• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 355
  • 315
  • 148
  • 52
  • 36
  • 36
  • 19
  • 19
  • 12
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1133
  • 745
  • 740
  • 423
  • 243
  • 222
  • 219
  • 210
  • 196
  • 190
  • 168
  • 156
  • 144
  • 129
  • 129
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Homing and Differentiation of Mesenchymal Stem Cells in 3D In Vitro Models

Popielarczyk, Tracee 31 August 2017 (has links)
Mesenchymal stem cells (MSCs) have great potential to improve clinical outcomes for many inflammatory and degenerative diseases through delivery of exogenous MSCs via injection or cell-laden scaffolds and through mobilization and migration of endogenous MSCs to injury sites. MSC fate and function is determined by microenvironmental cues, specifically dimensionality, topography, and cell-cell interactions. MSC responses of migration and differentiation are the focus of this dissertation. Cell migration occurs in several physiological and pathological processes; migration mode and cell signaling are determined by the environment and type of confinement in three-dimensional (3D) models. Tendon injury is a common musculoskeletal disorder that occurs through cumulative damage to the extracellular matrix (ECM). Studies combining nanofibrous scaffolds and MSCs to determine an optimal topographical environment have promoted tenogenic differentiation under various conditions. We investigated cellular response of MSCs on specifically designed nanofiber matrices fabricated using a novel spinneret-based tunable engineered parameters production method (STEP). We designed suspended and aligned nanofiber scaffolds to study cellular morphology, tendon marker gene expression, and matrix deposition as determinants for tendon differentiation. The delivery and maintenance of MSCs at sites of inflammation or injury are major challenges in stem cell therapies. Enhancing stem cell homing could improve their therapeutic effects. Homing is a process that involves cell migration through the vasculature to target organs. This process is defined in leukocyte transendothelial migration (TEM); however, far less is known about MSC homing. We investigated two population subsets of MSCs in a Transwell system mimicking the vasculature; migrated cells that initiated transmigration on the endothelium and nonmigrated cells in the apical chamber that failed to transmigrate. Gene and protein expression changes were observed between these subsets and evidence suggests that multiple signaling pathways regulate TEM. The results of these experiments have demonstrated that microenvironmental cues are critical to understanding the cellular and molecular mechanisms of MSC response, specifically in homing and differentiation. This knowledge has identified scaffold parameters required to stimulate tenogenesis and signaling pathways controlling MSC homing. These findings will allow us to target key regulatory molecules and cell signaling pathways involved in MSC response towards development of regenerative therapies. / Ph. D. / Stem cell therapy is one way to improve tissue injury and inflammatory conditions, but to optimize such therapy, we need to study how the environment around cells influence turning them into the injured tissue and how to control their movement to these sites in order for mesenchymal stem cells (MSCs) to exert their therapeutic functions. MSCs move through and detect their environment through the material around them, including organization of the fibers they attach to and neighboring cells. Cell migration is an important cell behavior that occurs in normal and diseased processes. MSCs have great potential to improve clinical outcomes for many inflammatory and degenerative diseases whether through delivery of exogenous MSCs or through mobilization and migration of endogenous MSCs to injury sites. Tendon damage can occur slowly over time and optimal treatment for normal function after injury remains unknown. Equine MSCs were harvested from bone marrow and subjected to scaffolds of different fiber orientation to study whether cells develop characteristics of tendon cells. Cellular responses were similar between scaffolds of aligned fiber orientation. Manipulation of equine bone marrow MSCs through the use of specifically designed nanofiber scaffolds aid in understanding the mechanisms by which the cells respond and function in tendon development, injury, and repair. Inflammation is a necessary process after tissue injury; however, it must progress in a controlled manner and be resolved before it leads to tissue damage and dysfunction. MSCs function in regulating the effects of inflammation and immune cells; however, getting them to these sites and keeping them there remains challenging. MSCs adhere to and migrate through capillaries towards these sites, known as stem cell homing. Human bone marrow MSCs were loaded onto human synovial microvascular endothelial cells to study migration towards an inflammatory stimulus. This stimulus acted on the endothelial cells to produce another stimulus that attracted MSCs to the endothelial cells. These actions resulted in complete MSC migration through the endothelial cells and activated intracellular signals that can be used to increase the number of MSCs that reach the inflammatory sites and stimulate tissue-healing effects.
462

Ex vivo organ culture of human hair follicles: a model epithelial-neuroectodermal-mesenchymal interaction system.

Tobin, Desmond J. 10 1900 (has links)
No / The development of hair follicle organ culture techniques is a significant milestone in cutaneous biology research. The hair follicle, or more accurately the "pilo-sebaceous unit", encapsulates all the important physiologic processes found in the human body; controlled cell growth/death, interactions between cells of different histologic type, cell differentiation and migration, and hormone responsitivity to name a few. Thus, the value of the hair follicle as a model for biological scientific research goes way beyond its scope for cutaneous biology or dermatology alone. Indeed, the recent and dramatic upturn in interest in hair follicle biology has focused principally on the pursuit of two of biology's holy grails; post-embryonic morphogenesis and control of cyclical tissue activity. The hair follicle organ culture model, pioneered by Philpott and colleagues, ushered in an exceptionally accessible way to assess how cells of epithelial (e.g., keratinocytes), mesenchymal (e.g., fibroblasts), and neuroectodermal (e.g., melanocytes) origin interact in a three-dimensional manner. Moreover, this assay system allows us to assess how various natural and pharmacologic agents affect complex tissues for growth modulation. In this article, I focus on the culture of the human hair follicle mini-organ, discussing both the practical issues involved and some possible research applications of this assay.
463

Ppia and ywhaz constitute a stable pair of reference genes during electrical stimulation in mesenchymal stem cells

Steel, L., Ansell, David, Amaya, E., Cartmell, S.H. 05 January 2022 (has links)
Yes / Mesenchymal stem cells (MSCs) are multipotent adult stem cells with great potential in regenerative medicine. One method for stimulating proliferation and differentiation of MSCs is via electrical stimulation (ES). A valuable approach for evaluating the response of MSCs to ES is to assess changes in gene expression, relative to one or more reference genes. In a survey of 25 publications that used ES on cells, 70% selected GAPDH as the reference gene. We conducted a study to assess the suitability of six potential reference genes on an immortalized human MSC line following direct current ES at seeding densities of 5000 and 10,000 cells/cm2 . We employed three methods to validate the most stable reference genes from qRT-PCR data. Our findings show that GAPDH and ACTB exhibit reduced stability when seeded at 5000 cell/cm2 . In contrast, we found that the most stable genes across both plating densities and stimulation regimes were PPIA and YWHAZ. Thus, in ES gene expression studies in MSCs, we support the use of PPIA and YWHAZ as an optimal reference gene pair, and discourage the use of ACTB and GAPDH at lower seeding densities. However, it is strongly recommended that similar verification studies are carried out based on cell type and different ES conditions.
464

M2-like tumor-associated macrophages promote epithelial-mesenchymal transition through the transforming growth factor β/Smad/zinc finger e-box binding homeobox pathway with increased metastatic potential and tumor cell proliferation in lung squamous cell carcinoma / M2様腫瘍関連マクロファージはTGF-β/Smad/ZEB経路を介して肺扁平上皮癌の上皮間葉転換を促進し転移能を高めるとともに腫瘍細胞の増殖を促進する

Sumitomo, Ryota 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第25180号 / 医博第5066号 / 新制||医||1071(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 平井 豊博, 教授 上野 英樹, 教授 金子 新 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
465

3D micropatternable hydrogel systems to examine crosstalk effects between mesenchymal stem cells, osteoblasts, and adipocytes

Hammoudi, Taymour Marwan 15 November 2012 (has links)
Poor skeletal health results from aging and metabolic diseases such as obesity and diabetes and involves impaired homeostatic balance between marrow osteogenesis and adipogenesis. Tissue engineering provides researchers with the ability to generate improved, highly controlled and tailorable in vitro model systems to better understand mechanisms of homeostasis, disease, and healing and regeneration. Model systems that allow assembly of modules of MSCs, osteoblasts, and adipocytes in a number of configurations to engage in signaling crosstalk offer the potential to study integrative physiological aspects and complex interactions in the face of changes in local and systemic microenvironments. Thus, the overall goal of this dissertation was to examine integrative physiological aspects between MSCs, osteoblasts, and adipocytes that exist within the marrow microenvironment. To investigate the effects of intercellular signaling in different microenvironmental contexts, methods were developed to photolithographically pattern and assemble cell-laden PEG-based hydrogels with high spatial fidelity and tissue-scale thickness for long-term 3D co-culture of multiple cell types. This platform was applied to study effects of crosstalk between MSCs, osteoblasts and adipocytes on markers of differentiation in each cell type. Additionally, responses of MSCs to systemic perturbations in glucose concentration were modulated by mono-, co-, and tri-culture with these cell types in a model of diabetes-induced skeletal disease. Together, these studies provided valuable insight into unique and differential effects of intercellular signaling within the niche environment of MSCs and their terminally differentiated progeny during homeostatic and pathological states, and offer opportunities further study of integrative physiological interactions between mesenchymal lineage cells.
466

Geração e caracterização de linhagens de células-tronco mesenquimais de camundongo geneticamente modificadas para expressão ectópica de hIGF-1 ou hG-CSF

Gonçalves, Gabrielle Viana Martins Gonçalves January 2015 (has links)
Submitted by Ana Maria Fiscina Sampaio (fiscina@bahia.fiocruz.br) on 2016-02-19T13:49:54Z No. of bitstreams: 1 Gabrielle Viana Martins Gonçalves Geração...2015.pdf: 6199357 bytes, checksum: 605427028fc638e77cf5015ba759917c (MD5) / Approved for entry into archive by Ana Maria Fiscina Sampaio (fiscina@bahia.fiocruz.br) on 2016-02-19T13:50:09Z (GMT) No. of bitstreams: 1 Gabrielle Viana Martins Gonçalves Geração...2015.pdf: 6199357 bytes, checksum: 605427028fc638e77cf5015ba759917c (MD5) / Made available in DSpace on 2016-02-19T13:50:09Z (GMT). No. of bitstreams: 1 Gabrielle Viana Martins Gonçalves Geração...2015.pdf: 6199357 bytes, checksum: 605427028fc638e77cf5015ba759917c (MD5) Previous issue date: 2015-01 / Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil / As células-tronco mesenquimais (CTM) constituem uma ferramenta promissora para o campo de terapia celular. Além de seu potencial de diferenciação em diferentes tipos celulares, as CTM apresentam a habilidade de secretar moléculas bioativas e, assim, exercer múltiplos efeitos biológicos, tais como indução da regeneração de tecidos lesionados, redução de fibrose e modulação do sistema imune. A superexpressão dos fatores de crescimento G-CSF e IGF-1, conhecidos por seus efeitos sobre os processos de imunomodulação, sobrevivência celular e reparo tecidual, pode ampliar as ações terapêuticas das CTM. O objetivo deste trabalho consiste em gerar e caracterizar linhagens de CTM de camundongo superexpressando hGCSF ou hIGF-1. Um sistema lentiviral de segunda geração foi utilizado para modificação de CTM para expressão ectópica dos genes de interesse. As sequências codificantes de hG-CSF e hIGF-1 foram amplificadas por PCR e subclonadas em um vetor lentiviral de transferência, contendo um promotor constitutivo. As partículas lentivirais foram produzidas a partir da cotransfecção de células da linhagem HEK293FT com os vetores constituintes do sistema lentiviral. Em seguida, as CTM obtidas da medula óssea de camundongos transgênicos para proteína fluorescente verde (GFP) foram transduzidas com partículas lentivirais infectantes contendo hG-CSF ou hIGF-1. A expressão gênica de hG-CSF ou hIGF-1 pelas linhagens geradas foi quantificada por qRTPCR, e a produção da proteína por ELISA. As linhagens foram caracterizadas por imunofenotipagem e avaliadas quanto ao seu potencial de diferenciação celular. Foram geradas duas linhagens de CTM superexpressando hG-CSF e três linhagens superexpressando hIGF-1. Todas demonstraram por qRTPCR, estar efetivamente expressando os genes de interesse. Foi possível detectar e quantificar a síntese proteica de G-CSF e IGF-1. Todas as linhagens geradas foram capazes de se diferenciar em osteócitos, condrócitos e adipócitos, demonstrando a manutenção de seu fenótipo estromal. Neste contexto, este trabalho resultou em ferramentas funcionais para a avaliação dos efeitos terapêuticos de IGF-1 e G-CSF combinados à CTM, em modelos de lesões animais, em comparação com CTM não-modificadas geneticamente. Além disso, estas ferramentas poderão ser empregadas em estudos de pesquisa básica, para melhor compreensão dos efeitos de hIGF-1 e hG-CSF sobre a biologia das CTM. / Mesenchymal stem cells (MSCs) are a promising tool for the cell therapy field. In addition to their potential for differentiation into different cell types, MSCs have the ability to secrete bioactive molecules and thus exert multiple biological effects such as induction of the injured tissue regeneration, fibrosis reduction and modulation of the immune system. The overexpression of the growth factors G-CSF and IGF-1, known for their effects on immune modulation processes, cell survival and tissue repair, can result in a magnification of MSCs' therapeutic actions. The objective of this work is to generate and characterize mouse MSCs lines overexpressing hG-CSF or hIGF-1. A second generation lentiviral system was used to modify MSCs derived from mice for the ectopic expression of the genes of interest. The coding sequences of hG-CSF and hIGF-1 were amplified by PCR and subcloned into a lentiviral transfer vector containing a constitutive promoter. The lentiviral particles were produced from the co-transfection of HEK293FT lineage cells with the lentiviral vectors. Subsequently, MSCs obtained from the bone marrow of transgenic mice for green fluorescent protein (GFP) were transduced with infectious lentiviral particles containing hG-CSF or hIGF-1. The gene expression of hG-CSF or hIGF-1 by the generated cell lines was quantified by qRTPCR, and the protein production by ELISA. The lineages were characterized by immunophenotyping and evaluated for their potential of cellular differentiation. Two lines of MSCs overexpressing hG-CSF and three lines overexpressing hIGF-1 were generated. All the cell lines demonstrated to be effectively expressing the genes of interest by qRTPCR. It was possible to detect and quantify the protein synthesis of G-CSF and IGF-1. Moreover, all the generated lines were capable of differentiating into osteocytes, chondrocytes and adipocytes, indicating the conservation of their stromal phenotype even after genetic modification. In this context, this study resulted in functional tools for evaluating the IGF-1 and G-CSF therapeutic effects when combined with MSCs, to be tested in experimental animal models in comparison to non-genetically modified MSCs. Furthermore, these tools may be employed for basic research studies, for a better understanding of the effects of hIGF-1 and hG-CSF on MSCs' biology
467

Role of Oct4 in pXEN cell differentiation and MET process

Han, Dongjun 29 July 2021 (has links)
Primitive extraembryonale Endoderm (pXEN) Stam-Zelllinien der Ratte repraesentieren wahrscheinlich die festgelegten Vorläufer des extraembryonalen. Die im mesenchymalen Zustand gehaltenen pXEN-Zellen können in vitro weiter zu parietalen und viszeralen Endoderm-ähnlichen Zellen differenzieren. pXEN-Zellen zusätzlich halten moderate Konzentrationen des ICM-Markers Oct4 aufrecht. Die Bedeutung von Oct4 in pXEN-Zellen ist jedoch unbekannt. Bei höheren Zelldichten, beobachteten wir eine erhöhte Oct4-Expression und gleichzeitig eine Tendenz zu Epithelialisierung (MET) und viszeral endodermaler (VE) Differenzierung. Um zu klären, ob die Oct4-Expression kausal beteiligt ist, modulierten wir die Oct4-Konzentration. Transienter Knockdown von Oct4 reduzierte tendenziell die Expression von MET / VE-assoziierten Genen; umgekehrt förderte die Doxycycline-induzierte Expression eines menschlichen Oct4-Transgens die MET / VE-Differenzierung und verhinderte die Bildung charakteristischer Gang-Strukturen. Im letzteren Fall ging dem MET eine anfängliche Zell-Verlängerung und eine erhöhte Zellmotilität voraus. Da ein GSK3-Inhibitor und Activin A auch den MET / VE-Phänotyp stimulierten, fragten wir uns, ob Oct4 über die Wnt/β-Catenin oder TGFβ Signalwege wirkt. Die verschiedene Schritte der Wnt/β-Catenin Signalgebung hemmen, blockierten die hOct4-induzierte MET- und VE-Expression nicht. Im Gegensatz dazu verhinderte Repsox, ein Inhibitor von Alk5 (TGFBR1), das hOct4-induzierte MET und die Expression von MET- und VE-Genen und stimulierte eher die Expression von parietalen Endoderm (PE) Genen. Zusammengefasst zeigen diese Daten eine Rolle für Oct4 bei der MET / VE-Differenzierung auf, wahrscheinlich durch Stimulation eines TGFβ Signalweges. Weiterführende Experimente sind erforderlich um zu bestimmen, wie die zwei Prozesse der MET- und VE-Differenzierung innerhalb der extraembryonalen Endoderm-Linie unterschieden und in Beziehung gesetzt werden. / Rat primitive extraembryonic endoderm (pXEN) cell lines appear to represent the committed precursors of the extraembryonic endoderm. The pXEN cells maintained in the mesenchymal state can further differentiate to the parietal endoderm and visceral endoderm like-cells in vitro. In addition, pXEN cells maintain moderate levels of the ICM marker Oct4, a transcription factor that plays important roles in pluripotency, plasticity, and differentiation. However, the significance of Oct4 in pXEN cell lineage specification is unknown. We observed that rat pXEN cells show increased Oct4 expression at higher densities, a condition that also promotes their epithelialization (MET) and visceral endodermal (VE) differentiation. In order to elucidate whether the Oct4 expression is causally involved, we modulated the Oct4 levels. Transient knockdown of Oct4 tended to reduce the expression of MET/VE-associated genes; conversely, the doxycycline-induced expression of a human Oct4 transgene promoted MET/VE differentiation and prevented the formation of characteristic duct structures. In the latter case, the MET was preceded by an initial elongation and increased cell motility. Since GSK3 inhibitor and Activin A also stimulated the MET/VE phenotype, we then asked whether Oct4 acts through the Wnt/β-catenin or TGFβ pathways. Wnt inhibitors did not block the hOct4-induced MET and VE expression. By contrast, Repsox, an inhibitor of Alk5 (TGFBR1), prevented the hOct4-induced MET and the expression of MET and VE genes and rather stimulated the expression of parietal endoderm (PE) genes. Taken together, these data indicate a role for Oct4 in MET/VE differentiation via stimulation of TGFβ signaling. Further work is needed to determine how the two MET and VE differentiation processes are distinguished and related within the extraembryonic endoderm lineage.
468

Circadian clock regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions in glioma and breast cancer cells

De, Arpan 19 November 2019 (has links)
No description available.
469

Detection of Collagen in Rat Abdominal Wound Healing: Contributions of Mesenchymal Stromal Cells and Platelet-Rich Plasma

Minteer, Tanya E. 28 September 2012 (has links)
No description available.
470

Les lymphocytes Th17 humains : modulation de leur fonction effectrice par les cellules souches mésenchymateuses et caractérisation de leurs propriétés migratoires / Human Th17 lymphocytes : modulation of their effector function by mesenchymal stem cells and characterization of their migratory properties

Ghannam, Soufiane 15 December 2010 (has links)
Les lymphocytes Th17 forment une population de cellules T CD4+ pro-inflammatoires, impliqués non seulement dans l'élimination d'agents pathogènes, mais ayant aussi un rôle délétère dans l'induction de maladies inflammatoires chroniques. Ils expriment spécifiquement le récepteur de chimiokines CCR6, qui a pour ligand le CCL20 mais aussi les β-defensine-1, 2 et 3, peptides ayant une activité antimicrobienne. Les cellules souches mésenchymateuses (CSMs) représentent une population cellulaire hétérogène exerçant diverses propriétés immunomodulatrices.Les résultats obtenus dans ce travail de thèse montrent que l'environnement inflammatoire contribue à augmenter l'adhésion des lymphocytes Th17 aux CSMs, et qu'elle est régulée par l'interaction du CCR6 avec ses ligands ; que les CSMs exercent, en partie via la sécrétion de PGE2, des effets anti-inflammatoires en faisant acquérir un phénotype régulateur aux lymphocytes Th17 différenciés, soulignant ainsi la plasticité de ces derniers.De plus, nous avons montré que les lymphocytes Th17 activés par l'antigène produisent du CCL20 et induisent, via la production de l'IL-17 et de l'IL-22, la sécrétion d'hBD-2, mais pas celle des hBD-1 et 3, par des kératinocytes épidermiques humains et de la peau reconstituée; que le CCL20, ainsi que la hBD-2, induisent l'arrêt de ces cellules sur l'endothélium enflammé in vitro en conditions de cisaillement. Finalement, l'activation spécifique d'antigène des lymphocytes Th17 entraîne une perte de l'expression de CCR6, ce qui provoque ainsi un état transitoire de non réponse à une nouvelle stimulation de ces cellules avec les ligands de CCR6, permettant leur migration ultérieure hors du tissu enflammé. / Th17 cells form a population CD4+ T cells with strong pro-inflammatory properties that are not only involved in the clearance of pathogens, but also play a deleterious role of in the pathogenesis of inflammatory disease. Th17 cells specifically express CCR6, a chemokine receptor that binds to its unique chemokine ligand, CCL20, as well as to human β-defensin (hBD)-1, 2 and 3, peptides with anti-microbial activity. Mesenchymal stem cells (MSC) represent a heterogenous population that exert broad immunomodulatory effects.The results from the studies carried out during this thesis show that the inflammatory environment contributes to increased adhesion of Th17 cells to MSCs, which is mediated via the interaction of CCR6 with its ligands, and that MSCs exert, in part via the secretion of PGE2, anti-inflammatory effects through the induction of a T regulatory cell phenotype in fully differentiated tissue-infiltrating Th17 cells, thereby underscoring the plasticity of the latter cells.Furthermore, the results show that antigen-activated Th17 cells produce CCL20 and induce, via the production of both IL-17 and IL-22, the secretion of hBD-2, but not 1 and 3, by normal human epidermal keratinocytes and reconstituted skin, and that CCL20, as well as hBD-2, induce arrest of these cells onto inflamed endothelium in vitro under conditions of shear stress. Finally, antigen-specific activation of Th17 cells also causes a loss of CCR6 expression from their cell surface and thus results in a transitory state of non-responsiveness to further stimulation of these cells with CCR6 ligands, which is likely to permit their subsequent migration out of inflamed tissue.

Page generated in 0.0397 seconds