131 |
Machine Learning Potentials - State of the research and potential applications for carbon nanostructuresRothe, Tom 13 November 2019 (has links)
Machine Learning interatomic potentials (ML-IAP) are currently the most promising Non-empirical IAPs for molecular dynamic (MD) simulations. They use Machine Learning (ML) methods to fit the potential energy surface (PES) with large reference datasets of the atomic configurations and their corresponding properties. Promising near quantum mechanical accuracy while being orders of magnitudes faster than first principle methods, ML-IAPs are the new “hot topic” in material
science research.
Unfortunately, most of the available publications require advanced knowledge about ML methods and IAPs, making them hard to understand for beginners and outsiders. This work serves as a plain introduction, providing all the required knowledge about IAPs, ML, and ML-IAPs from the beginning and giving an overview of the most relevant approaches and concepts for building those
potentials. Exemplary a gaussian approximation potential (GAP) for amorphous carbon is used to simulate the defect induced deformation of carbon nanotubes. Comparing the results with published density-functional tight-binding (DFTB) results and own Empirical IAP MD-simulations shows that publicly available ML-IAP can already be used for simulation, being indeed faster than and
nearly as accurate as first-principle methods.
For the future two main challenges appear: First, the availability of ML-IAPs needs to be improved so that they can be easily used in the established MD codes just as the Empirical IAPs. Second, an accurate characterization of the bonds represented in the reference dataset is needed to assure that a potential is suitable for a special application,
otherwise making it a 'black-box' method.:1 Introduction
2 Molecular Dynamics
2.1 Introduction to Molecular Dynamics
2.2 Interatomic Potentials
2.2.1 Development of PES
3 Machine Learning Methods
3.1 Types of Machine Learning
3.2 Building Machine Learning Models
3.2.1 Preprocessing
3.2.2 Learning
3.2.3 Evaluation
3.2.4 Prediction
4 Machine Learning for Molecular Dynamics Simulation
4.1 Definition
4.2 Machine Learning Potentials
4.2.1 Neural Network Potentials
4.2.2 Gaussian Approximation Potential
4.2.3 Spectral Neighbor Analysis Potential
4.2.4 Moment Tensor Potentials
4.3 Comparison of Machine Learning Potentials
4.4 Machine Learning Concepts
4.4.1 On the fly
4.4.2 De novo Exploration
4.4.3 PES-Learn
5 Simulation of defect induced deformation of CNTs
5.1 Methodology
5.2 Results and Discussion
6 Conclusion and Outlook
6.1 Conclusion
6.2 Outlook
|
132 |
Automatisierungsansätze zur Unterstützung der ERP-Kategorienkonfiguration für KMUWölfel, Klaus 18 March 2016 (has links)
Alternative Geschäftsmodelle wie Software as a Service (SaaS) und Open-Source-Software (OSS) steigern die Attraktivität von Enterprise Resource Planning (ERP) Systemen für Kleine und Mittelständische Unternehmen (KMU). Jedoch stellen die Beratungsleistungen, die für die Konfiguration eines ERP-Systems zur Anpassung an die spezifischen Bedürfnisse eines Unternehmens notwendig sind, eine hohe Einführungshürde dar. Eine Konfigurationsoption, die bei vielen ERP-Systemen eine Rolle spielt, ist die Kategorienkonfiguration. Mit Hilfe einer automatisierten Konfigurationsunterstützung können Geschäftsführer von kleinen Unternehmen die Kategorienkonfiguration selbst durchführen und einen Teil der Einführungskosten einsparen. Im Rahmen der kumulativen Dissertation werden Automatisierungsansätze zur Konfigurationsunterstützung für die ERP-Kategorienkonfiguration generiert und auf das Open-Source ERP-System ERP5 angewandt. Die Automatisierungsansätze basieren auf Ähnlichkeitsberechnungen zu Falldatensätzen von 235 Unternehmen, Kategorien-Konsolidierung durch Umleitungsinformationen in Wikipedia-Artikeln, Templates und Meta-Templates. Die empirische Evaluation in einem Laborexperiment mit 100 Teilnehmern und eine Umfrage bestätigen die Gültigkeit, Nützlichkeit und Effektivität der generierten Ansätze.
Die Konfigurationsunterstützung kann durch einen standardisierten Beratungsprozess und die Vermittlung des für eine konkrete ERP-Einführung notwendigen Wissens mittels Massenindividualisierung ergänzt werden. Dieser Ansatz wurde mit und für ERP5 umgesetzt und lässt sich auch auf andere Open-Source-Projekte übertragen.
|
133 |
Inhibition and loss of information in unsupervised feature extractionKermani Kolankeh, Arash 27 March 2018 (has links)
In this thesis inhibition as a means for competition among neurons in an unsupervised learning system is studied. In the first part of the thesis, the role of inhibition in robustness against loss of information in the form of occlusion in visual data is investigated. In the second part, inhibition as a reason for loss of information in the mathematical models of neural system is addressed. In that part, a learning rule for modeling inhibition with lowered loss of information and also a dis-inhibitory system which induces a winner-take-all mechanism are introduced. The models used in this work are unsupervised feature extractors made of biologically plausible neural networks which simulate the V1 layer of the visual cortex.
|
134 |
Spamerkennung mit Support Vector MachinesMöller, Manuel 22 June 2005 (has links) (PDF)
Diese Arbeit zeigt ausgehend von einer Darstellung der theoretischen Grundlagen automatischer Textklassifikation, dass die aus der Statistical Learning Theory stammenden Support Vector Machines geeignet sind, zu einer präziseren Erkennung unerwünschter E-Mail-Werbung beizutragen. In einer Testumgebung mit einem Corpus von 20 000 E-Mails wurden Testläufe verschiedene Parameter der Vorverarbeitung und der Support Vector Machine automatisch evaluiert und grafisch visualisiert. Aufbauend darauf wird eine Erweiterung für die Open-Source-Software SpamAssassin beschrieben, die die vorhandenen Klassifikationsmechanismen um eine Klassifikation per Support Vector Machine erweitert.
|
135 |
Neue Technologien im Retailgeschäft der Banken die Extensible Markup Language und Intelligente Agenten /Friedrich, Matthias. Unknown Date (has links)
Techn. Universiẗat, Diss., 2002--Darmstadt.
|
136 |
Dynamic Thermal Imaging for Intraoperative Monitoring of Neuronal Activity and Cortical PerfusionHoffmann, Nico 23 November 2017 (has links) (PDF)
Neurosurgery is a demanding medical discipline that requires a complex interplay of several neuroimaging techniques. This allows structural as well as functional information to be recovered and then visualized to the surgeon. In the case of tumor resections this approach allows more fine-grained differentiation of healthy and pathological tissue which positively influences the postoperative outcome as well as the patient's quality of life.
In this work, we will discuss several approaches to establish thermal imaging as a novel neuroimaging technique to primarily visualize neural activity and perfusion state in case of ischaemic stroke. Both applications require novel methods for data-preprocessing, visualization, pattern recognition as well as regression analysis of intraoperative thermal imaging.
Online multimodal integration of preoperative and intraoperative data is accomplished by a 2D-3D image registration and image fusion framework with an average accuracy of 2.46 mm. In navigated surgeries, the proposed framework generally provides all necessary tools to project intraoperative 2D imaging data onto preoperative 3D volumetric datasets like 3D MR or CT imaging. Additionally, a fast machine learning framework for the recognition of cortical NaCl rinsings will be discussed throughout this thesis. Hereby, the standardized quantification of tissue perfusion by means of an approximated heating model can be achieved. Classifying the parameters of these models yields a map of connected areas, for which we have shown that these areas correlate with the demarcation caused by an ischaemic stroke segmented in postoperative CT datasets.
Finally, a semiparametric regression model has been developed for intraoperative neural activity monitoring of the somatosensory cortex by somatosensory evoked potentials. These results were correlated with neural activity of optical imaging. We found that thermal imaging yields comparable results, yet doesn't share the limitations of optical imaging. In this thesis we would like to emphasize that thermal imaging depicts a novel and valid tool for both intraoperative functional and structural neuroimaging.
|
137 |
Quantification and Classification of Cortical Perfusion during Ischemic Strokes by Intraoperative Thermal ImagingHoffmann, Nico, Drache, Georg, Koch, Edmund, Steiner, Gerald, Kirsch, Matthias, Petersohn, Uwe 06 June 2018 (has links)
Thermal imaging is a non-invasive and marker-free approach for intraoperative measurements of small temperature variations. In this work, we demonstrate the abilities of active dynamic thermal imaging for analysis of tissue perfusion state in case of cerebral ischemia. For this purpose, a NaCl irrigation is applied to the exposed cortex during hemicraniectomy. The cortical temperature changes are measured by a thermal imaging system and the thermal signal is recognized by a novel machine learning framework. Subsequent tissue heating is then approximated by a double exponential function to estimate tissue temperature decay constants. These constants allow us to characterize tissue with respect to its dynamic thermal properties. Using a Gaussian mixture model we show the correlation of these estimated parameters with infarct demarcations of post-operative CT. This novel scheme yields a standardized representation of cortical thermodynamic properties and might guide further research regarding specific intraoperative diagnostics.
|
138 |
Dynamic Thermal Imaging for Intraoperative Monitoring of Neuronal Activity and Cortical PerfusionHoffmann, Nico 09 December 2016 (has links)
Neurosurgery is a demanding medical discipline that requires a complex interplay of several neuroimaging techniques. This allows structural as well as functional information to be recovered and then visualized to the surgeon. In the case of tumor resections this approach allows more fine-grained differentiation of healthy and pathological tissue which positively influences the postoperative outcome as well as the patient's quality of life.
In this work, we will discuss several approaches to establish thermal imaging as a novel neuroimaging technique to primarily visualize neural activity and perfusion state in case of ischaemic stroke. Both applications require novel methods for data-preprocessing, visualization, pattern recognition as well as regression analysis of intraoperative thermal imaging.
Online multimodal integration of preoperative and intraoperative data is accomplished by a 2D-3D image registration and image fusion framework with an average accuracy of 2.46 mm. In navigated surgeries, the proposed framework generally provides all necessary tools to project intraoperative 2D imaging data onto preoperative 3D volumetric datasets like 3D MR or CT imaging. Additionally, a fast machine learning framework for the recognition of cortical NaCl rinsings will be discussed throughout this thesis. Hereby, the standardized quantification of tissue perfusion by means of an approximated heating model can be achieved. Classifying the parameters of these models yields a map of connected areas, for which we have shown that these areas correlate with the demarcation caused by an ischaemic stroke segmented in postoperative CT datasets.
Finally, a semiparametric regression model has been developed for intraoperative neural activity monitoring of the somatosensory cortex by somatosensory evoked potentials. These results were correlated with neural activity of optical imaging. We found that thermal imaging yields comparable results, yet doesn't share the limitations of optical imaging. In this thesis we would like to emphasize that thermal imaging depicts a novel and valid tool for both intraoperative functional and structural neuroimaging.
|
139 |
Applications and extensions of Random Forests in genetic and environmental studiesMichaelson, Jacob 20 December 2010 (has links)
Transcriptional regulation refers to the molecular systems that control the concentration of mRNA species within the cell. Variation in these controlling systems is not only responsible for many diseases, but also contributes to the vast phenotypic diversity in the biological world. There are powerful experimental approaches to probe these regulatory systems, and the focus of my doctoral research has been to develop and apply effective computational methods that exploit these rich data sets more completely. First, I present a method for mapping genetic regulators of gene expression (expression quantitative trait loci, or eQTL) using Random Forests. This approach allows for flexible modeling and feature selection, and results in eQTL that are more biologically supportable than those mapped with competing methods. Next, I present a method that finds interactions between genes that in turn regulate the expression of other genes. This is accomplished by finding recurring decision motifs in the forest structure that represent dependencies between genetic loci. Third, I present a method to use distributional differences in eQTL data to establish the regulatory roles of genes relative to other disease-associated genes. Using this method, we found that genes that are master regulators of other disease genes are more likely to be consistently associated with the disease in genetic association studies. Finally, I present a novel application of Random Forests to determine the mode of regulation of toxin-perturbed genes, using time-resolved gene expression. The results demonstrate a novel approach to supervised weighted clustering of gene expression data.
|
140 |
Approaching Concept Drift by Context Feature PartitioningHoffmann, Nico, Kirmse, Matthias, Petersohn, Uwe 20 February 2012 (has links)
In this paper we present a new approach to handle concept drift using domain-specific knowledge. More precisely, we capitalize known context features to partition a domain into subdomains featuring static class distributions. Subsequently, we learn separate classifiers for each sub domain and classify new instances accordingly. To determine the optimal partitioning for a domain we apply a search algorithm aiming to maximize the resulting accuracy. In practical domains like fault detection concept drift often occurs in combination with imbalances data. As this issue gets more important learning models on smaller subdomains we additionally use sampling methods to handle it. Comparative experiments with artificial data sets showed that our approach outperforms a plain SVM regarding different performance measures. Summarized, the partitioning concept drift approach (PCD) is a possible way to handle concept drift in domains where the causing context features are at least partly known.
|
Page generated in 0.0823 seconds