• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Double-negative (CD27−IgD−) B cells are expanded in NSCLC and inversely correlate with affinity-matured B cell populations

Centuori, Sara M., Gomes, Cecil J., Kim, Samuel S., Putnam, Charles W., Larsen, Brandon T., Garland, Linda L., Mount, David W., Martinez, Jesse D. 15 February 2018 (has links)
Background: The presence of B cells in early stage non-small cell lung cancer (NSCLC) is associated with longer survival, however, the role these cells play in the generation and maintenance of anti-tumor immunity is unclear. B cells differentiate into a variety of subsets with differing characteristics and functions. To date, there is limited information on the specific B cell subsets found within NSCLC. To better understand the composition of the B cell populations found in NSCLC we have begun characterizing B cells in lung tumors and have detected a population of B cells that are CD79A(+)CD27(-)IgD(-). These CD27(-)IgD(-)(double-negative) B cells have previously been characterized as unconventional memory B cells and have been detected in some autoimmune diseases and in the elderly population but have not been detected previously in tumor tissue. Methods: A total of 15 fresh untreated NSCLC tumors and 15 matched adjacent lung control tissues were dissociated and analyzed by intracellular flow cytometry to detect the B cell-related markers CD79A, CD27 and IgD. All CD79A(+) B cells subsets were classified as either naive (CD27(-)IgD(+)), affinity-matured (CD27(+)IgD(-)), early memory/germinal center cells (CD27(+)IgD(+)) or double-negative B cells (CD27(-)IgD(-)). Association of double-negative B cells with clinical data including gender, age, smoking status, tumor diagnosis and pathologic differentiation status were also examined using the logistic regression analysis for age and student's t-test for all other variables. Associations with other B cell subpopulations were examined using Spearman's rank correlation. Results: We observed that double-negative B cells were frequently abundant in lung tumors compared to normal adjacent controls (13 out of 15 cases), and in some cases made up a substantial proportion of the total B cell compartment. The presence of double-negative cells was also found to be inversely related to the presence of affinity-matured B cells within the tumor, Spearman's coefficient of -0.76. Conclusions: This study is the first to observe the presence of CD27(-)IgD(-)double-negative B cells in human NSCLC and that this population is inversely correlated with traditional affinity-matured B cell populations.
2

Protective memory B cell response in controlled human malaria infection

Murugan, Rajagopal 28 January 2019 (has links)
Antikörper gegen Circumsporozoite protein (CSP), ein Oberflächenantigen von Plasmodium falciparum (Pf), können sterile Immunität hervorrufen und dadurch die Entwicklung von Malaria im Tierversuch verhindern. Im Menschen werden protektive B-Zell Gedächtnisantworten gegen CSP durch natürliche Malariaerkrankung bzw. Vakzinierung jedoch nur unzureichend erzeugt. - Für die Entwicklung von Gedächtnis-B-Zellen stellt die Affinitätsreifung, welche durch somatische Immungobulin Hypermutation sowie der nachfolgenden Selektion von B-Zellen mit verbesserter Antigenaffinität charakterisiert ist, eine Schlüsselfunktion in der Generierung von protektiven Immunantworten dar. Wie Affinitätsreifung gegen CSP im Menschen stattfindet ist jedoch nicht bekannt. In dieser Arbeit wird die Affinitätsreifung von CSP Gedächtnis B-Zellen auf Einzelzellebene im Menschen über drei kontrollierte Infektionen mit Pf Sporozoiten unter Chemoprophylaxe untersucht. Durch Hochdurchsatz-Einzelzell-Sequenzierung der Immunoglobulin (Ig) gene loci und der Produktion von rekombinanten monoklonalen Antikörpern gewährt diese Arbeit Einsicht in die Selektion und Affinitätsreifung von humanen Gedächtnis-B-Zell Antworten gegen komplexe Proteinantigene und identifiziert Keimbahn kodierte Immunglobulin Charakteristika, die mit hoher CSP-Affinität und Pf-Inhibition einhergehen. Überraschenderweise zeigen die Daten, dass initiale klonale Selektion von hochaffinen B Zellen eine weitaus wichtigere Rolle als Affinitätsreifung in dieser Infektion spielt. Diese Arbeit zeigt fundamentale Eigenschaften von humanen Gedächtnisantworten in einer komplexen Parasiteninfektion und liefert die Grundlage für ein mögliches Design von neuartigen Immunogenen um hoch-affine B-Zellen gegen CSP effizienter zu induzieren. / Antibodies against the major Plasmodium falciparum (Pf) sporozoite surface protein, circumsporozoite protein (CSP), can mediate sterile immunity thereby preventing malaria disease symptoms as shown by passive transfer in animal models. However, protective anti- CSP memory antibody responses are not efficiently induced by natural Pf exposure or vaccination. Affinity maturation, i.e. the diversification of antigen-activated naïve precursor B cells by a somatic immunoglobulin (Ig) gene mutation process and the subsequent selection of B cells expressing antigen receptors with improved antigen affinity in germinal center reactions is considered key to the formation of protective memory B cell responses. However, how the anti-PfCSP memory B cell response matures in humans is not known. To address this question, the clonal evolution of the human anti-Pf CSP memory B cell response over three successive controlled Pf infections under chemoprophylaxis was assessed at single cell level by high throughput paired full-length Ig gene sequencing and recombinant monoclonal antibody production. The work provides basic insights in the longitudinal development of human memory B cell responses and identified germline-encoded Ig gene features that were associated with high anti-CSP affinity and Pf inhibitory antibody activity. The clonal selection of germline B cells expressing such antibodies, rather than affinity maturation, was associated with high quality anti-PfCSP memory B cell responses. The data provide insights into the evolution of antibody response to a complex protein antigen during infection and a strong rational for the design of novel CSP immunogens to target naïve B cell precursors expressing potent anti-CSP antibodies for the induction of protective memory B cell responses by vaccination.
3

Obtenção de anticorpos monoclonais humanos antitetânicos. / Anti-tetanus human monoclonal antibodies.

Aliprandini, Eduardo 12 August 2015 (has links)
Anticorpos monoclonais (AcMos) para uso terapêutico correspondem a uma área importante na indústria de biofármacos, em especial os AcMos humanos, que apresentam menor probabilidade de elicitar imunogenicidade. O objetivo deste trabalho consistiu em obter AcMos humanos antitetânicos através da separação de linfócitos B produtores de anticorpos específicos utilizando o antígeno ou de plasmablastos. As células foram coletadas de doadores após vacinação e separadas por equipamento de cell sorter. As regiões variáveis dos anticorpos foram amplificadas e clonadas em vetores de expressão, que foram usados para transfectar transitoriamente células HEK293-F. O uso da toxina tetânica conjugada independentemente com dois marcadores, biotina e Alexa Fluor® 647, possibilitou a separação específica de linfócitos B produtores de AcMos antitetânicos, que foram avaliados por ELISA, western blotting e pela inibição da ligação da toxina ao gangliosídio GT1b. O ensaio in vivo mostrou proteção total dos animais contra a toxina tetânica quando três AcMos foram usados em conjunto. / Monoclonal antibodies (mAbs) for therapeutic use correspond to a major area of the biopharmaceutical industry, especially human mAbs that are less prone to elicit immunogenicity. The objective of this work was to obtain anti-tetanus human mAbs through separation of memory B lymphocytes producing specific antibodies stained with the antigen or plasmablasts. Cells were collected from peripheral blood of donors after vaccination and separated through cell sorting. The variable regions of the antibodies were amplified and cloned in expression vectors for transient transfection of HEK293-F cells. The staining with the tetanus toxin labeled independently with two markers, biotin and Alexa Fluor® 647 allowed the separation of specific B lymphocytes producing anti-tetanus mAbs. The antibodies expressed were evaluated by ELISA, western blotting and the inhibition of the binding of the tetanus toxin to the ganglioside GT1b. The in vivo neutralization assay showed that a pool of three different mAbs were able to protect mice against the tetanus toxin.
4

Obtenção de anticorpos monoclonais humanos antitetânicos. / Anti-tetanus human monoclonal antibodies.

Eduardo Aliprandini 12 August 2015 (has links)
Anticorpos monoclonais (AcMos) para uso terapêutico correspondem a uma área importante na indústria de biofármacos, em especial os AcMos humanos, que apresentam menor probabilidade de elicitar imunogenicidade. O objetivo deste trabalho consistiu em obter AcMos humanos antitetânicos através da separação de linfócitos B produtores de anticorpos específicos utilizando o antígeno ou de plasmablastos. As células foram coletadas de doadores após vacinação e separadas por equipamento de cell sorter. As regiões variáveis dos anticorpos foram amplificadas e clonadas em vetores de expressão, que foram usados para transfectar transitoriamente células HEK293-F. O uso da toxina tetânica conjugada independentemente com dois marcadores, biotina e Alexa Fluor® 647, possibilitou a separação específica de linfócitos B produtores de AcMos antitetânicos, que foram avaliados por ELISA, western blotting e pela inibição da ligação da toxina ao gangliosídio GT1b. O ensaio in vivo mostrou proteção total dos animais contra a toxina tetânica quando três AcMos foram usados em conjunto. / Monoclonal antibodies (mAbs) for therapeutic use correspond to a major area of the biopharmaceutical industry, especially human mAbs that are less prone to elicit immunogenicity. The objective of this work was to obtain anti-tetanus human mAbs through separation of memory B lymphocytes producing specific antibodies stained with the antigen or plasmablasts. Cells were collected from peripheral blood of donors after vaccination and separated through cell sorting. The variable regions of the antibodies were amplified and cloned in expression vectors for transient transfection of HEK293-F cells. The staining with the tetanus toxin labeled independently with two markers, biotin and Alexa Fluor® 647 allowed the separation of specific B lymphocytes producing anti-tetanus mAbs. The antibodies expressed were evaluated by ELISA, western blotting and the inhibition of the binding of the tetanus toxin to the ganglioside GT1b. The in vivo neutralization assay showed that a pool of three different mAbs were able to protect mice against the tetanus toxin.
5

Peripheral Germinal Centers Regulate Virus-Specific B Cell Accumulation in the CNS

Atkinson, Jeffrey Ross 01 May 2018 (has links)
No description available.
6

B cell response to pneumococcal vaccines

Trück, Johannes January 2014 (has links)
Streptococcus pneumoniae is a significant cause of mortality and morbidity in both children and older adults, with infection resulting in invasive disease, pneumonia and otitis media. The inclusion of pneumococcal conjugate vaccines in routine infant immunisation programmes has had a major impact on disease rates. Vaccine-induced protection against pneumococcal infection is thought to be mediated by the generation of persistent serotype-specific functional antibodies and antigen-specific memory B cells, the latter capable of generating a rapid secondary antibody response on re-exposure to antigen. Although many studies have investigated the immunogenicity of pneumococcal vaccines in different age groups by measuring serotype-specific antibodies, there is more limited information about the B cells underlying such an immune response. Important areas to investigate include the identity of the B cell subsets involved in antibody production and the potential link between memory B cells (B<sub>MEM</sub>) and persistent antibody production by long-lived plasma cells. In this thesis I have investigated in detail the immune response to pneumococcal vaccines given to children and adults by a variety of different methods. By examining the variability of a B<sub>MEM</sub> ELISpot method, it was shown that this assay is robust and reproducible and can be performed on fresh or frozen samples and in different laboratories. Using this technique, in a study of pre-school children, it was demonstrated for the first time that the level of pre-existing serotype 3-specific antibody is negatively correlated with, and may directly impair the B<sub>MEM</sub> response to a booster dose of 13-valent pneumococcal conjugate vaccine (PCV-13) containing serotype 3 glycoconjugate. In the same study, it was shown that antibody persistence against most vaccine serotypes can be expected until the age of 3.5 years. A novel antigen-labelling technique was used in a detailed kinetics study of antigen-specific B cell subsets in response to either PCV-13 or 23-valent pneumococcal polysaccharide vaccine in adults. The results of this study revealed distinct B cell subset response patterns that were observed in all study participants indicating that IgM B<sub>MEM</sub> seem to play a major role in the immune response to pneumococcal vaccines. In addition, in the same study, genome wide analysis of gene expression was performed and it was shown that vaccination with either a pneumococcal conjugate or polysaccharide vaccine results in a marked difference in numbers of differentially expressed genes 8 days following vaccination. A further tool likely to be of use in investigating B cell responses is the analysis of the antibody repertoire using next-generation sequencing techniques. In order to test the ability of these methods to detect vaccine responses, a large dataset of high-throughput B cell receptor sequences was analysed and revealed convergence of antigen-specific complementary-determining region (CDR)<sub>3</sub> amino acid (AA) sequences following vaccination and identified antigen-specific sequences. It was further demonstrated that for sequences directed against the H. influenzae type b (Hib) polysaccharide, diversity of immunoglobulin gene rearrangements is much greater than previously recognised. Frequencies of Hib-specific CDR<sub>3</sub> AA sequences were linked with anti-Hib avidity indices highlighting the potential of this method as an alternative (functional) measure of vaccine immunogenicity. These data suggest that studying the B cells and antibody repertoire post-vaccination can give novel insights into the biology that underlies the immune responses.
7

The role of the spleen in Malaria : Cellular changes that affect the development of immunity

Beattie, Lynette January 2006 (has links)
Malaria, caused by the apicomplexan parasite Plasmodium, is a major cause of morbidity and mortality throughout the world. This study has focused on the role of the spleen in the control of the blood stage of infection. Three aspects have been examined specifically: the effect of infection on the architecture of the spleen, the role of the spleen in parasite clearance and the formation of B cell memory. Firstly, the effect of infection on the splenic microarchitecture was examined. An essential component of the splenic architecture is the marginal zone (MZ), an area of the spleen that separates the reticuloendothelial red pulp of the spleen from the lymphoid white pulp compartment. Two unique populations of macrophages are found in the marginal zone: marginal zone macrophages (MZM) and marginal metallophilic macrophages (MMM). In the current study, parasitised red blood cells (pRBC) as well as normal RBC located to the MZ thirty minutes after intravenous injection and formed close associations with both MMM and MZM. Eight days after infection, at the time of peak parasitemia, a complete loss of both MMM and MZM was observed. Assays to detect cell death revealed that the loss of both MMM and MZM appeared to occur as a result of apoptosis. The apoptosis was not induced by up regulation of the inflammatory cytokines tumour necrosis factor or interferon-γ and could not be blocked by over expression of the apoptosis inhibitor Bcl2. Significantly, MMM were retained in the absence of CD8+ T cells implicating CD8+ T cells in the loss of MMM. Finally, infection of CD95-/- mice demonstrated that CD95/CD95-ligand (Fas/Fas-ligand) interactions were responsible for some of the CD8+ T cell-mediated loss of MMM. These data provide evidence for a novel interaction between MMM and CD8+ T cellsfollowing infection with Plasmodium. Secondly, the role of the spleen in the control of parasitemia and disease was monitored with an emphasis on determining the role of splenic macrophage populations (MMM, MZM and red pulp macrophages [RPM]) in parasite clearance. A clodronate liposome-mediated macrophage depletion technique was used, and caused a complete loss of all three macrophage sub-populations, as well as 50% of splenic dendritic cells, within 24 hours of administration. Each of the macrophage populations, as well as splenic DC, demonstrated different repopulation kinetics following their depletion from the spleen and these kinetics were utilised to examine each cell population in isolation. RPM depleted mice had significantly higher peak parasitemias than the controls. This peak returned to the level observed in undepleted control animals only after the repopulation of RPM was complete, suggesting that RPM play a role in the control of peak parasitemia following infection. Neither MMM nor MZM played a role in the control of parasitemia. The role of non-splenic macrophages and splenic dendritic cells also was investigated and shown to be insignificant in the absence of splenic macrophages. Finally, the role of RPM in mice immune to infection was investigated and their role shown to be dispensable, with immune mice clearing parasitemia efficiently in the absence of RPM. RPM therefore are important for the innate control of infection with P. chabaudi but are dispensible once adaptive immunity is established. Finally, the role of the spleen in the development of parasite-specific B cell memory was examined. Initial studies demonstrated that germinal centre (GC) development was compromised following infection with P. chabaudi, with an involution of B cell follicles noted early in infection. Adoptive transfer of memory B cells from immunised to naïve mice demonstrated that some protection was conferred on recipient mice by parasite-specific memory B cells. But, the memory B cells could not protect the host from developing parasitemia and did not produce significant amounts of parasite-specific immunoglobulin within seven days of challenge infection. Memory B cells could not be detected ten weeks after infection, indicating that the development, or survival, of parasite-specific memory B cells was compromised. The development of bystander memory B cells was not affected by infection. Finally, long-lived plasma cells were shown to develop in response to infection, although re-exposure of the cells to parasites in the form of recrudescent parasitemia resulted in their loss. This study therefore has identified a defect in the development of long-term, B cell-mediated, protection against infection with P. chabaudi. Each of these factors has significant implications for the understanding of how the spleen contributes to the control of infection with Plasmodium and potential applications for the further development of malaria vaccines and treatment regimens.
8

Lymphocytes B mémoire dans la réponse humorale anti-­HLA en transplantation d'organe / Memory B cells in anti-HLA humoral response in organ transplantation

Snanoudj, Renaud 19 November 2013 (has links)
Les alloanticorps anti-HLA sont dirigés vis-à-vis de différents épitopes des molécules du système HLA. Cette immunisation survient lors d'une transplantation d'organe, de transfusions sanguines ou d'une grossesse. On retrouve aussi ces anticorps, lorsque les techniques de détection sont sensibles, en l'absence de tout évènement immunisant. En transplantation d'organe, rénale en particulier, la présence d’anticorps anti-HLA, du fait des lésions de rejet humoral qu'ils induisent, constitue une des premières causes de perte de fonction des greffons à moyen et long terme. Néanmoins, les cellules lymphocytaires qui sont la source de ces anticorps anti-HLA demeurent mal identifiées.Dans la première partie de ce travail, nous avons étudié, dans une cohorte de patients en attente de transplantation rénale, la distribution des différentes sous-populations lymphocytaires B circulantes par cytométrie de flux en relation avec la nature des évènements immunisants vis-à-vis du système HLA, la présence et la diversité des anticorps anti-HLA. Nous avons étudié en parallèle les concentrations sériques de BAFF ("B cell activating factor belonging to the TNF family"), principal facteur impliqué dans la survie et la différenciation des lymphocytes B matures. Nous avons retrouvé une association entre la présence et la diversité des anticorps anti-HLA, et l'augmentation de la proportion de lymphocytes B naïfs activés Bm2, par rapport aux autres sous-populations lymphocytaires B, et indépendamment de l'existence d'évènements immunisants. Les concentrations sériques de BAFF étaient également associées positivement à la présence et à la diversité des anticorps anti-HLA. Ces données suggèrent que l'augmentation des lymphocytes B naïfs activés et des concentrations sériques de BAFF favorise le développement des anticorps anti-HLA à la suite d'un événement immunisant. A l'instar du mécanisme évoqué en auto-immunité, BAFF pourrait intervenir en présence de l'alloantigène en favorisant la survie de clones B alloréactifs.Dans la deuxième partie de notre travail, nous nous sommes intéressés plus particulièrement à l'implication des lymphocytes B mémoire alloréactifs dans la réponse humorale anti-HLA. Pour détecter les lymphocytes B mémoire circulants, nous avons utilisé un test de stimulation polyclonale permettant leur différenciation en plasmablastes puis nous avons recherché et étudié la spécificité des anticorps anti-HLA produits dans les surnageants de culture. Un premier résultat important a été la possibilité de détecter, chez les patients présentant des anticorps anti-HLA, des lymphocytes B mémoire alloréactifs circulants plusieurs années après un événement immunisant. En deuxième lieu, la présence de ces lymphocytes B mémoire était associée au nombre d'évènements immunisants. En effet, les patients ayant développé, en l'absence d'événement immunisant des anticorps anti-HLA - dont nous montrons par ailleurs le caractère potentiellement pathogène - n'ont pas présenté de lymphocytes B mémoire alloréactifs circulants. Enfin, à l'aide du logiciel HLAMatchmaker, nous avons montré que les anticorps produits par les lymphocytes B mémoire étaient dirigés contre un nombre restreint d'épitopes partagés par plusieurs antigènes HLA, ce qui suggère une oligoclonalité du contingent B mémoire alloréactif. Chez les mêmes patients, les anticorps anti-HLA circulants présentaient une diversité de spécificité plus large, étant dirigés contre de multiples épitopes HLA. Ces résultats suggèrent l'existence d'au moins deux types de réponse humorale vis-à-vis des alloantigènes HLA : l'une aboutissant à la production de lymphocytes B mémoire et de plasmocytes à la suite d'une réaction de centre germinatif T-dépendante, l'autre impliquant seulement des plasmocytes, possiblement issus de réponses extra-folliculaires. Les facteurs orientant vers l’un ou l’autre type de réponse sont encore mal définis mais pourraient impliquer la dose et la voie d'exposition aux alloantigènes. / Anti-HLA antibodies are directed against various epitopes of HLA molecules. They develop during organ transplantations, red cell transfusions or pregnancies. But anti-HLA antibodies are also detected with sensitive assays in the absence of any sensitizing event. In renal transplantation, anti-HLA antibodies, through the development of antibody-mediated rejection, represent the first cause of late allograft loss. Nevertheless, the mechanisms and the exact nature of B cells involved in anti-HLA antibodies synthesis are poorly understood.In a first part, we studied by flow cytometry in patients awaiting kidney transplantation the distribution of the different peripheral B cell subsets in relation with immunizing events, titer and diversity of anti-HLA antibodies. We also studied the serum levels of BAFF ("B cell activating factor belonging to the TNF family"), the main factor involved in survival and differentiation of mature B cells. We found an association between the presence and the diversity of anti-HLA antibodies, and the proportion of activated naive Bm2 B cells, at the expense of other subsets, independently of immunizing events. BAFF serum levels were also positively associated with the presence and the diversity of anti-HLA antibodies. These data suggest that the increase in activated naive B cells and in BAFF levels facilitate the development of anti-HLA antibodies, following an immunizing event. Similarly to what is observed in autoimmunity, BAFF could help to the positive selection of alloreactive B cell clones, in the presence of alloantigen.In a second part, we focused on the role of circulating alloreactive memory B cells in anti-HLA humoral response. To detect those alloreactive memory B cells, we used a polyclonal stimulation assay allowing the differentiation of memory B cells into plasmablasts and we studied the specificity of anti-HLA antibodies recovered from culture supernatant. A first important result was the detection, decades after an imunizing event, of specific alloreactive memory B cells, even in the absence of the antigen. The detection of those circulating alloreactive memory B cells was related to the strength of immunizing events, i.e. the number of different immunizing events in the history of patients. Indeed, patients with anti-HLA antibodies with no history of immunizing event had no circulating alloreactive memory B cells. Eventually, with HLAMatchmaker software, we showed that antibodies produced by memory B cells were directed against a limited number of epitopes shared by HLA antigens, which suggests an oligoclonality of the alloreactive memory B cell population. By comparison, serum antibodies displayed a greater diversity, with multiple epitopic specificities. These results suggest two distinct cellular arms of humoral response towards HLA epitopes: medullar plasma cells, involved in long term HLA antibodies synthesis, and memory B cells waiting for a recall response in the presence of the antigen. The factors involved in the choice of those two cellular fates are poorly understood but may involve dose and route of exposition to the alloantigen.

Page generated in 0.0765 seconds