineering in some domains due to its ability to learn features from raw data. To harness these advantages for environmental domains it is promising to develop novel DL methods for environmental ML tasks. This thesis presents methods for dealing with special challenges and exploiting opportunities inherent to environmental ML tasks in conjunction with DL. To this end, the proposed methods explore the following techniques: (i) Convolutions as in convolutional neural networks (CNNs) to exploit reoccurring spatial patterns in geospatial data. (ii) Posing the problems as regression tasks to estimate the continuous variables. (iii) Density-based weighting to improve estimation performance for rare and extreme events. (iv) Multi-task learning to make use of multiple related target variables. (v) Semi–supervised learning to cope with label sparsity. Using these techniques, this thesis considers four research questions: (i) Can air pollution be estimated without manual feature engineering? This is answered positively by the introduction of the CNN-based LUR model MapLUR as well as the off-the-shelf LUR solution OpenLUR. (ii) Can colocated pollution data improve spatial air pollution models? Multi-task learning for LUR is developed for this, showing potential for improvements with colocated data. (iii) Can DL models improve the quality of climate model outputs? The proposed DL climate MOS architecture ConvMOS demonstrates this. Additionally, semi-supervised training of multilayer perceptrons (MLPs) for grain size distribution interpolation is presented, which can provide improved input data. (iv) Can DL models be taught to better estimate climate extremes? To this end, density-based weighting for imbalanced regression (DenseLoss) is proposed and applied to the DL architecture ConvMOS, improving climate extremes estimation. These methods show how especially DL techniques can be developed for environmental ML tasks with their special characteristics in mind. This allows for better models than previously possible with conventional ML, leading to more accurate assessment and better understanding of the state of our environment. / Umweltprobleme sind vor allem seit der Verbrennung fossiler Brennstoffe durch den Menschen entstanden. Dies hat zu Luftverschmutzung und Klimawandel geführt, was die Umwelt schädigt. Die schwerwiegenden Folgen dieser Probleme haben starke Bestrebungen ausgelöst, den Zustand unserer Umwelt zu untersuchen. Verschiedene Ansätze des maschinellen Lernens (ML) im Umweltbereich unterstützen diese Bestrebungen. Bei diesen Aufgaben handelt es sich um gewöhnliche ML-Aufgaben, z. B. werden die Datensätze aufgeteilt (Training, Validation, Test), Hyperparameter werden auf den Validierungsdaten optimiert, und die Metriken auf den Testdaten messen die Generalisierungsfähigkeit eines Modells, aber sie befassen sich mit Umweltdaten. Diese Arbeit konzentriert sich auf die folgenden Umwelt-ML-Aufgaben: In Bezug auf Luftverschmutzung schätzt Land Use Regression (LUR) die Luftschadstoffkonzentration an Orten, an denen keine Messungen verfügbar sind auf Basis von gemessenen Orten und der Landnutzung (z. B. Industrie, Straßen) der Orte. Für LUR werden in dieser Arbeit Daten aus London (modelliert) und Zürich (gemessen) verwendet. Im Zusammenhang mit dem Klimawandel ist eine häufige ML-Aufgabe Model Output Statistics (MOS), bei der die Ausgaben eines Klimamodells so angepasst werden, dass sie mit Erdbeobachtungen besser übereinstimmen. Dadurch werden genauere Klimadaten erzeugt. Diese Arbeit verwendet das regionale Klimamodell REMO und Erdbeobachtungen aus dem E-OBS-Datensatz für MOS. Eine weitere Aufgabe im Zusammenhang mit dem Klima ist die Interpolation von Korngrößenverteilungen. Hierbei werden Bodeneigenschaften an Orten ohne Messungen auf Basis von wenigen gemessenen Orten geschätzt, um Klimamodelle mit Bodeninformationen zu versorgen, die für die Hydrologie wichtig sind. Für diese Aufgabe werden in dieser Arbeit Bodenmessungen aus Unterfranken herangezogen. Solche Umwelt-ML-Aufgaben haben oft eine Reihe von Eigenschaften: (i) Georäumlichkeit, d. h. ihre Daten beziehen sich auf Standorte relativ zur Erdoberfläche. (ii) Die zu schätzenden oder vorherzusagenden Umweltvariablen sind normalerweise kontinuierlich. (iii) Daten können unbalanciert sein, was auf relativ seltene Extremereignisse (z. B. extreme Niederschläge) zurückzuführen ist. (iv) Pro Standort können mehrere verwandte potenzielle Zielvariablen verfügbar sein, da Messgeräte oft verschiedene Sensoren enthalten. (v) Zielwerte sind räumlich oft nur spärlich vorhanden, da die Durchführung von Messungen an allen gewünschten Orten in der Regel nicht möglich ist. Diese Eigenschaften stellen eine Herausforderung, aber auch eine Chance bei der Entwicklung von ML-Methoden für derlei Aufgaben dar. In der Vergangenheit wurden ML-Aufgaben im Umweltbereich mit konventionellen ML-Methoden angegangen, wie z. B. lineare Regression oder Random Forests (RFs). In den letzten Jahren hat der Bereich ML jedoch durch Deep Learning (DL) enorme Fortschritte über diese klassischen Modelle hinaus gemacht. Bei DL verwenden die Modelle mehrere Schichten von Neuronen, die mit zunehmender Schichtungstiefe immer abstraktere Merkmalsdarstellungen erzeugen. DL hat zuvor undurchführbare ML-Aufgaben realisierbar gemacht, die Leistung für viele Aufgaben im Vergleich zu bestehenden ML-Modellen erheblich verbessert und die Notwendigkeit für manuelles Feature-Engineering in einigen Bereichen aufgrund seiner Fähigkeit, Features aus Rohdaten zu lernen, eliminiert. Um diese Vorteile für ML-Aufgaben in der Umwelt nutzbar zu machen, ist es vielversprechend, geeignete DL-Methoden für diesen Bereich zu entwickeln. In dieser Arbeit werden Methoden zur Bewältigung der besonderen Herausforderungen und zur Nutzung der Möglichkeiten von Umwelt-ML-Aufgaben in Verbindung mit DL vorgestellt. Zu diesem Zweck werden in den vorgeschlagenen Methoden die folgenden Techniken untersucht: (i) Faltungen wie in Convolutional Neural Networks (CNNs), um wiederkehrende räumliche Muster in Geodaten zu nutzen. (ii) Probleme als Regressionsaufgaben stellen, um die kontinuierlichen Variablen zu schätzen. (iii) Dichtebasierte Gewichtung zur Verbesserung der Schätzungen bei seltenen und extremen Ereignissen. (iv) Multi-Task-Lernen, um mehrere verwandte Zielvariablen zu nutzen. (v) Halbüber- wachtes Lernen, um auch mit wenigen bekannten Zielwerten zurechtzukommen. Mithilfe dieser Techniken werden in der Arbeit vier Forschungsfragen untersucht: (i) Kann Luftverschmutzung ohne manuelles Feature Engineering geschätzt werden? Dies wird durch die Einführung des CNN-basierten LUR-Modells MapLUR sowie der automatisierten LUR–Lösung OpenLUR positiv beantwortet. (ii) Können kolokalisierte Verschmutzungsdaten räumliche Luftverschmutzungsmodelle verbessern? Hierfür wird Multi-Task-Learning für LUR entwickelt, das Potenzial für Verbesserungen mit kolokalisierten Daten zeigt. (iii) Können DL-Modelle die Qualität der Ausgaben von Klimamodellen verbessern? Die vorgeschlagene DL-MOS-Architektur ConvMOS demonstriert das. Zusätzlich wird halbüberwachtes Training von Multilayer Perceptrons (MLPs) für die Interpolation von Korngrößenverteilungen vorgestellt, das verbesserte Eingabedaten liefern kann. (iv) Kann man DL-Modellen beibringen, Klimaextreme besser abzuschätzen? Zu diesem Zweck wird eine dichtebasierte Gewichtung für unbalancierte Regression (DenseLoss) vorgeschlagen und auf die DL-Architektur ConvMOS angewendet, um die Schätzung von Klimaextremen zu verbessern. Diese Methoden zeigen, wie speziell DL-Techniken für Umwelt-ML-Aufgaben unter Berücksichtigung ihrer besonderen Eigenschaften entwickelt werden können. Dies ermöglicht bessere Modelle als konventionelles ML bisher erlaubt hat, was zu einer genaueren Bewertung und einem besseren Verständnis des Zustands unserer Umwelt führt.
122

Verbesserung von maschinellen Lernmodellen durch Transferlernen zur Zeitreihenprognose im Radial-Axial Ringwalzen

Seitz, Johannes, Wang, Qinwen, Moser, Tobias, Brosius, Alexander, Kuhlenkötter, Bernd 28 November 2023 (has links)
Anwendung von maschinellen Lernverfahren (ML) in der Produktionstechnik, in Zeiten der Industrie 4.0, stark angestiegen. Insbesondere die Datenverfügbarkeit ist an dieser Stelle elementar und für die erfolgreiche Umsetzung einer ML-Applikation Voraussetzung. Falls für eine gegebene Problemstellung die Datenmenge oder -qualität nicht ausreichend ist, können Techniken, wie die Datenaugmentierung, der Einsatz von synthetischen Daten sowie das Transferlernen von ähnlichen Datensätzen Abhilfe schaffen. Innerhalb dieser Ausarbeitung wird das Konzept des Transferlernens im Bereich das Radial-Axial Ringwalzens (RAW) angewendet und am Beispiel der Zeitreihenprognose des Außendurchmessers über die Prozesszeit durchgeführt. Das Radial-Axial Ringwalzen ist ein warmumformendes Verfahren und dient der nahtlosen Ringherstellung.
123

Improvement of Machine Learning Models for Time Series Forecasting in Radial-Axial Ring Rolling through Transfer Learning

Seitz, Johannes, Wang, Qinwen, Moser, Tobias, Brosius, Alexander, Kuhlenkötter, Bernd 28 November 2023 (has links)
Due to the increasing computing power and corresponding algorithms, the use of machine learning (ML) in production technology has risen sharply in the age of Industry 4.0. Data availability in particular is fundamental at this point and a prerequisite for the successful implementation of a ML application. If the quantity or quality of data is insufficient for a given problem, techniques such as data augmentation, the use of synthetic data and transfer learning of similar data sets can provide a remedy. In this paper, the concept of transfer learning is applied in the field of radial-axial ring rolling (rarr) and implemented using the example of time series prediction of the outer diameter over the process time. Radial-axial ring rolling is a hot forming process and is used for seamless ring production.
124

Batteriesimulation mittels dynamischer Datenmodelle für die Entwicklung elektrischer Antriebe

Gesner, Philipp Conrad 11 August 2023 (has links)
Der rasante Wandel hin zur Elektromobilität verlangt nach immer kürzeren und effizienteren Entwicklungszyklen. Vielfach steht dabei der elektrische Energiespeicher mit seinen für das Antriebsverhalten relevanten Eigenschaften, wie dem Energieinhalt oder der Leistungsverfügbarkeit, im Fokus. Für die Automobilhersteller sind daher Batteriesimulationen - basierend auf Modellen des elektrischen Batterieverhaltens - ein wesentliches Werkzeug, um schnell und kostengünstig neue Antriebe zu entwickeln. Das dynamische Übertragungsverhalten von Lithium-Ionen Zellen wird im industriellen Kontext typischerweise über phänomenologische Modelle nachgebildet, die vorrangig auf Zellmessungen basieren. Die inhärenten Fehler der Zellmodelle werden bei einer Simulation des gesamten Batteriesystems noch durch unmodellierte Effekte wie die Kontaktierung der Zellen oder inhomogene Temperaturverteilungen ergänzt. Überraschenderweise werden gleichwohl die heute umfangreich erzeugten Batteriedaten kaum genutzt, um die Qualität dieser Simulationen zu erhöhen. Vor allem die herausfordernde Verarbeitung großer und heterogener Datenmengen aus dem regulären Betrieb einer Antriebsbatterie verhindert nach wie vor eine konsequente Nutzung. Daher lautet das Ziel dieser Arbeit, mit neuartigen datenbasierten Ansätzen die Simulationen von Antriebsbatterien noch realitätsnäher zu gestalten. Dies lässt sich dadurch erreichen, dass bestehende phänomenologische Modelle mit datenbasierten Modellen kombiniert werden. Es entstehen hybride Modelle, die die Vorteile aus beiden Welten der Modellierung, wie eine hohe Genauigkeit, Stabilität und Extrapolationsfähigkeit, vereinen. Im ersten Schritt wird daher das phänomenologische Modell in Bezug auf vorhandene Fahrzeugmessungen der Batterie bewertet und im Anschluss verschiedene Hybridstrukturen miteinander verglichen. Die Parallel-Hybridstruktur kompensiert dabei den bestehenden Simulationsfehler am erfolgreichsten. Um gleichzeitig auch eine hohe Robustheit des hybriden Modells zu gewährleisten, erfolgt eine situative Begrenzung des datenbasierten Modells. Hierfür wird die Extrapolation des Modells über eine One-Class Support Vector Machine erkannt. Insbesondere in den Randbereichen der Validierungsdaten lässt sich dadurch der Fehler des hybriden Batteriemodells um weitere 15% reduzieren. Ein Fokus während der Ermittlung des hybriden Batteriemodells liegt auf der Erzeugung einer raumfüllenden Untermenge der verfügbaren Daten. Es wird aufgezeigt, dass sich hierdurch der Trainingsaufwand und die Genauigkeit des datenbasierten Modells weiter optimieren lassen. Zuletzt wird in dieser Arbeit auch ein Vergleich zwischen zwei dynamischen neuronalen Netzen als datenbasiertes Modell durchgeführt. Beide Varianten reduzieren den bestehenden Modellfehler deutlich - um bis zu 46 %. Hinsichtlich der Zuverlässigkeit der Modellausgabe überzeugt jedoch vor allem das Gated-Recurrent-Unit. Die Qualität der Batteriesimulation wird anhand von zwei Anwendungsszenarien am Antriebsprüfstandbewertet. Dabei geht es zum einen um die Dauerlauferprobung und zum anderen um die Reichweitenbestimmung von elektrischen Antrieben. Der direkte Vergleich mit einer realen Antriebsbatterie erbringt den Nachweis, dass in beiden Anwendungsszenarien die Batteriespannung und selbst das Verhalten der elektrischen Antriebsachse wesentlich realistischer nachgestellt werden als mit dem bestehenden phänomenologischen Batteriemodell.
125

Machine-Learning-Based Identification of Tumor Entities, Tumor Subgroups, and Therapy Options / Bestimmung von Tumorentitäten, Tumorsubgruppen und Therapieoptionen basierend auf maschinellem Lernen

Marquardt, André January 2023 (has links) (PDF)
Molecular genetic analyses, such as mutation analyses, are becoming increasingly important in the tumor field, especially in the context of therapy stratification. The identification of the underlying tumor entity is crucial, but can sometimes be difficult, for example in the case of metastases or the so-called Cancer of Unknown Primary (CUP) syndrome. In recent years, methylome and transcriptome utilizing machine learning (ML) approaches have been developed to enable fast and reliable tumor and tumor subtype identification. However, so far only methylome analysis have become widely used in routine diagnostics. The present work addresses the utility of publicly available RNA-sequencing data to determine the underlying tumor entity, possible subgroups, and potential therapy options. Identification of these by ML - in particular random forest (RF) models - was the first task. The results with test accuracies of up to 99% provided new, previously unknown insights into the trained models and the corresponding entity prediction. Reducing the input data to the top 100 mRNA transcripts resulted in a minimal loss of prediction quality and could potentially enable application in clinical or real-world settings. By introducing the ratios of these top 100 genes to each other as a new database for RF models, a novel method was developed enabling the use of trained RF models on data from other sources. Further analysis of the transcriptomic differences of metastatic samples by visual clustering showed that there were no differences specific for the site of metastasis. Similarly, no distinct clusters were detectable when investigating primary tumors and metastases of cutaneous skin melanoma (SKCM). Subsequently, more than half of the validation datasets had a prediction accuracy of at least 80%, with many datasets even achieving a prediction accuracy of – or close to – 100%. To investigate the applicability of the used methods for subgroup identification, the TCGA-KIPAN dataset, consisting of the three major kidney cancer subgroups, was used. The results revealed a new, previously unknown subgroup consisting of all histopathological groups with clinically relevant characteristics, such as significantly different survival. Based on significant differences in gene expression, potential therapeutic options of the identified subgroup could be proposed. Concludingly, in exploring the potential applicability of RNA-sequencing data as a basis for therapy prediction, it was shown that this type of data is suitable to predict entities as well as subgroups with high accuracy. Clinical relevance was also demonstrated for a novel subgroup in renal cell carcinoma. The reduction of the number of genes required for entity prediction to 100 genes, enables panel sequencing and thus demonstrates potential applicability in a real-life setting. / Molekulargenetische Analysen, wie z. B. Mutationsanalysen, gewinnen im Tumorbereich zunehmend an Bedeutung, insbesondere im Zusammenhang mit der Therapiestratifizierung. Die Identifizierung der zugrundeliegenden Tumorentität ist von entscheidender Bedeutung, kann sich aber manchmal als schwierig erweisen, beispielsweise im Falle von Metastasen oder dem sogenannten Cancer of Unknown Primary (CUP)-Syndrom. In den letzten Jahren wurden Methylom- und Transkriptom-Ansätze mit Hilfe des maschinellen Lernens (ML) entwickelt, die eine schnelle und zuverlässige Identifizierung von Tumoren und Tumorsubtypen ermöglichen. Bislang werden jedoch nur Methylomanalysen in der Routinediagnostik eingesetzt. Die vorliegende Arbeit befasst sich mit dem Nutzen öffentlich zugänglicher RNA-Sequenzierungsdaten zur Bestimmung der zugrunde liegenden Tumorentität, möglicher Untergruppen und potenzieller Therapieoptionen. Die Identifizierung dieser durch ML - insbesondere Random-Forest (RF)-Modelle - war die erste Aufgabe. Die Ergebnisse mit Testgenauigkeiten von bis zu 99 % lieferten neue, bisher unbekannte Erkenntnisse über die trainierten Modelle und die entsprechende Entitätsvorhersage. Die Reduktion der Eingabedaten auf die 100 wichtigsten mRNA-Transkripte führte zu einem minimalen Verlust an Vorhersagequalität und könnte eine Anwendung in klinischen oder realen Umgebungen ermöglichen. Durch die Einführung des Verhältnisses dieser Top 100 Gene zueinander als neue Datenbasis für RF-Modelle wurde eine neuartige Methode entwickelt, die die Verwendung trainierter RF-Modelle auf Daten aus anderen Quellen ermöglicht. Eine weitere Analyse der transkriptomischen Unterschiede von metastatischen Proben durch visuelles Clustering zeigte, dass es keine für den Ort der Metastasierung spezifischen Unterschiede gab. Auch bei der Untersuchung von Primärtumoren und Metastasen des kutanen Hautmelanoms (SKCM) konnten keine unterschiedlichen Cluster festgestellt werden. Mehr als die Hälfte der Validierungsdatensätze wiesen eine Vorhersagegenauigkeit von mindestens 80% auf, wobei viele Datensätze sogar eine Vorhersagegenauigkeit von 100% oder nahezu 100% erreichten. Um die Anwendbarkeit der verwendeten Methoden zur Identifizierung von Untergruppen zu untersuchen, wurde der TCGA-KIPAN-Datensatz verwendet, welcher die drei wichtigsten Nierenkrebs-Untergruppen umfasst. Die Ergebnisse enthüllten eine neue, bisher unbekannte Untergruppe, die aus allen histopathologischen Gruppen mit klinisch relevanten Merkmalen, wie z. B. einer signifikant unterschiedlichen Überlebenszeit, besteht. Auf der Grundlage signifikanter Unterschiede in der Genexpression konnten potenzielle therapeutische Optionen für die identifizierte Untergruppe vorgeschlagen werden. Zusammenfassend lässt sich sagen, dass bei der Untersuchung der potenziellen Anwendbarkeit von RNA-Sequenzierungsdaten als Grundlage für die Therapievorhersage gezeigt werden konnte, dass diese Art von Daten geeignet ist, sowohl Entitäten als auch Untergruppen mit hoher Genauigkeit vorherzusagen. Die klinische Relevanz wurde auch für eine neue Untergruppe beim Nierenzellkarzinom demonstriert. Die Verringerung der für die Entitätsvorhersage erforderlichen Anzahl von Genen auf 100 Gene ermöglicht die Sequenzierung von Panels und zeigt somit die potenzielle Anwendbarkeit in der Praxis.
126

Machine learning to support physicians in endoscopic examinations with a focus on automatic polyp detection in images and videos / Maschinelles Lernen zur Unterstützung von Ärzten bei endoskopischen Untersuchungen mit Schwerpunkt auf der automatisierten Polypenerkennung in Bildern und Videos

Krenzer, Adrian January 2023 (has links) (PDF)
Deep learning enables enormous progress in many computer vision-related tasks. Artificial Intel- ligence (AI) steadily yields new state-of-the-art results in the field of detection and classification. Thereby AI performance equals or exceeds human performance. Those achievements impacted many domains, including medical applications. One particular field of medical applications is gastroenterology. In gastroenterology, machine learning algorithms are used to assist examiners during interventions. One of the most critical concerns for gastroenterologists is the development of Colorectal Cancer (CRC), which is one of the leading causes of cancer-related deaths worldwide. Detecting polyps in screening colonoscopies is the essential procedure to prevent CRC. Thereby, the gastroenterologist uses an endoscope to screen the whole colon to find polyps during a colonoscopy. Polyps are mucosal growths that can vary in severity. This thesis supports gastroenterologists in their examinations with automated detection and clas- sification systems for polyps. The main contribution is a real-time polyp detection system. This system is ready to be installed in any gastroenterology practice worldwide using open-source soft- ware. The system achieves state-of-the-art detection results and is currently evaluated in a clinical trial in four different centers in Germany. The thesis presents two additional key contributions: One is a polyp detection system with ex- tended vision tested in an animal trial. Polyps often hide behind folds or in uninvestigated areas. Therefore, the polyp detection system with extended vision uses an endoscope assisted by two additional cameras to see behind those folds. If a polyp is detected, the endoscopist receives a vi- sual signal. While the detection system handles the additional two camera inputs, the endoscopist focuses on the main camera as usual. The second one are two polyp classification models, one for the classification based on shape (Paris) and the other on surface and texture (NBI International Colorectal Endoscopic (NICE) classification). Both classifications help the endoscopist with the treatment of and the decisions about the detected polyp. The key algorithms of the thesis achieve state-of-the-art performance. Outstandingly, the polyp detection system tested on a highly demanding video data set shows an F1 score of 90.25 % while working in real-time. The results exceed all real-time systems in the literature. Furthermore, the first preliminary results of the clinical trial of the polyp detection system suggest a high Adenoma Detection Rate (ADR). In the preliminary study, all polyps were detected by the polyp detection system, and the system achieved a high usability score of 96.3 (max 100). The Paris classification model achieved an F1 score of 89.35 % which is state-of-the-art. The NICE classification model achieved an F1 score of 81.13 %. Furthermore, a large data set for polyp detection and classification was created during this thesis. Therefore a fast and robust annotation system called Fast Colonoscopy Annotation Tool (FastCAT) was developed. The system simplifies the annotation process for gastroenterologists. Thereby the i gastroenterologists only annotate key parts of the endoscopic video. Afterward, those video parts are pre-labeled by a polyp detection AI to speed up the process. After the AI has pre-labeled the frames, non-experts correct and finish the annotation. This annotation process is fast and ensures high quality. FastCAT reduces the overall workload of the gastroenterologist on average by a factor of 20 compared to an open-source state-of-art annotation tool. / Deep Learning ermöglicht enorme Fortschritte bei vielen Aufgaben im Bereich der Computer Vision. Künstliche Intelligenz (KI) liefert ständig neue Spitzenergebnisse im Bereich der Erkennung und Klassifizierung. Dabei erreicht oder übertrifft die Leistung von KI teilweise die menschliche Leistung. Diese Errungenschaften wirken sich auf viele Bereiche aus, darunter auch auf medizinische Anwendungen. Ein besonderer Bereich der medizinischen Anwendungen ist die Gastroenterologie. In der Gastroenterologie werden Algorithmen des maschinellen Lernens eingesetzt, um den Untersucher bei medizinischen Eingriffen zu unterstützen. Eines der größten Probleme für Gastroenterologen ist die Entwicklung von Darmkrebs, die weltweit eine der häufigsten krebsbedingten Todesursachen ist. Die Erkennung von Polypen bei Darmspiegelungen ist das wichtigste Verfahren zur Vorbeugung von Darmkrebs. Dabei untersucht der Gastroenterologe den Dickdarm im Rahmen einer Koloskopie, um z.B. Polypen zu finden. Polypen sind Schleimhautwucherungen, die unterschiedlich stark ausgeprägt sein können. Diese Arbeit unterstützt Gastroenterologen bei ihren Untersuchungen mit automatischen Erkennungssystemen und Klassifizierungssystemen für Polypen. Der Hauptbeitrag ist ein Echtzeitpolypenerkennungssystem. Dieses System kann in jeder gastroenterologischen Praxis weltweit mit Open- Source-Software installiert werden. Das System erzielt Erkennungsergebnisse auf dem neusten Stand der Technik und wird derzeit in einer klinischen Studie in vier verschiedenen Praxen in Deutschland evaluiert. In dieser Arbeit werden zwei weitere wichtige Beiträge vorgestellt: Zum einen ein Polypenerkennungssystem mit erweiterter Sicht, das in einem Tierversuch getestet wurde. Polypen verstecken sich oft hinter Falten oder in nicht untersuchten Bereichen. Daher verwendet das Polypenerkennungssystem mit erweiterter Sicht ein Endoskop, das von zwei zusätzlichen Kameras unterstützt wird, um hinter diese Falten zu sehen. Wenn ein Polyp entdeckt wird, erhält der Endoskopiker ein visuelles Signal. Während das Erkennungssystem die beiden zusätzlichen Kameraeingaben verarbeitet, konzentriert sich der Endoskopiker wie gewohnt auf die Hauptkamera. Das zweite sind zwei Polypenklassifizierungsmodelle, eines für die Klassifizierung anhand der Form (Paris) und das andere anhand der Oberfläche und Textur (NICE-Klassifizierung). Beide Klassifizierungen helfen dem Endoskopiker bei der Behandlung und Entscheidung über den erkannten Polypen. Die Schlüsselalgorithmen der Dissertation erreichen eine Leistung, die dem neuesten Stand der Technik entspricht. Herausragend ist, dass das auf einem anspruchsvollen Videodatensatz getestete Polypenerkennungssystem einen F1-Wert von 90,25 % aufweist, während es in Echtzeit arbeitet. Die Ergebnisse übertreffen alle Echtzeitsysteme für Polypenerkennung in der Literatur. Darüber hinaus deuten die ersten vorläufigen Ergebnisse einer klinischen Studie des Polypenerkennungssystems auf eine hohe Adenomdetektionsrate ADR hin. In dieser Studie wurden alle Polypen durch das Polypenerkennungssystem erkannt, und das System erreichte einen hohe Nutzerfreundlichkeit von 96,3 (maximal 100). Bei der automatischen Klassifikation von Polypen basierend auf der Paris Klassifikations erreichte das in dieser Arbeit entwickelte System einen F1-Wert von 89,35 %, was dem neuesten Stand der Technik entspricht. Das NICE-Klassifikationsmodell erreichte eine F1- Wert von 81,13 %. Darüber hinaus wurde im Rahmen dieser Arbeit ein großer Datensatz zur Polypenerkennung und -klassifizierung erstellt. Dafür wurde ein schnelles und robustes Annotationssystem namens FastCAT entwickelt. Das System vereinfacht den Annotationsprozess für Gastroenterologen. Die Gastroenterologen annotieren dabei nur die wichtigsten Teile des endoskopischen Videos. Anschließend werden diese Videoteile von einer Polypenerkennungs-KI vorverarbeitet, um den Prozess zu beschleunigen. Nachdem die KI die Bilder vorbeschriftet hat, korrigieren und vervollständigen Nicht-Experten die Annotationen. Dieser Annotationsprozess ist schnell und gewährleistet eine hohe Qualität. FastCAT reduziert die Gesamtarbeitsbelastung des Gastroenterologen im Durchschnitt um den Faktor 20 im Vergleich zu einem Open-Source-Annotationstool auf dem neuesten Stand der Technik.
127

Automatisierungsansätze zur Unterstützung der ERP-Kategorienkonfiguration für KMU

Wölfel, Klaus 29 April 2016 (has links) (PDF)
Alternative Geschäftsmodelle wie Software as a Service (SaaS) und Open-Source-Software (OSS) steigern die Attraktivität von Enterprise Resource Planning (ERP) Systemen für Kleine und Mittelständische Unternehmen (KMU). Jedoch stellen die Beratungsleistungen, die für die Konfiguration eines ERP-Systems zur Anpassung an die spezifischen Bedürfnisse eines Unternehmens notwendig sind, eine hohe Einführungshürde dar. Eine Konfigurationsoption, die bei vielen ERP-Systemen eine Rolle spielt, ist die Kategorienkonfiguration. Mit Hilfe einer automatisierten Konfigurationsunterstützung können Geschäftsführer von kleinen Unternehmen die Kategorienkonfiguration selbst durchführen und einen Teil der Einführungskosten einsparen. Im Rahmen der kumulativen Dissertation werden Automatisierungsansätze zur Konfigurationsunterstützung für die ERP-Kategorienkonfiguration generiert und auf das Open-Source ERP-System ERP5 angewandt. Die Automatisierungsansätze basieren auf Ähnlichkeitsberechnungen zu Falldatensätzen von 235 Unternehmen, Kategorien-Konsolidierung durch Umleitungsinformationen in Wikipedia-Artikeln, Templates und Meta-Templates. Die empirische Evaluation in einem Laborexperiment mit 100 Teilnehmern und eine Umfrage bestätigen die Gültigkeit, Nützlichkeit und Effektivität der generierten Ansätze. Die Konfigurationsunterstützung kann durch einen standardisierten Beratungsprozess und die Vermittlung des für eine konkrete ERP-Einführung notwendigen Wissens mittels Massenindividualisierung ergänzt werden. Dieser Ansatz wurde mit und für ERP5 umgesetzt und lässt sich auch auf andere Open-Source-Projekte übertragen.
128

Automating Geospatial RDF Dataset Integration and Enrichment / Automatische geografische RDF Datensatzintegration und Anreicherung

Sherif, Mohamed Ahmed Mohamed 12 December 2016 (has links) (PDF)
Over the last years, the Linked Open Data (LOD) has evolved from a mere 12 to more than 10,000 knowledge bases. These knowledge bases come from diverse domains including (but not limited to) publications, life sciences, social networking, government, media, linguistics. Moreover, the LOD cloud also contains a large number of crossdomain knowledge bases such as DBpedia and Yago2. These knowledge bases are commonly managed in a decentralized fashion and contain partly verlapping information. This architectural choice has led to knowledge pertaining to the same domain being published by independent entities in the LOD cloud. For example, information on drugs can be found in Diseasome as well as DBpedia and Drugbank. Furthermore, certain knowledge bases such as DBLP have been published by several bodies, which in turn has lead to duplicated content in the LOD . In addition, large amounts of geo-spatial information have been made available with the growth of heterogeneous Web of Data. The concurrent publication of knowledge bases containing related information promises to become a phenomenon of increasing importance with the growth of the number of independent data providers. Enabling the joint use of the knowledge bases published by these providers for tasks such as federated queries, cross-ontology question answering and data integration is most commonly tackled by creating links between the resources described within these knowledge bases. Within this thesis, we spur the transition from isolated knowledge bases to enriched Linked Data sets where information can be easily integrated and processed. To achieve this goal, we provide concepts, approaches and use cases that facilitate the integration and enrichment of information with other data types that are already present on the Linked Data Web with a focus on geo-spatial data. The first challenge that motivates our work is the lack of measures that use the geographic data for linking geo-spatial knowledge bases. This is partly due to the geo-spatial resources being described by the means of vector geometry. In particular, discrepancies in granularity and error measurements across knowledge bases render the selection of appropriate distance measures for geo-spatial resources difficult. We address this challenge by evaluating existing literature for point set measures that can be used to measure the similarity of vector geometries. Then, we present and evaluate the ten measures that we derived from the literature on samples of three real knowledge bases. The second challenge we address in this thesis is the lack of automatic Link Discovery (LD) approaches capable of dealing with geospatial knowledge bases with missing and erroneous data. To this end, we present Colibri, an unsupervised approach that allows discovering links between knowledge bases while improving the quality of the instance data in these knowledge bases. A Colibri iteration begins by generating links between knowledge bases. Then, the approach makes use of these links to detect resources with probably erroneous or missing information. This erroneous or missing information detected by the approach is finally corrected or added. The third challenge we address is the lack of scalable LD approaches for tackling big geo-spatial knowledge bases. Thus, we present Deterministic Particle-Swarm Optimization (DPSO), a novel load balancing technique for LD on parallel hardware based on particle-swarm optimization. We combine this approach with the Orchid algorithm for geo-spatial linking and evaluate it on real and artificial data sets. The lack of approaches for automatic updating of links of an evolving knowledge base is our fourth challenge. This challenge is addressed in this thesis by the Wombat algorithm. Wombat is a novel approach for the discovery of links between knowledge bases that relies exclusively on positive examples. Wombat is based on generalisation via an upward refinement operator to traverse the space of Link Specifications (LS). We study the theoretical characteristics of Wombat and evaluate it on different benchmark data sets. The last challenge addressed herein is the lack of automatic approaches for geo-spatial knowledge base enrichment. Thus, we propose Deer, a supervised learning approach based on a refinement operator for enriching Resource Description Framework (RDF) data sets. We show how we can use exemplary descriptions of enriched resources to generate accurate enrichment pipelines. We evaluate our approach against manually defined enrichment pipelines and show that our approach can learn accurate pipelines even when provided with a small number of training examples. Each of the proposed approaches is implemented and evaluated against state-of-the-art approaches on real and/or artificial data sets. Moreover, all approaches are peer-reviewed and published in a conference or a journal paper. Throughout this thesis, we detail the ideas, implementation and the evaluation of each of the approaches. Moreover, we discuss each approach and present lessons learned. Finally, we conclude this thesis by presenting a set of possible future extensions and use cases for each of the proposed approaches.
129

Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration

Heinrich, André 27 March 2013 (has links) (PDF)
The main contribution of this thesis is the concept of Fenchel duality with a focus on its application in the field of machine learning problems and image restoration tasks. We formulate a general optimization problem for modeling support vector machine tasks and assign a Fenchel dual problem to it, prove weak and strong duality statements as well as necessary and sufficient optimality conditions for that primal-dual pair. In addition, several special instances of the general optimization problem are derived for different choices of loss functions for both the regression and the classifification task. The convenience of these approaches is demonstrated by numerically solving several problems. We formulate a general nonsmooth optimization problem and assign a Fenchel dual problem to it. It is shown that the optimal objective values of the primal and the dual one coincide and that the primal problem has an optimal solution under certain assumptions. The dual problem turns out to be nonsmooth in general and therefore a regularization is performed twice to obtain an approximate dual problem that can be solved efficiently via a fast gradient algorithm. We show how an approximate optimal and feasible primal solution can be constructed by means of some sequences of proximal points closely related to the dual iterates. Furthermore, we show that the solution will indeed converge to the optimal solution of the primal for arbitrarily small accuracy. Finally, the support vector regression task is obtained to arise as a particular case of the general optimization problem and the theory is specialized to this problem. We calculate several proximal points occurring when using difffferent loss functions as well as for some regularization problems applied in image restoration tasks. Numerical experiments illustrate the applicability of our approach for these types of problems.
130

Learning Continuous Human-Robot Interactions from Human-Human Demonstrations

Vogt, David 02 March 2018 (has links) (PDF)
In der vorliegenden Dissertation wurde ein datengetriebenes Verfahren zum maschinellen Lernen von Mensch-Roboter Interaktionen auf Basis von Mensch-Mensch Demonstrationen entwickelt. Während einer Trainingsphase werden Bewegungen zweier Interakteure mittels Motion Capture erfasst und in einem Zwei-Personen Interaktionsmodell gelernt. Zur Laufzeit wird das Modell sowohl zur Erkennung von Bewegungen des menschlichen Interaktionspartners als auch zur Generierung angepasster Roboterbewegungen eingesetzt. Die Leistungsfähigkeit des Ansatzes wird in drei komplexen Anwendungen evaluiert, die jeweils kontinuierliche Bewegungskoordination zwischen Mensch und Roboter erfordern. Das Ergebnis der Dissertation ist ein Lernverfahren, das intuitive, zielgerichtete und sichere Kollaboration mit Robotern ermöglicht.

Page generated in 0.0979 seconds