• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Design of Active Sites for Selective Catalytic Conversion of Carbon Dioxide / 二酸化炭素の選択的変換を志向した活性部位設計

Kikkawa, Soichi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22467号 / 工博第4728号 / 新制||工||1738(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 田中 庸裕, 教授 江口 浩一, 教授 佐藤 啓文 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
12

Elucidation of Metal-Metal Oxide Interfaces for Heterogeneous Catalysis and Electrocatalysis

Kaustubh Jaywant Sawant (17132059) 11 October 2023 (has links)
<p dir="ltr">Catalysis will play a pivotal role in the transformation of the current chemical and fuel industries, driving efforts to mitigate greenhouse gas emissions, curbing the release of hazardous waste, and efficiently utilizing energy resources. Hence, it is crucial to establish a fundamental understanding of the active sites that drive chemical reactions and the transformation of these active sites under varying reaction conditions. A particular class of catalysts that are extensively used in industrially relevant reactions, but not well understood, are metal nanoparticles supported over transition metal oxides. Under specific conditions, the metal nanoparticles are believed to be partially covered by reduced, ultrathin oxide films, which can drastically transform the physical, chemical, and electronic properties of the catalyst surface. These transformations are often referred to as the Strong Metal Support Interactions (SMSI). The structure and chemical properties of the encapsulating SMSI overlayers can determine the reactivity, selectivity, and stability of the catalyst. To explore these phenomena, the encapsulating overlayers on metal nanoparticles are most effectively studied using ultrathin film models supported on single crystal transition metal substrates. In this thesis, periodic density functional theory (DFT) calculations, along with surface science experiments in collaborators’ groups, are carried out to systematically study the molecular-level underpinnings of the metal oxide transformations.</p><p dir="ltr">As a starting point, we analyze the Pd/ZnO system. This is a potential methanol synthesis catalyst, and since ZnO is an irreducible oxide, it provides a test of the traditional hypothesis that partial reduction of support cations is necessary to exhibit SMSI. In order to compare our calculations with surface science experiments, where the ultrathin films are not in equilibrium with bulk species, we developed a mixed canonical – grand canonical phase diagram scheme. The scheme, when combined with exhaustive DFT calculations of many different ultrathin ZnO<sub>x</sub>H<sub>y</sub> film structures and stoichiometries, permits direct comparison of the calculated free energies of these disparate films. Although, the thin film models provide more well-defined conditions for studying SMSI, there are thermodynamic differences with the real SMSI system. These differences can be described by changing the thermodynamic ensemble used to analyze the DFT results and extrapolating to deduce the stability of films at realistic SMSI conditions. Using this formalism, we have discovered that ZnO<sub>x</sub>H<sub>y</sub> films on Pd, which don’t exist in bulk, may form, and promote SMSI in irreducible oxides. This behavior is traced to both hydrogen incorporation in the films and strong stabilization of the films by the Pd substrates.</p><p dir="ltr">The computational framework, initially developed for the Pd/ZnO system, is subsequently extended to conduct thermodynamic investigations across different metal substrates. We found that linear scaling relationships (SRs) exist for the ultrathin films on metal surfaces that correlate the film formation energies with the combination of oxide cation and anion binding energies. However, these SRs deviate from classic bond order conservation principles. To provide an explanation for these deviations, and to enhance the predictive capabilities of the SRs, we introduced a generalized bonding model for oxy-hydroxy films supported on metal surfaces. By combining the SRs with grand canonical phase diagrams, we can precisely predict the stability of encapsulated films under specific reaction conditions. To validate the computational scheme, we apply it to the traditional SMSI system involving TiO<sub>2</sub>-supported metal nanoparticles. Our calculations accurately predict which metals are prone to exhibit SMSI-like behavior and align well with available experimental results.</p><p dir="ltr">In order to analyze how these structures affect important real-world chemistries and identify key descriptors that influence their reactivity, we studied the adsorption behavior of common intermediates on oxide-decorated metal surfaces. We first investigated two types of ultrathin films, the compact graphite-like ZnO and the open honeycomb-like Zn<sub>6</sub>O<sub>5</sub>H<sub>5</sub> on Pt(111). We found that the graphite-like ZnO islands barely affect the electronic properties of the Pt surface, while the honeycomb-like Zn<sub>6</sub>O<sub>5</sub>H<sub>5</sub> network tunes the surface electron density of Pt such that the binding site for CO shifts from on-top to the bridge site. The findings enhance our understanding of metal-hydroxide interactions, potentially paving the way for innovative designs of highly efficient catalytic systems.</p><p dir="ltr">The SMSI effect is not confined to oxides used as supports. We confirmed the existence of a closely related phenomenon in Pt alloys, which are an important system for the oxygen reduction reaction (ORR). We identified elements that form stable oxy-hydroxy moieties on Pt surfaces under ORR conditions. Remarkably, elements like Cr, Mo, and Ir can form stable hydroxide 0d and 2d structures on Pt and can resist dissolution by preferentially covering the Pt edge and kink sites, which are otherwise susceptible to degradation. These nanoscale structures exhibit properties different from their bulk counterparts and can effectively tune the reactivity of the surface by introducing an inhomogeneous strain field into the Pt terrace sites.</p><p dir="ltr">The overarching goal of this dissertation is to formulate design principles applicable to metal nanoparticle catalysts coated with surface oxides. Given the pivotal role of these systems in industrially significant catalysts, the development of strategies aimed at engineering novel active sites using surface oxides is of great importance. The comprehensive molecular-level understanding of metal-metal oxide interactions, established through these studies, thus serves as a foundation for the study of these effects across a wider spectrum of reactions beyond ORR and CO oxidation. Through such studies, combined with rigorous experimental confirmation, it may ultimately be possible to engineer new classes of metal/oxide interfaces for desired catalytic applications.</p>
13

Catalytic combustion of methane

Thevenin, Philippe January 2002 (has links)
Catalytic combustion is an environmentally benign technologywhich has recently reached the stage of commercialization.Palladium is the catalyst of choice when considering gasturbines fuelled with natural gas because of its superioractivity for methane oxidation. Several fundamental issues arestill open and their understanding would result in animprovement of the technology. Hence, the work presented inthis thesis aims at the identification of some of theparameters which govern the combustion activity ofpalladium-based catalysts. The first part of this work gives a background to catalyticcombustion and a brief comparison with other existingtechnologies. Paper I reviews some of the issues related tomaterial development and combustor design. The second part of this thesis consists of an experimentalinvestigation on palladium-based catalysts. The influence ofthe preparation method onthe properties of these catalystmaterials is investigated in Paper II. Paper III examines theactivity of the following catalysts: Pd/Al2O3, Pd/Ba-Al2O3 andPd/La-Al2O3. Specific attention is given to the metal-supportinteraction which strongly affects the combustion activity ofpalladium. The effect of doping of the support by addition ofcerium is reported in Paper IV. Finally, the deactivation of combustion catalysts isconsidered. The various deactivation processes which may affecthigh temperature combustion catalysts are reviewed in Paper V.Paper VI focuses on the poisoning of supported palladiumcatalysts by sulphur species. Palladium exhibits a higherresistance to sulphur poisoning than transition metals.Nevertheless, the nature of the support material plays animportant role and may entail a severe loss of activity whensulphur is present in the fuel-air mixture entering thecombustion chamber. <b>Keywords</b>: catalytic combustion, gas turbine, methane,palladium, alumina, barium, lanthanum, oxidation, preparation,temperature-programmed oxidation (TPO), decomposition,reoxidation, X-ray photoelectron spectroscopy (XPS),metal-support interaction, deactivation, sulphur, poisoning.The cover illustration is a TEM picture of a 100 nm palladiumparticle supported on alumina
14

Catalytic combustion of methane

Thevenin, Philippe January 2002 (has links)
<p>Catalytic combustion is an environmentally benign technologywhich has recently reached the stage of commercialization.Palladium is the catalyst of choice when considering gasturbines fuelled with natural gas because of its superioractivity for methane oxidation. Several fundamental issues arestill open and their understanding would result in animprovement of the technology. Hence, the work presented inthis thesis aims at the identification of some of theparameters which govern the combustion activity ofpalladium-based catalysts.</p><p>The first part of this work gives a background to catalyticcombustion and a brief comparison with other existingtechnologies. Paper I reviews some of the issues related tomaterial development and combustor design.</p><p>The second part of this thesis consists of an experimentalinvestigation on palladium-based catalysts. The influence ofthe preparation method onthe properties of these catalystmaterials is investigated in Paper II. Paper III examines theactivity of the following catalysts: Pd/Al2O3, Pd/Ba-Al2O3 andPd/La-Al2O3. Specific attention is given to the metal-supportinteraction which strongly affects the combustion activity ofpalladium. The effect of doping of the support by addition ofcerium is reported in Paper IV.</p><p>Finally, the deactivation of combustion catalysts isconsidered. The various deactivation processes which may affecthigh temperature combustion catalysts are reviewed in Paper V.Paper VI focuses on the poisoning of supported palladiumcatalysts by sulphur species. Palladium exhibits a higherresistance to sulphur poisoning than transition metals.Nevertheless, the nature of the support material plays animportant role and may entail a severe loss of activity whensulphur is present in the fuel-air mixture entering thecombustion chamber.</p><p><b>Keywords</b>: catalytic combustion, gas turbine, methane,palladium, alumina, barium, lanthanum, oxidation, preparation,temperature-programmed oxidation (TPO), decomposition,reoxidation, X-ray photoelectron spectroscopy (XPS),metal-support interaction, deactivation, sulphur, poisoning.The cover illustration is a TEM picture of a 100 nm palladiumparticle supported on alumina</p>
15

Investigation of reaction networks and active sites in ethanol steam reforming reaction over Ni and Co-based catalysts / Etude du réseau réactionnel et des sites actifs des catalyseurs pour le reformage à la vapeur d'éthanol sur des catalyseurs de nickel et cobalt

Law, Yeuk Ting 04 July 2013 (has links)
Les catalyseurs bimétalliques sont reconnus pour promouvoir les performances de nombreuses réactions catalytiques. Les connaissances des propriétés de surface ; notamment l’interaction entre les couches bimétalliques et le support, composants catalytiques, servent à améliorer le design des catalyseurs. Dans cette thèse, le dépôt de couches minces Ni-Co sur un monocristal ZnO a été étudié en tant que catalyseur modèle pour le vapo-réformage de l’éthanol. L’objectif du travail estd’élargir les connaissances fondamentales de l’influence des propriétés de surface (i) sur le mécanisme et (ii) sur l’efficacité de la réaction. Dans un premier temps, l’interaction entre les atomes Ni et Co sous atmosphère oxydante par spectrométrie de photoélectrons de rayons X (XPS) a été étudiée. L’oxydation du Co est favorisée ; la surface est enrichie par CoO sur Ni. Ensuite, les couches minces de Ni-Co sur monocristal polaire ZnO, possédant deux terminaisons -O et –Zn, ont été étudiées par XPS couplé à un synchrotron. L’interaction métal-support a mis en évidence que Co est oxydé dès que celui-ci est déposé à température ambiante. L’interaction entre la molécule d’éthanol et le catalyseur Ni-Co/ZnO-Zn a été étudiée par spectrométrie de masse de thermodésorption (TDS). L’éthanol se décompose par différentes voies sur Ni/ZnO-Zn et Co/ZnOZn. Ni/ZnO-Zn favorise la rupture de la liaison C-C et permet la production de méthane, tandis que Co/ZnO-Zn favorise la déshydrogénation du méthyle. Enfin, nous avons étudié le vapo-réformage de l’éthanol sur les nanopoudres de Ni-Co in-situ par XPS à pression ambiante. La sélectivité en produits sur Co est très différente de celle du Ni et Ni-Co. De plus, la déshydrogénation du méthyle et la production de CO peut entrainer la formation d’une grande quantité de carbone sur Co / Bimetallic catalysts have been widely exploited to improve the performance of various catalytic reactions. Understanding the surface properties and in particular, bimetallic interaction and support effect of the catalytic components is an important step towards rational catalyst design. In this thesis, Ni-Co thin film on polar ZnO single crystal was studied as a model catalyst for ethanol steam reforming reaction. The aim is to provide fundamental understanding of how the surface characteristics of the catalyst influence the mechanism and the efficiency of the reaction. This study focused firstly on the study of the interaction between Ni and Co in oxidative environment using Xray photoelectron spectroscopy (PES). Oxidation of Co is favoured over nickel and the surface is enriched with cobalt oxide. Secondly, Ni-Co thin film supported on polar Zn and O terminated ZnOwas studied by synchrotron based PES. The as deposited layer interacts readily with ZnO and Co is partially oxidized upon deposition, even at room temperature. The interaction of ethanol with Ni- Co/ZnO-Zn was studied by thermal desorption spectroscopy (TDS). Ethanol decomposes in different pathways on Ni and Co, in which C-C bond scission and methane production are favoured on Ni/ZnO-Zn while dehydrogenation is favoured on Co/ZnO-Zn. Finally, Ni-Co powder was studied byin-situ ambient pressure PES under reaction conditions in order to clarify the correspondence between the active state of the catalyst and the reaction activity. The product selectivity on Co catalyst is distinctly different from Ni and Ni-Co. Also, the decomposition of methyl group and the high amount of CO produced over Co is likely to be the cause for its high level of carbon deposition.
16

Tuning the redox properties of cobalt particles supported on oxides by an In-between graphene layer / Modification des propriétés redox de particules de cobalt supportées sur des oxydes par insertion d’une couche de graphène

Luo, Wen 24 March 2016 (has links)
L'interaction métal-support (MSI) joue un rôle important dans la catalyse hétérogène. La compréhension et la modification du MSI sont des étapes essentielles pour développer catalyseurs de haute performance. Dans cette thèse, un nouveau concept, qu’il s’agit de recouvrir le support l'oxyde avec un revêtement mono-couche de graphène, a été proposé pour modifier le MSI. L'influence de la couche de graphène sur les interactions de métal (Co et Co-Pt) - oxyde (ZnO et SiO2) et sur les propriétés d'oxydo-réduction des particules métalliques ont été évaluées via des systèmes catalytiques de modèle. Les résultats ont montré que la mono-couche de graphène peut influencer considérablement les états d'oxydation et les morphologies des Co monométallique et Co-Pt bimétallique par rapport aux ceux résultent d’un dépôt direct sur les oxydes nus. En particulier, par calcination sous vide, le graphène protége Co d'être oxydé par ZnO, ce qui conduit à la formation d’un mélange métallique Co-Pt. Co interagit avec les substrats d'oxydes pour former des particules plates qui sont facilement oxydés par O2 en pression faible, tandis que l'insertion d'une couche intermédiaire de graphène entre la couche supérieure métallique et le supporte d’oxyde entraîne la formation des nanoparticules de Co en état très dispersés, qui sont résistants à l'oxydation. Sous la condition de réduction par H2, le graphène favorise clairement la réduction de Co. La quantité de dépôt de Co, le substrat d'oxyde, la température de calcination et l'environnement ont été prouvés pour pouvoir influencer la stabilité de graphène. Ces résultats ouvrent des nouvelles voies possibles d'utiliser le graphène comme promoteur dans des réactions catalytiques à l'avenir. / The metal-support interaction (MSI) plays an important role in heterogeneous catalysis. Understanding and tuning the MSI are essential steps for developing catalysts with high performance. In this thesis, a new concept, which is coating the oxide supports with a single layer graphene, was introduced to modify the MSI. The influence of graphene layer on the metal (Co and Co-Pt) – oxide (ZnO and SiO2) interactions and on the redox properties of metal particles were evaluated through model catalyst systems. The results showed that single layer graphene can significantly influence the oxidation states and morphologies of both mono Co and bimetallic Co-Pt as compared to the one after direct deposition on bare oxides. In particular, under vacuum annealing, graphene protects Co from being oxidized by ZnO and results in Co-Pt metallic mixture. Co interacts with oxide substrates forming flat particles which are easily oxidized by low pressure O2, while insertion of a graphene interlayer between the metal overlayer and the oxide supports leads to the formation of highly dispersed Co nanoparticles, which are resistant to oxidation. Under H2 reduction condition, graphene evidently facilitates the reduction of Co. The deposition amount of Co, the oxide substrate, the annealing temperature and the environment were proved to influence the stability of graphene. These results explore new directions for the possible future of using graphene as a promoter in catalytic reactions.
17

Effect of Electrochemical Promotion and Metal-Support Interaction on Catalytic Performance of Nano-catalysts

Hajar, Yasmine 08 October 2019 (has links)
In heterogeneous catalysis, promoting the activity of the catalytic metals is long known as an important method to make a process more efficient and viable. Noble metals have been promoted classically by a chemical coverage of an ionic solution on the surface of the catalyst or using inert support, e.g., silica or alumina, allowing an increase of the dispersion of the catalyst. Therefore, new methods of promotion needed to be better explored to improve the efficiency of metal and metal oxide catalysts. One way of enhancing the catalyst’s activity is to disperse the noble metal at the nanoscale using an active type of support that is ion-conducting. Not only lattice ions can be exchanged with the surface of the nanoparticles but it can also engage in the oxidation reaction on the surface, resulting in what is known as metal-support interaction (MSI). Another method of improving the catalytic activity is to polarize the catalyst, allowing ions to migrate from a solid electrolyte to the gas-exposed surface, in a phenomenon known as electrochemical promotion of catalysis (EPOC). The change in the ions concentration on the surface would change the adsorption energy of the gaseous reactants and enhance or supress the catalytic rate. In this thesis, the effect of supporting nanoparticles of noble and non-noble metal (oxides) (Pt, Ru, Ir, Ni) was studied for the case of ionic and ionic-electronic conducting supports (CeO2, TiO2, YSZ). The enhancement in their catalytic rate was found and correlated to an electrochemical property, the exchange current density. Then, using isotopically-labeled oxygen, the oxygen exchange ability of the conductive oxides was evaluated when supporting Ir and Ru nanoparticles and correlated with the results from C3H8 isotopic oxidation reaction, which showed the extent of involvement of oxygen from the support as carried by the isotopically-labeled CO2 produced. Following this, electrochemical promotion of catalysis experiments were performed for different reactant/catalyst systems (C2H4 - Pt, Ru; C3H8 - Pt; CH4 - Pd, Ni9Pd). In the first system, the main outcome was the functional equivalence found for the MSI and EPOC effect in promoting the catalysts as experiments were performed at different temperatures, reactants partial pressures and polarization values. In the case of C3H8/Pt, the novel dispersion of Pt on an intermediate supporting layer (LSM/GDC) was found as a feasible method to obtain long stability of the catalyst while electrochemically promoting the rate of reaction. For CH4 oxidation, the polarization of the Pd nanoparticles showed continuous oxidation of the bulk of the catalyst resulting in a continuous increase of the catalytic rate. The Ni9Pd synthesized in a way to form a core/double-shell layer of Ni/Pd resulted in an enhanced catalytic rate and enhanced stability compared to stand-alone Pd. And lastly, to comprehend the ions’ effect in the electrochemical promotion and the non-Faradaic nature of the phenomena, density-functional theory (DFT) modeling was used to demonstrate the increase of the heat of adsorption of reactants depending on their electronegative/positive nature.
18

Surface Science Studies of Strong Metal-Support Interactions in Heterogenous Catalysts

Junxian Gao (12427542) 19 April 2022 (has links)
<p>The strong metal support interaction (SMSI) is among the best-known classes of metal-oxide interfacial interactions in heterogeneous catalysis, which is defined by the coverage of surface oxide on metal nanoparticles, forming a metal-oxide interface. However, there is limited insight in the atomic scale understanding of the structure of the SMSI oxide. In this work, surface science techniques including scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS) and low energy electron diffraction (LEED) were employed to investigate interfacial interactions in multiple catalytic systems, including ZnO-Pd, ZnO-Pt, and MoOx-Pt. To utilize the capabilities of the surface science techniques and to mimic a catalytic metal nanoparticle in SMSI state, ultrathin oxide films were prepared on metal single crystals as inverse model catalysts.</p> <p>The structural and chemical transformations of ultrathin zinc (hydroxy)oxide films on Pd(111) were studied under varying gas phase conditions (UHV, 5×10−7 mbar of O2 and D2/O2 mixture). Under oxidative conditions, zinc oxide forms partially hydroxylated bilayer islands on Pd(111). Sequential treatments of the submonolayer ZnOxHy films in D2/O2 mixture (1:4) at 550 K evoked structural transformations from bilayer to monolayer and to a PdZn near-surface alloy, in accompany with the reduction of Zn, demonstrating that zinc oxide as a non-reducible oxide, can spread on metal surface and show an SMSI-like behavior in the presence of hydrogen. A mixed canonical – grand canonical phase diagram revealed that the monolayer intermediate structure is a metastable structure formed during the kinetic transformation, and the near-surface alloys are stable under the D2/O2 conditions. Grand canonical phase diagram predicted that under real SMSI conditions zinc oxide films on Pd nanoparticles would be stabilized by hydroxylation with stoichiometries such as ZnOH and Zn2O3H3. Based on the experimental and theoretical observations, we propose that the mechanism of metal nanoparticle encapsulation involves both surface (hydroxy)oxide formation as well as alloy formation, depending on the environmental conditions.</p> <p>Hydroxylation plays a more important role in the ZnO/Pt(111) system. Different from Pd(111), zinc oxide tends to form monolayer graphite-like ZnO films on Pt(111) under oxidative conditions at submonolayer coverages. This structure is extremely susceptible to hydroxylation at room temperature, leading to spontaneous formation of honeycomb-like Zn6O5H5 films in hydrogen. The interaction of the two distinct structures with Pt were investigated by XPS, STM, and HREELS with CO, C2H4, and NO as probe molecules. Zn exhibits a partially reduced oxidation state in Zn6O5H5 and donates negative charge to surface Pt in the confined rings, leading to a switch from linear CO adsorption to bridged CO adsorption in accompany with a 50 cm-1 shift of ν(CO) towards lower frequencies. C2H4 readily forms ethylidyne (*CCH3) species at room temperature once adsorbed on Pt(111), while the formation of ethylidyne is weakened on the Zn6O5H5/Pt(111) surface. In summary, this study demonstrated a unique metal-hydroxide interaction, which serves as a novel approach for the modification of metal catalysts.</p> <p>The partial coverage of metal surfaces by oxides could be utilized to passivate specific sites of catalysts, improving the activity and stability. Herein, we studied the structure of surface Mo oxides on Pt(111) and Pt(544) using STM, XPS, and HREELS. At 0.08 ML coverage, Mo oxide tends to form 1~2 nm clusters and the majority of Mo is in +5 oxidation state. The Mo oxide clusters tend to aggregate near the monoatomic Pt steps, showing a higher local density compared to the wide terraces. Therefore, our results provide experimental evidence for the site-selective growth of Mo oxides at step sites, which could prevent the leaching of active component in catalysts under real reaction conditions.</p> <p>Overall, through atomic-level characterization of inverse model catalysts, we provided insights into the nature of metal-oxide interactions in multiple systems. The surface oxide films influence the property of metal surfaces in various ways, including migration, alloy formation, electronic perturbation, geometric confinement, and site-selective blocking. These findings emphasize the necessity of understanding the real structure of catalytic surfaces under different reaction conditions and shed light on rational design of oxide supported metal nanoparticle catalysts.</p>
19

Modélisation structurale des clusters d’alliages supportés : effet du support de silice et effet de taille / Structural modeling of supported alloys clusters : effect of silica substrate and size effect

Ngandjong, Alain Cabrel 15 December 2015 (has links)
Les simulations numériques ont négligé jusqu’ici l’influence du support de silice amorphe sur la structure des nanoparticules métalliques déposées car l’interaction métal-silice amorphe est faible. Toutefois les études expérimentales montrent un effet de troncature sur la structure des nanoparticules. L’idée de ce travail a donc été d’étudier l’influence de ce support sur la structure et la morphologie des nanoparticules d’argent au moyen de la modélisation moléculaire (Monte Carlo et dynamique moléculaire). L’objectif de ce travail a été tout d'abord de déterminer le potentiel interatomique permettant de décrire l’interaction argent-silice. Ce potentiel a été obtenu sur la base des données expérimentales d'angles de mouillages en phase liquide et en phase solide. D’autre part, l'intensité d'interaction argent-silice a été déterminée par calculs DFT sur la cristobalite qui est un polymorphe de la silice cristalline présentant la même densité que la silice amorphe. Les énergies d'adhésions obtenues ont ainsi permis d'ajuster les paramètres du potentiel argent-silice de type Lennard-Jones. L’étude de la stabilité structurale des nanoparticules d'argent supportées à température nulle a été effectuée pour trois degrés d'approximation du support. (1) : un support parfaitement lisse décrit par un puits carré dont la profondeur est reliée à l’énergie d’adhésion, (2) : un support atomique de silice amorphe de surface plane et (3) : un support atomique de silice amorphe présentant une rugosité de surface. L’influence de la température sur la structure a été étudiée par fusion et recristallisation des nanoparticules d’argent sur les deux supports de silice amorphe. Afin d’étudier la stabilité structurale des nanoparticules en température, le calcul d’énergie libre des nanoparticules a été abordé. / Numerical simulations have so far neglected the influence of amorphous silica substrate on the structure of metallic nanoparticles due to its relatively weak interaction with deposited nanoparticles. However, experimental studies have often shown a truncation effect on the structure of nanoparticles. The idea of this work was to study the influence of this substrate on the structure of silver nanoparticles using molecular modeling (Monte Carlo and molecular dynamics). The objective of this work was firstly to determine silver-silica interatomic potential. This was achieved using experimental data of wetting angles in solid and liquid phase. On the other hand, silver-silica interaction intensity was determined by DFT calculations on cristobalite which is a polymorph of crystalline silica having the same density as amorphous silica. The adhesions energies obtained were used to fit the Lennard-Jones parameters for the silver-silica interaction. The study of the structural stability of silver nanoparticles supported at zero temperature was performed for three levels of approximation of the support. (1): the smooth wall approximation where the support is described by a square-well whose depth is related to the adhesion energy of the nanoparticle, (2): an atomistic model of flat amorphous silica, (3): an atomistic model of rough amorphous silica. The influence of the temperature on the structure was investigated by melting and recrystallization of the silver nanoparticles deposited on the two silica supports. In order to study the temperature stability of the nanoparticles the free energy calculation of the nanoparticles was discussed.
20

Development of new macroscopic carbon materials for catalytic applications / Développement de nouveaux matériaux carbonés macroscopiques pour les applications en catalyse

Xu, Zhenxin 22 May 2019 (has links)
De nos jours, les matériaux carbonés macroscopiques font face à un nombre croissant d'applications en catalyse, soit en tant que supports, soit directement en tant que catalyseurs sans métal. Cependant, il reste difficile de développer un support de catalyseur hiérarchisé à base de. carbone ou un catalyseur utilisant un procédé de synthèse beaucoup plus simple. À la recherche de nouveaux matériaux carbonés structurés pour la catalyse hétérogène, nous avons exploré le potentiel du feutre de carbone / graphite du commerce (FC / FG). Le but du travail décrit dans cette thèse a été le développement du monolithe FG et FC en tant que catalyseur sans métal pour les réactions d’oxydation en phase gazeuse et en tant que support de catalyseur, notamment pour le palladium, pour les réactions d’hydrogénation en phase liquide, et leur rôle dans la performance de réaction de ces catalyseurs. En raison de leur surface de chimie inerte avec une mouillabilité inappropriée, une telle étude avait pour condition d'activer celles d'origine. Par conséquent, des FG et des FC modifiés bien arrondis ont été synthétisés avec des propriétés physico-chimiques adaptées par une série de procédés de traitement chimique, tels que l'oxydation, l'amination, la thiolation, le dopage à l'azote et au soufre. L’oxydation partielle du sulfure d’hydrogène en soufre élémentaire et l’hydrogénation sélective du cinnamaldéhyde α, β-insaturé, en tant que réactions sensibles à l’effet des propriétés du catalyseur sur l’activité et la sélectivité, combinées à des techniques de caractérisation, ont été choisis pour étudier l’effet de la matériaux carbonés sur le comportement catalytique. / Nowadays, macroscopic carbon materials are facing an increasing number of applications in catalysis, either as supports or directly as metal-free catalysts on their own. However, it is still challenging to develop hierarchical carbon-based catalyst support or catalyst using a much simple synthesis process. In the quest for novel structured carbon materials for heterogeneous catalysis we explored the potential of commercial carbon/graphite felt (CF/GF). The aim of the work described in this thesis has been the development of GF and CF monolith as metal-free catalyst for gas-phase oxidation reactions and as catalyst support, notably for palladium, for liquid-phase hydrogenation reactions, and their roles in the reaction performance of these catalysts. Due to their inert chemistry surface with inappropriate wettability, a prerequisite for such a study was to activate the origin ones. Therefore, well-rounded modified GFs and CFs were synthesized with tailored physic-chemical properties by a series of chemical treatment processes, such as oxidation, amination, thiolation, nitrogen- and sulfur-doping. The partial oxidation of hydrogen sulfide into elemental sulfur and selective hydrogenation of α, β-unsaturated cinnamaldehyde, as the sensitive test reactions to the influence of the catalyst properties on activity and selectivity, combined with characterization techniques, were chosen to investigate the effect of functionalized carbon materials on the catalytic behavior.

Page generated in 0.122 seconds