31 |
Etude de quelques problèmes de contrôle optimal issus des EDP et des EDOBayen, Térence 09 December 2013 (has links) (PDF)
Le premier chapitre de ce mémoire porte sur l'étude des minimum forts pour des problèmes de contrôle optimal gouvernés par des EDP semi-linéaires elliptiques et paraboliques avec contraintes intégrales sur l'état final. Le second chapitre porte sur l'étude du problème de temps minimal pour un système de type chemostat en présence de points singuliers stationnaires. On y étudie également un problème de contrôle optimal pour un système chemostat avec deux espèces en compétition et qui comporte une courbe de non-contrôlabilité. Le troisième chapitre s'intéresse à la synthèse d'un contrôle optimal par retour d'état pour un problème de temps minimal issu d'un système fed-batch, notamment en présence d'un contrôle impulsionnel. Le quatrième chapitre étudie deux problèmes de contrôle optimal sous contraintes d'état périodiques. Enfin, le dernier chapitre traite de problèmes d'optimisation de forme géométriques sous contraintes de convexité. Cette dernière est formulée comme une contrainte semi-définie, ce qui permet ensuite d'utiliser la programmation SDP pour minimiser la fonction coût.
|
32 |
Contrôle optimal d'équations différentielles avec - ou sans - mémoireDupuis, Xavier 13 November 2013 (has links) (PDF)
La thèse porte sur des problèmes de contrôle optimal où la dynamique est donnée par des équations différentielles avec mémoire. Pour ces problèmes d'optimisation, des conditions d'optimalité sont établies ; celles du second ordre constituent une part importante des résultats de la thèse. Dans le cas - sans mémoire - des équations différentielles ordinaires, les conditions d'optimalité standards sont renforcées en ne faisant intervenir que les multiplicateurs de Lagrange pour lesquels le principe de Pontryaguine est satisfait. Cette restriction à un sous-ensemble des multiplicateurs représente un défi dans l'établissement des conditions nécessaires et permet aux conditions suffisantes d'assurer l'optimalité locale dans un sens plus fort. Les conditions standards sont d'autre part étendues au cas - avec mémoire - des équations intégrales. Les contraintes pures sur l'état du problème précédent ont été conservées et nécessitent une étude spécifique à la dynamique intégrale. Une autre forme de mémoire dans l'équation d'état d'un problème de contrôle optimal provient d'un travail de modélisation avec l'optimisation thérapeutique comme application médicale en vue. La dynamique de populations de cellules cancéreuses sous l'action d'un traitement est ramenée à des équations différentielles à retards ; le comportement asymptotique en temps long du modèle structuré en âge est également étudié.
|
33 |
Um metodo do tipo lagrangiano aumentado com região de confiança / On augmented lagrangian methods with trust-regionCastelani, Emerson Vitor 13 August 2018 (has links)
Orientador: Jose Mario Martinez Perez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T22:53:44Z (GMT). No. of bitstreams: 1
Castelani_EmersonVitor_D.pdf: 695936 bytes, checksum: 9434e07a75cde154320a5156daf73684 (MD5)
Previous issue date: 2009 / Resumo: Ao resolver problemas de programação não linear usando métodos do tipo Lagrangiano Aumentado, um fenômeno chamado voracidade pode ocorrer. Quando este fenômeno ocorre, o método busca pontos muito infactíveis com valor de função objetivo muito pequeno. Tais fatos ocorrem, em geral, na primeiras iterações e então, o parâmetro de penalidade precisa crescer excessivamente, tornado os subproblemas mal condicionados, prejudicando assim a convergência. Desta forma, o propósito deste trabalho é adicionar restrições de caixas adaptativas (região de confiança) a cada subproblema em cada iteração externa, de modo que, a distância entre dois iterando consecutivos das iterações externas é controlada. O novo método inibe a possibilidade do fenômeno de voracidade. Resultados de convergência, limitação de parâmetro de penalidade e exemplos numéricos são apresentados / Abstract: When we solve nonlinear programming problems by means of algorithms of kind of Augmented Lagrangian, a phenomenon called greediness may occur. Unconstrained minimizers attract the iterates at early stages of the calculations and, so, the penalty parameter needs to grow excessively, in such a way that ill-conditioning harms the overall convergence. In this sense, the proposal of this work is to add an adaptive artificial box constraint (trust-region) to the subproblem at every outer iteration, in such a way that the distance between consecutive outer iterates is controlled. The new method inhibits the possibility of greediness phenomenon. Convergence proofs and numerical examples are given / Doutorado / Otimização / Doutor em Matemática Aplicada
|
34 |
Approximations intérieures pour des problèmes de commande optimale. Conditions d'optimalité en commande optimale stochastique.Silva, Francisco 29 November 2010 (has links) (PDF)
Cette thèse est divisée en deux parties. Dans la première partie on s'intéresse aux problèmes de commande optimale déterministes et on étudie des approximations intérieures pour deux problèmes modèles avec des contraintes de non-négativité sur la commande. Le premier modèle est un problème de commande optimale dont la fonction de coût est quadratique et dont la dynamique est régie par une équation différentielle ordinaire. Pour une classe générale de fonctions de pénalité intérieure, on montre comment calculer le terme principal du développement ponctuel de l'état et de l'état adjoint. Notre argument principal se fonde sur le fait suivant: si la commande optimale pour le problème initial satisfait les conditions de complémentarité stricte pour le Hamiltonien sauf en un nombre fini d'instants, les estimations pour le problème de commande optimale pénalisé peuvent être obtenues à partir des estimations pour un problème stationnaire associé. Nos résultats fournissent plusieurs types de mesures de qualité de l'approximation pour la technique de pénalisation: estimations des erreurs de la commande , estimations des erreurs pour l'état et l'état adjoint et aussi estimations de erreurs pour la fonction valeur. Le second modèle est le problème de commande optimale d'une équation semi-linéaire elliptique avec conditions de Dirichlet homogène au bord, la commande étant distribuée sur le domaine et positive. L'approche est la même que pour le premier modèle, c'est-à-dire que l'on considère une famille de problèmes pénalisés, dont la solution définit une trajectoire centrale qui converge vers la solution du problème initial. De cette manière, on peut étendre les résultats, obtenus dans le cadre d'équations différentielles, au contrôle optimal d'équations elliptiques semi-linéaires. Dans la deuxième partie on s'intéresse aux problèmes de commande optimale stochastiques. Dans un premier temps, on considère un problème linéaire quadratique stochastique avec des contraintes de non-negativité sur la commande et on étend les estimations d'erreur pour l'approximation par pénalisation logarithmique. La preuve s'appuie sur le principe de Pontriaguine stochastique et un argument de dualité. Ensuite, on considère un problème de commande stochastique général avec des contraintes convexes sur la commande. L'approche dite variationnelle nous permet d'obtenir un développement au premier et au second ordre pour l'état et la fonction de coût, autour d'un minimum local. Avec ces développements on peut montrer des conditions générales d'optimalité de premier ordre et, sous une hypothèse géométrique sur l'ensemble des contraintes, des conditions nécessaires du second ordre sont aussi établies.
|
35 |
Problèmes d'optimisation combinatoires probabilistesBellalouna, Monia 05 March 1993 (has links) (PDF)
L'étude du domaine récent que constituent les problèmes d'optimisation combinatoires probabilistes (POCPs) forme le sujet de cette thèse. Les POCPs sont des généralisations des problèmes d'optimisation combinatoires classiques dont les formulations contiennent explicitement des éléments probabilistes. Plusieurs motivations ont provoqué cette étude. Deux d'entre elles sont particulièrement importantes. La première correspond au désir de formuler et d'analyser des modèles qui sont plus appropriés pour des problèmes pratiques pour lesquels l'aléatoire est une source constante de préoccupations, les modèles de nature probabiliste sont plus particulièrement attractifs comme abstraction mathématique des systèmes réels. La seconde motivation est d'analyser la stabilité des solutions optimales des problèmes déterministes lorsque les exemplaires sont perturbés : les perturbations sont simulées par la présence ou l'absence de sous-ensembles des données. Notre étude s'appuie sur certains de ces problèmes et en particulier : problème du voyageur de commerce; problème d'ordonnancement des travaux probabiliste et le problème du bin-packing probabiliste. Les questions soulevées et les résultats obtenus sont dans les domaines suivants : complexités des problèmes et analyse d'heuristiques pour les POCPs ; analyse du comportement asymptotique des problèmes lorsque les exemplaires correspondent à des problèmes de grandes tailles ; dégager une méthodologie générale d'étude de la stabilité des solutions des problèmes d'optimisation combinatoires classiques.
|
36 |
A Contribution in Stochastic Control Applied to Finance and InsuranceLudovic, Moreau 25 September 2012 (has links) (PDF)
Le but de cette thèse est d'apporter une contribution à la problématique de valorisation de produits dérivés en marchés incomplets. Nous considérons tout d'abord les cibles stochastiques introduites par Soner et Touzi (2002) afin de traiter le problème de sur-réplication, et récemment étendues afin de traiter des approches plus générales par Bouchard, Elie et Touzi (2009). Nous généralisons le travail de Bouchard {\sl et al} à un cadre plus général où les diffusions sont sujettes à des sauts. Nous devons considérer dans ce cas des contrôles qui prennent la forme de fonctions non bornées, ce qui impacte de façon non triviale la dérivation des EDP correspondantes. Notre deuxième contribution consiste à établir une version des cibles stochastiques qui soit robuste à l'incertitude de modèle. Dans un cadre abstrait, nous établissons une version faible du principe de programmation dynamique géométrique de Soner et Touzi (2002), et nous dérivons, dans un cas d'EDS controllées, l'équation aux dérivées partielles correspondantes, au sens des viscosités. Nous nous intéressons ensuite à un exemple de couverture partielle sous incertitude de Knightian. Finalement, nous nous concentrons sur le problème de valorisation de produits dérivées {\sl hybrides} (produits dérivés combinant finance de marché et assurance). Nous cherchons plus particulièrement à établir une condition suffisante sous laquelle une règle de valorisation (populaire dans l'industrie), consistant à combiner l'approches actuarielle de mutualisation avec une approche d'arbitrage, soit valable.
|
37 |
Optimisation polynomiale et variétés polaires : théorie, algorithmes, et implantationsGreuet, Aurélien 05 December 2013 (has links) (PDF)
Le calcul de l'infimum global $f^*$ d'un polynôme à $n$ variables sous contraintes est une question centrale qui apparaît dans de nombreux domaines des sciences de l'ingénieur. Pour certaines applications, il est important d'obtenir des résultats fiables. De nombreuses techniques ont été développées dans le cas où les contraintes sont données par des inéquations polynomiales. Dans cette thèse, on se concentre sur le problème d'optimisation d'un polynôme à $n$ variables sous des contraintes définies par des équations polynomiales à $n$ variables. Notre but est d'obtenir des outils, algorithmes et implémentations efficaces et fiables pour résoudre ces problèmes d'optimisation. Notre stratégie est de ramener le problème d'optimisation sous des contraintes qui définissent des ensembles algébriques de dimension quelconque à un problème équivalent, sous des nouvelles contraintes dont on maîtrise la dimension. La variété algébrique définie par ces nouvelles contraintes est l'union du lieu critique du polynôme objectif et d'un ensemble algébrique de dimension au plus 1. Pour cela, on utilise des objets géométriques définis comme lieux critiques de projections linéaires. Grâce au bon contrôle de la dimension, on prouve l'existence de certificats pour des bornes inférieures sur $f^*$ sur nos nouvelles variétés. Ces certificats sont donnés par des sommes de carrés et on ne suppose pas que $f^*$ est atteint. De même, on utilise les propriétés de nos objets géométriques pour concevoir un algorithme exact pour le calcul de $f^*$. S'il existe, l'algorithme renvoie aussi un minimiseur. Pour un problème avec $s$ contraintes et des polynômes de degrés au plus $D$, la complexité est essentiellement cubique en $(sD)^n$ et linéaire en la complexité d'évaluation des entrées. L'implantation, disponible sous forme de bibliothèque Maple, reflète cette complexité. Elle a permis de résoudre des problèmes inatteignables par les autres algorithmes exacts.
|
38 |
Contrôle des phénomènes d'interaction fluide-structure, application à la stabilité aéroélastiqueMoubachir, Marwan 15 November 2002 (has links) (PDF)
Dans cette thèse, nous nous sommes intéressés au problème de la stabilité aéroélastique d'une structure au sein d'un écoulement fluide incompressible. La motivation de ce travail est le dimensionnement au vent des ouvrages d'art du génie civil, par l'analyse et la simulation numérique de l'interaction vent-structure. Notre approche consiste à chercher la vitesse de vent minimale permettant, soit de maximiser les effets du vent sur la structure, soit de contraindre la structure à suivre une évolution instable donnée. Après une analyse générale de ces concepts, nous montrons, numériquement, qu'il est possible de contrôler, par une donnée frontière, les trajectoires de l'écoulement d'un fluide incompressible autour d'un profil fixe. Dans une deuxième partie, nous obtenons les systèmes linéarisé et adjoint lorsque le contrôle s'exerce à travers le mouvement du domaine fluide, grâce à de nouveaux outils de dérivation de forme. Finalement dans une troisième partie, nous obtenons le système adjoint associé au problème de suivi d'instabilités pour une structure rigide élastiquement supportée au sein d'un écoulement fluide incompressible, en utilisant une formulation Min-Max. Dans le cas plus complexe d'une structure élastique en grands déplacements, nous obtenons la structure du problème linéarisé, par l'utilisation de la dérivation intrinsèque liée aux perturbations de l'identité.
|
39 |
Quelques contributions au contrôle et aux équations rétrogrades en finance.Fabre, Emilie 29 February 2012 (has links) (PDF)
Je me suis intéressée à résoudre certains problèmes financiers par du contrôle stochastique. On a premièrement considéré un problème mixte d'investissement optimal et de vente optimale. On a étudié le comportement d'un investisseur possédant un actif indivisible qu'il cherche à vendre tout en gérant en continu un portefeuille d'actifs risqués. Puis, on s'est intéressé à l'étude des équations stochastiques rétrogrades du premier et du second ordre avec contraintes convexes. Dans chaque cas, on a prouvé l'existence d'une solution minimale ainsi qu'une représentation stochastique pour ce problème. Enfin, on a étudié un modèle à volatilité stochastique où la volatilité instantanée dépend de la courbe de volatilité forward. On propose un développement asymptotique du prix de l'option pour de petites variations de la volatilité.
|
40 |
Contribution au controle optimal du problème circulaire restreint des trois corpsDaoud, Bilel 07 November 2011 (has links) (PDF)
Le contexte de ce travail est la mécanique spatiale. Plus précisément, on se propose de réaliser des transferts 'a faible poussée dans le système Terre- Lune modélise par le problème des trois corps restreint circulaire. Le but est de calculer la commande optimale de l'engin spatial pour deux critères d'optimisation: temps de transfert minimal et consommation de carburant minimale. Les contributions de cette thèse sont de deux ordres. Géométrique, tout d'abord, puisqu'on étudie la contrôlabilité du système ainsi que la géométrie des transferts (structure de la commande) à l'aide d'outils de contrôle géométrique. Numérique, ensuite, différentes méthodes homotopiques sont développées. En effet, une continuation deux-trois corps est considérée pour calculer des trajectoires temps minimales et puis une continuation sur la poussée maximale de l'engin pour atteindre des poussées faibles. Le problème de consommation minimale -- minimisation de la norme L1 du contrôle -- est connecté par une continuation différentielle au problème de minimisation de la norme L2 du contrôle. Les solutions trouvées sont comparées à celles calculées 'a l'aide d'une p pénalisation par barrière logarithmique. Ces méthodes sont ensuite appliquées pour la mission SMART-1 de l'Agence Européenne Spatiale.
|
Page generated in 0.1428 seconds