• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • Tagged with
  • 14
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Umwelt-Genomik als Quelle für die Isolierung von neuen Operons und Genclustern aus mikrobiellen Konsortien / Environmental Genomics as a source for the isolation of new operons and gene clusters from microbial consortia

Entcheva, Plamena 29 January 2002 (has links)
No description available.
2

Assessment of complex microbial assemblages: description of their diversity and characterisation of individual members

Mühling, Martin 01 February 2017 (has links) (PDF)
1. Microbial ecology According to Caumette et al. (2015) the term ecology is derived from the Greek words “oikos” (the house and its operation) and “logos” (the word, knowledge or discourse) and can, therefore, be defined as the scientific field engaged in the “knowledge of the laws governing the house”. This, in extension, results in the simple conclusion that microbial ecology represents the study of the relationship between microorganisms, their co-occurring biota and the prevailing environmental conditions (Caumette et al. 2015). The term microbial ecology has been in use since the early 1960s (Caumette et al. 2015) and microbial ecologists have made astonishing discoveries since. Microbial life at extremes such as in the hydrothermal vents (see Dubilier et al. 2008 and references therein) or the abundance of picophytoplankton (Waterbury et al. 1979; Chisholm et al. 1988) in the deep and surface waters of the oceans, respectively, are only a few of many highlights. Nevertheless, a microbial ecologist who, after leaving the field early in their career, now intends to return would hardly recognise again their former scientific field. The main reason for this hypothesis is to be found in the advances made to the methodologies employed in the field. Most of these were developed for biomedical research and were subsequently hijacked, sometimes followed by minor modifications, by microbial ecologists. The Author presents in this thesis scientific findings which, although spanning only a fraction of the era of research into microbial ecology, have been obtained using various modern tools of the trade. These studies were undertaken by the Author during his employment as postdoctoral scientist at Warwick University (UK), as member of staff at Plymouth Marine Laboratory (UK) and as scientist at the TU Bergakademie Freiberg. Although the scientific issues and the environmental habitats investigated by the Author changed due to funding constraints or due to change of work place (i.e. from the marine to the mining environment) the research shared, by and large, a common aim: to further the existing understanding of microbial communities. The methodological approach chosen to achieve this aim employed both isolation followed by the characterisation of microorganisms and culture independent techniques. Both of these strategies utilised again a variety of methods, but techniques in molecular biology represent a common theme. In particular, the polymerase chain reaction (PCR) formed the work horse for much of the research since it has been routinely used for the amplification of a marker gene for strain identification or analysis of the microbial diversity. To achieve this, the amplicons were either directly sequenced by the Sanger approach or analysed via the application of genetic fingerprint techniques or through Sanger sequencing of individual amplicons cloned into a heterologous host. However, the Author did not remain at idle while with these ‘classical’ approaches for the analysis of microbial communities, but utilised the advances made in the development of nucleotide sequence analysis. In particular, the highly parallelised sequencing techniques (e.g. 454 pyrosequencing, Illumina sequencing) offered the chance to obtain both high genetic resolution of the microbial diversity present in a sample and identification of many individuals through sequence comparison with appropriate sequence repositories. Moreover, these next generation sequencing (NGS) techniques also provided a cost-effective opportunity to extent the characterisation of microbial strains to non-clonal cultures and to even complex microbial assemblages (metagenomics). The work involving the high throughput sequencing techniques has been undertaken in collaboration with Dr Jack Gilbert (PML, lateron at Argonne National Laboratory, USA) and, since at Freiberg, with Dr Anja Poehlein (Goettingen University). These colleagues are thanked for their support with sequence data handling and analyses.
3

The quest for orthologs, the tree of basal animals, and taxonomic profiles of metagenomes / Die Suche nach Orthologen, dem Stammbaum früher Tiere und taxonomische Profile von Metagenomen

Schreiber, Fabian 25 June 2010 (has links)
No description available.
4

Gene prediction in metagenomic sequencing reads / Genvorhersage in metagenomischen Sequenzier-Reads

Hoff, Katharina Jasmin 08 October 2009 (has links)
No description available.
5

Assessment of the functional diversity of soil microbial communities in the German Biodiversity Exploratories by metagenomics / Erschließung der funktionellen Diversität mikrobieller Bodengemeinschaften in den deutschen Biodiversitäts-Exploratorien durch Metagenomik

Will, Christiane 28 January 2011 (has links)
No description available.
6

Metagenomanalyse eines hydrolytischen Konsortiums: Identifizierung und biochemische Charakterisierung von Polysaccharid-abbauenden Biokatalysatoren aus nicht kultivierten Mikroorganismen / Metagenomic analysis of a hydrolytic community: Identification and biochemically characterisation of polysaccharide degrading biocatalysts from non-cultured microorganisms

Voget, Sonja 17 January 2006 (has links)
No description available.
7

Identifizierung und Charakterisierung von Genen und korrespondierenden Genprodukten aus Metagenombanken, die Butanol-Dehydrogenase-Aktivität oder proteolytische Aktivität vermitteln / Identification and characterization of genes and encoding gene products of metagenomic libraries conferring butanol dehydrogenase activity or proteolytic activity

Waschkowitz, Tanja 03 May 2006 (has links)
No description available.
8

Assessment of complex microbial assemblages: description of their diversity and characterisation of individual members: Assessment of complex microbial assemblages: description of their diversity and characterisation of individual members

Mühling, Martin 23 January 2017 (has links)
1. Microbial ecology According to Caumette et al. (2015) the term ecology is derived from the Greek words “oikos” (the house and its operation) and “logos” (the word, knowledge or discourse) and can, therefore, be defined as the scientific field engaged in the “knowledge of the laws governing the house”. This, in extension, results in the simple conclusion that microbial ecology represents the study of the relationship between microorganisms, their co-occurring biota and the prevailing environmental conditions (Caumette et al. 2015). The term microbial ecology has been in use since the early 1960s (Caumette et al. 2015) and microbial ecologists have made astonishing discoveries since. Microbial life at extremes such as in the hydrothermal vents (see Dubilier et al. 2008 and references therein) or the abundance of picophytoplankton (Waterbury et al. 1979; Chisholm et al. 1988) in the deep and surface waters of the oceans, respectively, are only a few of many highlights. Nevertheless, a microbial ecologist who, after leaving the field early in their career, now intends to return would hardly recognise again their former scientific field. The main reason for this hypothesis is to be found in the advances made to the methodologies employed in the field. Most of these were developed for biomedical research and were subsequently hijacked, sometimes followed by minor modifications, by microbial ecologists. The Author presents in this thesis scientific findings which, although spanning only a fraction of the era of research into microbial ecology, have been obtained using various modern tools of the trade. These studies were undertaken by the Author during his employment as postdoctoral scientist at Warwick University (UK), as member of staff at Plymouth Marine Laboratory (UK) and as scientist at the TU Bergakademie Freiberg. Although the scientific issues and the environmental habitats investigated by the Author changed due to funding constraints or due to change of work place (i.e. from the marine to the mining environment) the research shared, by and large, a common aim: to further the existing understanding of microbial communities. The methodological approach chosen to achieve this aim employed both isolation followed by the characterisation of microorganisms and culture independent techniques. Both of these strategies utilised again a variety of methods, but techniques in molecular biology represent a common theme. In particular, the polymerase chain reaction (PCR) formed the work horse for much of the research since it has been routinely used for the amplification of a marker gene for strain identification or analysis of the microbial diversity. To achieve this, the amplicons were either directly sequenced by the Sanger approach or analysed via the application of genetic fingerprint techniques or through Sanger sequencing of individual amplicons cloned into a heterologous host. However, the Author did not remain at idle while with these ‘classical’ approaches for the analysis of microbial communities, but utilised the advances made in the development of nucleotide sequence analysis. In particular, the highly parallelised sequencing techniques (e.g. 454 pyrosequencing, Illumina sequencing) offered the chance to obtain both high genetic resolution of the microbial diversity present in a sample and identification of many individuals through sequence comparison with appropriate sequence repositories. Moreover, these next generation sequencing (NGS) techniques also provided a cost-effective opportunity to extent the characterisation of microbial strains to non-clonal cultures and to even complex microbial assemblages (metagenomics). The work involving the high throughput sequencing techniques has been undertaken in collaboration with Dr Jack Gilbert (PML, lateron at Argonne National Laboratory, USA) and, since at Freiberg, with Dr Anja Poehlein (Goettingen University). These colleagues are thanked for their support with sequence data handling and analyses.
9

Metagenomanalysen von zwei Habitaten mit (hemi-)cellulolytischen mikrobiellen Gemeinschaften / Metagenome analyses of two habitats with (hemi-)cellulolytic microbial communities

Wittenberg, Silja 22 January 2010 (has links)
No description available.
10

Charakterisierung und Nutzung der mikrobiellen Diversität extremer Habitate der Kamtschatka-Region / Characterization of the microbial diversity of extreme habitats in the Kamchatka-region

Schuldes, Jörg 30 April 2008 (has links)
No description available.

Page generated in 0.0431 seconds