31 |
From soft to hard sphere behavior: the role of single particle elasticity over the phase behavior of microgel suspensionsLietor-Santos, Juan-Jose 11 November 2010 (has links)
The goal of this thesis is to study the role of single particle elasticity in the overall behavior of particulate systems. For this purpose, we use microgel particles, which are crosslinked polymer networks immersed in a solvent. In these systems, the amount of cross-linker determines their elasticity and ultimately the stiffness of the particle. For a system of hard spheres, the phase behavior is solely determined by the volume fraction occupied by the particles. Based on the volume fraction, liquid, crystal and glassy phases are observed. Interestingly, microgel particles display a richer and fascinating set of different behaviors depending on the particle stiffness. Previous results obtained in our group show that for highly cross-linked microgels, the glass phase disappears and there are only liquid and crystalline phases. By contrast, preliminary measurements indicate that for ultrasoft microgel particles the system does not show any signature of crystalline or glassy phases. The system seems to remain liquid irrespective of volume fractions. In this Thesis, we will address this striking result using light scattering as well as rheology, in order to access both static and dynamic properties in a wide range of length and time scales. In addition, we will also perform additional studies using very stiff microgels and use their swelling capabilities to change the volume fraction. We will use hydrostatic pressure to change the miscibility of the polymer network and thus change the microgel size; the use of this external variable allows fast equilibration times and homogeneous changes throughout the sample. By using neutron scattering techniques, we study the structural and dynamical properties of the system in its different phases involved.
|
32 |
Novel Polymer-Metal Nanocomposites for Applications in Detection and SensingChaparro, Dayling L. 11 April 2007 (has links)
Detection of trace elements such as organic contaminants, explosive residues, and
metal ions is an intellectually challenging task in science and engineering. It is also a
topic of increasing importance due to its impact on society and the environment.
Designing molecularly imprinted materials is one of the most promising approaches to
explore sensing and detection applications. “Stimuli-sensitive” polymer materials are
ideal candidates for these imprinted sensors as they are able to respond to changes in their
environment and can be tailored by cross-linking the polymer chains. The responses can
be amplified and transduced into measurable signals due to macromolecular properties
provided by the use of a polymer. The purpose of the research in this project is to
combine organic polymers with inorganic constituents to tailor the binding properties and
the responses of the composite material for detection of metals ions in aqueous solutions.
The research, here, is based on a thermally responsive polymer such as poly(Nisopropylacrylamide)
(PNIPAM), which exhibits a well-known reversible volume phase
transition in aqueous media around approximately 32°C. Combining cross-linked
microgels formed from PNIPAM and its copolymers with gold nanoparticles (GNP)
imparts the composite material with optical properties such as intense visible absorption
due to the unique surface plasmon absorption of these small nanoparticles. The use of
copolymers allows incorporation of functional groups, such as carboxylic acid, that are
potential sites for binding metal ions. Cross-linking of the metal ion binding polymer
imprints the metal ion in the PNIPAM microgel network.
In
this research, design of the composite material was investigated using
copolymers of NIPAM and acrylic acid (AA), copolymers of NIPAM and glycidyl
methacrylate (GMA), and interpenetrating networks of PNIPAM and PAA. A broad
spectrum of polymerization conditions were studied such as changes in cross-linking
density as well as changes in the synthetic procedure. Techniques such as turbidometry,
ultraviolet visible spectroscopy (UV-VIS), transmission electron microscopy (TEM), and
dynamic light scattering (DLS) were employed to characterize the microgels as well as
their composites with GNP. Preliminary investigation of imprinting the microgels with
heavy metal ions such as copper was also performed. The novel polymer-metal
nanocomposites explored here will serve as an important contribution for the current
ongoing research efforts in designing materials in the nano-scale capable of sensing and
detecting metal ions in solution with high selectivity.
|
33 |
Microstructure and rheology of soft particle glassesMohan, Lavanya 17 February 2014 (has links)
Soft particle glasses like microgels and compressed emulsions are densely packed, disordered suspensions of deformable particles. Quantitative relationships among the constituent properties and the macroscopic properties of the suspension are determined for their customized design as rheological additives. The microscopic origin of their macroscopic properties is also determined. Advanced characterization techniques like Large Amplitude Oscillatory Shear (LAOS) and microrheology are studied to use them efficiently to characterize these materials. Their microstructure and rheology are investigated through theory, simulations and experiments.
Soft particle glasses are used as rheological additives in many applications including coatings, solid inks and textured food and cosmetic products but their formulation is largely empirical. A quantitative connection between their formulation and rheology is critical to enable their rational design. Their microstructure will lead to the microscopic origin of some unique properties in common with other soft crowded materials like intracellular cytoplasm and clays. These are complex fluids and require novel techniques to characterize them. A study of these techniques is essential to efficiently interpret the observations in terms of their macroscopic properties and the microscopic dynamics involved.
Particle scale simulations of steady and oscillatory shear flow are developed to predict the nonlinear rheology and microstructure of these glasses. The origin of yielding is determined as escape of particles from their cages giving rise to a shear induced diffusion. Microrheology is studied by developing simulations of a probe particle being pulled at a constant force and the rheological information from microrheology is quantitatively connected to that from bulk rheological measurements.
Soft particle glasses develop internal stresses when quenched to a solid state by flow cessation during processing. Experiments are performed to characterize and a priori predict these stresses. Simulations are used to determine the particle scale mechanisms involved in the stress relaxation on flow cessation and the microstructural origin of internal stresses.
A pairwise interaction theory is developed for quiescent glasses to quantitatively predict their microstructure and elastic properties. The theory is then extended to sheared glasses to quantitatively predict their nonlinear rheology. The implementation of the pairwise theories is computationally much faster than the full three-dimensional simulations. / text
|
34 |
Novel Cellulose Nanoparticles for Potential Cosmetic and Pharmaceutical ApplicationsDhar, Neha January 2010 (has links)
Cellulose is one of the most abundant biopolymers found in nature. Cellulose based derivatives have a number of advantages including recyclability, reproducibility, biocompatibility, biodegradability, cost effectiveness and availability in a wide variety of forms. Due to the benefits of cellulose based systems, this research study was aimed at developing novel cellulosic nanoparticles with potential pharmaceutical and personal care applications. Two different cellulosic systems were evaluated, each with its own benefits and proposed applications.
The first project involves the synthesis and characterization of polyampholyte nanoparticles composed of chitosan and carboxymethyl cellulose (CMC), a cellulosic ether. EDC carbodiimide chemistry and inverse microemulsion technique was used to produce crosslinked nanoparticles. Chitosan and carboxymethyl cellulose provide amine and carboxylic acid functionality to the nanoparticles thereby making them pH responsive. Chitosan and carboxymethyl cellulose also make the nanoparticles biodegradable and biocompatible, making them suitable candidates for pharmaceutical applications. The synthesis was then extended to chitosan and modified methyl cellulose microgel system. The prime reason for using methyl cellulose was to introduce thermo-responsive characteristics to the microgel system. Methyl cellulose was modified by carboxymethylation to introduce carboxylic acid functionality, and the chitosan-modified methyl cellulose microgel system was found to be pH as well as temperature responsive.
Several techniques were used to characterize the two microgel systems, for e.g. potentiometric and conductometric titrations, dynamic light scattering and zeta potential measurements. FTIR along with potentiometric and conductometric titration was used to confirm the carboxymethylation of methyl cellulose. For both systems, polyampholytic behaviour was observed in a pH range of 4-9. The microgels showed swelling at low and high pH values and deswelling at isoelectric point (IEP). Zeta potential values confirmed the presence of positive charges on the microgel at low pH, negative charges at high pH and neutral charge at the IEP. For chitosan-modified methyl cellulose microgel system, temperature dependent behaviour was observed with dynamic light scattering.
The second research project involved the study of binding interaction between nanocrystalline cellulose (NCC) and an oppositely charged surfactant tetradecyl trimethyl ammonium bromide (TTAB). NCC is a crystalline form of cellulose obtained from natural sources like wood, cotton or animal sources. These rodlike nanocrystals prepared by acid hydrolysis of native cellulose possess negatively charged surface. The interaction between negatively charged NCC and cationic TTAB surfactant was examined and it was observed that in the presence of TTAB, aqueous suspensions of NCC became unstable and phase separated. A study of this kind is imperative since NCC suspensions are proposed to be used in personal care applications (such as shampoos and conditioners) which also consist of surfactant formulations. Therefore, NCC suspensions would not be useful for applications that employ an oppositely charged surfactant. In order to prevent destabilization, poly (ethylene glycol) methacrylate (PEGMA) chains were grafted on the NCC surface to prevent the phase separation in presence of a cationic surfactant. Grafting was carried out using the free radical approach.
The NCC-TTAB polymer surfactant interactions were studied via isothermal titration calorimetry (ITC), surface tensiometry, conductivity measurements, phase separation and zeta potential measurements. The major forces involve in these systems are electrostatic and hydrophobic interactions. ITC and surface tension results confirmed two kinds of interactions: (i) electrostatically driven NCC-TTAB complexes formed in the bulk and at the interface and (ii) hydrophobically driven TTAB micellization on the NCC rods. Conductivity and surface tension results confirmed that the critical micelle concentration of TTAB (CMCTTAB) shifted to higher values in the presence of NCC. Phase separation measurements allowed us to identify the formation of large aggregates or hydrophobic flocs depending on the TTAB concentration. Formation of NCC-TTAB complexes in aqueous solutions was confirmed by a charge reversal from negative to positive charge on the NCC rods. The effect of electrolyte in shielding the negative charges on the NCC was observed from ITC, surface tensiometry and phase separation experiments. Several mechanisms have been proposed to explain the above results. Grafting of PEGMA on the NCC surface was confirmed using FTIR and ITC experiments. In phase separation experiments NCC-g-PEGMA samples showed greater stability in the presence of TTAB compared to unmodified NCC. By comparing ITC and phase separation results, an optimum grafting ratio (PEGMA : NCC) for steric stabilization was also proposed.
|
35 |
A Study of the Flow of Microgels in Patterned MicrochannelsFiddes, Lindsey 30 August 2011 (has links)
This work describes the results of experimental study of the flow of soft objects (microgels) through microchannels. This work was carried with the intention of building a fundamental biophysical model for the flow of neutrophil cells in microcirculatory system. In Chapter 1 we give a summary of the literature describing the flow of cells and “model cells” in microchannels.
Paramount to this we developed methods to modify microchannels fabricated in poly(dimethyl siloxane) (PDMS). Originally, these microchannels could not be used to mimic biological microenvironments because they are hydrophobic and have rectangular cross-sections. We designed a method to create durable protein coatings in PDMS microchannels, as outlined in Chapter 3. Surface modification of the channels was accomplished by a two-step approach which included (i) the site-specific photografting of a layer of poly(acrylamide) (PAAm) to the PDMS surface and (ii) the bioconjugation of PAAm with the desired protein. This method is compatible with different channel geometries and it exhibits excellent longevity under shear stresses up to 1 dyn/cm. The modification was proven to be successful for various proteins of various molecular weights and does not affect protein activity.
The microchannels were further modified by modifying the cross-sections in order to replicate cardiovascular flow conditions. In our work, we transformed the rectangular cross-sections into circular corss-sections. Microchannels were modified by polymerizing a liquid silicone oligomer around a gas stream coaxially introduced into the channel, as outlined in Chapter 3. We demonstrated the ability to control the diameter of circular cross-sections of microchannels.
The flow behaviour of microgels in microchannels was studied in a series of experiments aimed at studying microgel flow (i) under electrostatic interactions (Chapter 4), (ii) binding of proteins attached to the microgel and the microchannel (Chapter 5) and (iii) under the conditions of varying channel geometry (Chapter 6).
This work overall present’s new methods to study the flow of soft objects such as cells, in the confined geometries of microchannels. Using these methods, variables can be independently probed and analyzed.
|
36 |
Compression effects on the phase behavior of microgel assembliesSt. John, Ashlee Nicole 02 April 2008 (has links)
Microgels are a class of colloids that are mechanically soft, and while in many cases can behave similarly to their hard-sphere counterparts, their interaction potentials are quite different. The softness of the interaction between microgels makes them capable of deformation and compression into more concentrated assemblies. This concentrated regime is interesting because little, if any, experimental work has been done to see how the bulk properties of soft-sphere assemblies deviate from those of hard-spheres at the point where their interaction potentials begin to diverge. In this thesis the effects on assembly phase behavior and dynamics of both particle compression and softness of the interaction potential are addressed. Poly(N-isopropylacrylamide) (pNIPAm) microgels are an excellent model system in which to study these effects. The thermoresponsivity of the polymer provides the experimentalist with a dial to tune the volume fraction of an assembly, while maintaining a constant particle number density in the system. Optical microscopy, particle tracking analysis and rheology have been used to investigate the effects of packing and particle structure on equilibrium phase behavior and localized perturbations to the phase of the assembly of this soft-sphere system. It has been elucidated from these experiments and others involving deswelling of large microgel particles in the presence of high concentrations of smaller microgels, that the soft, repulsive interaction between microgels is caused by a longer-range repulsion than was previously believed. The particles are acting on each other from a distance through the osmotic pressure of the assembly, which causes each particle to deswell without coming into direct contact with a neighboring particle.
|
37 |
Fundamental studies of responsive microgel thin films at interfacesSorrell, Courtney Davis 08 July 2008 (has links)
The research described covers fundamental studies of environmentally-responsive microgel-based thin films as a function of film architecture, microgel chemistry, film thickness, and environmental stimulus. Studies of multi-layer microgel thin films were conducted primarily using atomic force microscopy (AFM), quartz crystal microgravimetry (QCM), and surface plasmon resonance (SPR), each of which probed different aspects the film architecture as a function of pH of the environment around the film. Binary thin films were constructed by changing the ratios and composition of the microgels in solution to create multi-functional thin films for surface modification applications and were studied using AFM. The basic understanding of how these components create films at surfaces gives us insight into how the films perform and will allow for greater diversity without the guesswork. The morphology of films created from microgels with a degradable cross-linker was examined by AFM as a function of degradation of the particles structure. This thesis focuses mainly on very thin microgel films (<5 layers) studied using QCM, SPR, and AFM. Additional studies involving the characterization of semi-soft colloidal paint-on photonics are discussed in Appendix A.
|
38 |
Smart nanomaterials from repeat proteins and amyloid fibrilsGuttenplan, Alexander Pandias Margaronis January 2018 (has links)
Protein-based materials are an important area of research for various reasons. Natural protein materials such as spider silk have mechanical properties which compare favourably to artificial or inorganic materials, and in addition are biodegradable and can be produced from easily available feedstocks. It is also possible to produce materials that incorporate the functionality of a natural protein, such as ligand-binding or catalysis of reactions, thus allowing this functionality to be used in the solid rather than solution phase. Two particularly interesting components for protein-based materials are amyloid fibrils and tandem repeat proteins. Amyloid fibrils are exceptionally strong, tough, highly-ordered structures that self-assemble from a wide range of simple building blocks. Meanwhile, tandem repeat proteins are a class of proteins that act as scaffolds to mediate protein-protein interactions and are known to act as elastic springs. Unlike globular proteins, tandem repeat proteins can be designed to bind specific ligands, and their ligand-binding properties and stability can be tuned separately. This work details the synthesis and characterisation of repeat protein and amyloid fibril components for a “smart” hydrogel, the production of these gels, and their characterisation using a microfluidic method that I developed. Although amyloid fibrils have previously been decorated with functional proteins, hitherto, this has usually been done by assembling the fibrils from already-functionalised components. This approach limits the functionality to species that can survive the harsh conditions of amyloid aggregation and do not disturb fibril assembly. Therefore, a method was developed to produce amyloid fibrils that displayed an alkyne functionality on their surface to allow functional proteins or other species to be attached after assembly. This involved the design and synthesis (using solid-phase peptide chemistry) of a peptide based on the previously known TTR105-115 peptide (derived from the amyloidogenic Transthyretin protein). These fibrils were characterised by AFM and TEM and it was then shown that the assembled fibrils could be functionalised using an azide-alkyne “click” reaction. The reaction was shown to work with a variety of ligands including proteins, which were found to retain their structure and function after crosslinking to the fibril. The fibrils with ligands attached were characterised by a variety of methods including LCMS (liquid chromatography-mass spectrometry) and super-resolution optical microscopy. Next, repeat proteins were produced recombinantly containing non-natural azido amino acids at their termini. Incorporation of non-natural amino acids was carried out using a number of different methods including amber codon suppression and methionine replacement. Micron-sized hydrogels were then formed from microfluidic-generated droplets by covalently crosslinking the alkyne-functionalised fibrils with the azide-functionalised repeat proteins. The initial experiments to show proof of principle were carried out with consensus-designed repeat proteins, but repeat proteins based on natural sequences were also used to make hydrogels that could later be tested for potential uptake of peptides known to bind these proteins. These hydrogels could potentially be used for drug delivery or other applications in which a chemical response to a mechanical stimulus is desired. The mechanical properties of the hydrogels were measured using novel microfluidic devices, which were designed and fabricated using standard PDMS-based soft lithography.
|
39 |
Preparation and Evaluation of Aminoglycoside-Based Nanogels and Microgels for Gene Delivery and DNA bindingJanuary 2014 (has links)
abstract: Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases, such as cancer, cystic fibrosis, and acquired immunodeficiency (AIDS) already have gene therapy protocols that are currently in clinical trials. Finding a non-toxic and efficient gene transfer method has been a challenge. Viral vectors are effective at transgene delivery however potential for insertion mutagenesis and activation of immune responses raises concern. For this reason, non-viral vectors have been investigated as a safer alternative to viral-mediated gene delivery. Non-viral vectors are also easy to prepare and scalable, but are limited by low transgene delivery efficacies and high cytotoxicity at effective therapeutic dosages. Thus, there is a need for a non-toxic non-viral vector with high transgene efficacies. In addition to the hurdles in finding a material for gene delivery, large-scale production of pharmaceutical grade DNA for gene therapy is needed. Current methods can be labor intensive, time consuming, and use toxic chemicals. For this reason, an efficient and safe method to collect DNA is needed. One material that is currently being explored is the hydrogel. Hydrogels are a useful subclass of biomaterials, with a wide variety of applications. This class of biomaterials can carry up to a thousand times their weight in water, and are biocompatible. At smaller dimensions, referred to as micro- and nanogels, they are very useful for many biomedical applications because of their size and ability to swell. Based on a previously synthesized hydrogel, and due to the advantages of smaller dimension in biomedical applications, we have synthesized aminoglycoside antibiotic based nanogels and microgels. Microgels and nanogels were synthesized following a ring opening polymerization of epoxide-containing crosslinkers and polyamine-containing monomers. The nanogels were screened for their cytocompatibilities and transfection efficacies, and were compared to polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Nanogels demonstrated minimal to no toxicity to the cell line used in the study even at high concentrations. Due to the emerging need for large-scale production of DNA, microgels were evaluated for their binding capacity to plasmid DNA. Future work with the aminoglycoside antibiotic-based nanogels and microgels developed in this study will involve optimization of nanogels and microgels to facilitate in better transgene delivery and plasmid DNA binding, respectively. / Dissertation/Thesis / M.S. Chemical Engineering 2014
|
40 |
Propriedades de microgéis de gelena-quitosana obtidos a partir de extrusão / Properties of gellan-chitosan microgels obtained from extrusion processVilela, Joice Aline Pires, 1986- 19 August 2018 (has links)
Orientador: Rosiane Lopes da Cunha / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-19T15:16:51Z (GMT). No. of bitstreams: 1
Vilela_JoiceAlinePires_M.pdf: 1796773 bytes, checksum: 34d2e3b8b4543d7ea7cce06e84d31138 (MD5)
Previous issue date: 2012 / Resumo: A encapsulação de muitos compostos bioativos, como vitaminas, bactérias probióticas e antioxidantes ajuda na incorporação, proteção, e entrega do bioativo em sítio específico, porém a eficiência da matriz carreadora depende da sua composição e processo de fabricação. Com este intuito, a viabilidade de produção e as características finais de microgéis de gelana formados por extrusão e posterior gelificação iônica foram estudadas. Micropartículas, com tamanho médio entre 70-120 ?m, foram produzidas sob condições amenas de temperatura e concentração, utilizando um processo de atomização seguido de gelificação em soluções de cloreto de cálcio (CaCl2), cloreto de potássio (KCl) ou quitosana. O tamanho das partículas mostrou-se mais dependente das condições de processo (geometria do bico aspersor e velocidade de ar) que das propriedades da solução biopolimérica. No entanto, o aumento da concentração de gelana levou a maior esfericidade dos microgéis obtidos. Com relação aos agentes gelificantes, as micropartículas com gelificação induzida por CaCl2 apresentaram formato mais esférico e maior estabilidade que as partículas formadas a partir de KCl. A obtenção de micropartículas de gelana recobertas com quitosana foi possível somente através de um processo em duas etapas. Na primeira etapa, a gelana foi gelificada através da difusão salina (CaCl2 ou KCl) e posteriormente, as partículas formadas foram recobertas com quitosana. A presença da camada externa de quitosana teve influência na resistência das partículas às condições simuladas da digestão. As partículas estudadas, com ou sem recobrimento de quitosana, resistiram à digestão gástrica, mas na digestão entérica as partículas recobertas com quitosana apresentaram menor grau de fragmentação que as partículas contendo somente gelana. Assim, foi demonstrado que a produção de microgéis formados por interação entre dois biopolímeros de cargas opostas melhorou a eficiência das partículas como material de parede sendo este um potencial veículo de compostos bioativos / Abstract: The encapsulation of many bioactive compounds such as vitamins, antioxidants and probiotic bacteria allows the incorporation, protection, and delivery of bioactive on a specific site, but the efficiency of carrier matrix depends on its composition and manufacturing process. To this aim, the feasibility of production and the final characteristics of the gellan microgels obtained by extrusion process followed by ionic gelation were studied. Microparticles, with average size among 70-120 ?m, were produced under mild conditions of temperature and concentration using an atomization process followed by gelation induced by calcium chloride (CaCl2), potassium chloride (KCl) or chitosan solutions. The particle size was more dependent on process conditions (nozzle geometry and air velocity) than the properties of the biopolymeric solution. However, the increase in gellan concentration led to more spherical microgels. In relation to hardening agents, the microparticles with gelation induced by CaCl2 showed more spherical shape and greater stability than the particles formed by KCl. Gellan microparticles coated with chitosan was possible to obtain only through a two-step process. In the first step, the gellan microgels were obtained through salt diffusion (KCl or CaCl2) and the particles obtained were subsequently coated with chitosan. The presence of the outer layer of chitosan exerted effect on the resistance of the particles to the simulated digestion process. All particles studied, with or without a coating of chitosan, resisted to the gastric digestion, however the chitosan coated particles showed a lower degree of fragmentation than the particles containing only gelan when subjected to the enteric digestion step. Therefore the results obtained showed that the microgels formed by interaction between two oppositely charged polymers improved the efficiency of particles as wall material, showing a great potential as bioactive compounds carrier / Mestrado / Engenharia de Alimentos / Mestre em Engenharia de Alimentos
|
Page generated in 0.0545 seconds