• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 25
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 218
  • 45
  • 41
  • 40
  • 36
  • 34
  • 33
  • 31
  • 27
  • 26
  • 23
  • 22
  • 20
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Transcription factor LSF: interactions with protein partners leading to epigenetic regulation and microtubule modifications

Chin, Hang Gyeong 24 December 2019 (has links)
Transcription factor LSF is an oncogene in Hepatocellular Carcinoma (HCC). HCC is the sixth most common cancer worldwide and the second highest cause of cancer-related death globally. LSF is overexpressed in human HCC cell lines, compared to normal hepatocytes, and expression levels show significant correlation with the stage and grades of the disease. Current treatments for HCC are insufficient, especially given the frequency of late stage diagnoses. Therefore, it is necessary to understand the molecular mechanism of HCC disease to aid in targeted and effective treatments. Most investigations of the regulation of LSF activity have focused on its post-translational modifications in response to cellular proliferation and signal transduction. Chromatin modifications and epigenetic mechanisms of LSF-mediated gene regulation had not been investigated. Given that alterations of epigenetic writers or readers have been demonstrated in a large fraction of HCC patient samples, I examined the connection between LSF and epigenetic regulators. In particular, LSF is shown to interact with DNA methyltransferase 1 (DNMT1) and Ubiquitin like with PHD and Ring Finger Domains (UHRF1), with consequences for global DNA methylation and transcription patterns. Additionally, I identified unexpected, pairwise associations between LSF, histone methyltransferase SET8, and tubulin, both in vitro and in vivo. The interactions were identified by proteomics analyses, co-localization, co-immunoprecipitation, and direct protein-protein interaction studies in vitro. Strikingly, both LSF and SET8 associate with microtubules, leading to the discovery that SET8 methylates α-tubulin at several novel, specific lysines. This suggests parallels between regulation of chromatin by the histone code and regulation of microtubule function by the tubulin code. Surprisingly, LSF enhances tubulin methylation by SET8 in vitro and FQI1, a specific LSF small molecule inhibitor, reduces tubulin methylation. Furthermore, LSF promotes, and FQI1 inhibits, tubulin polymerization in vitro. Taken together, these findings suggest that SET8 is a microtubule-associated methyltransferase that LSF recruits to microtubules to enhance tubulin modification. The results indicate that both LSF and SET8 have cellular implications beyond their roles in gene transcription and histone methylation. Finally, this discovery of the dual functions for LSF and SET8 set up the possibility for connections between epigenetic and cytoskeleton modifications in cancer. / 2021-12-24T00:00:00Z
132

Synthesis and Biological Evaluation of Open-Chain Epothilones

Fedorka, Sara R. 04 September 2012 (has links)
No description available.
133

Coarse-grained model for a motor protein on a microtubule

Alanazi, Mansour Awadh, Alanazi January 2017 (has links)
No description available.
134

Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules is Required in Netrin- 1-Mediated Axonal Repulsion

Shao, Qiangqiang January 2017 (has links)
No description available.
135

Changes in Kinetochore Structure and Molecular Composition in Response to Mis-attachment

Shen, Muyao 18 July 2011 (has links)
Each mitotic chromosome is constituted by two sister chromatids whose correct segregation to the daughter cells is ensured by amphitelic attachment, in which the two sister kinetochores (KTs) are attached to microtubules (MTs) from opposite mitotic spindle poles. KT mis-attachments can occur in early mitosis and cause chromosome mis-segregation and aneuploidy if not corrected. These mis-attachments include monotelic (one attached and one unattached sister KT), syntelic (both sister KTs attached to the same spindle pole), and merotelic (a single KT attached to MTs from opposite spindle poles) attachments. A biochemical pathway named the Spindle Assembly Checkpoint (SAC) is responsible for delaying anaphase onset to allow correction of KT mis-attachments. SAC activation is believed to occur due to KT localization of certain SAC proteins and/or lack of tension, but only monotelic attachment has been proven to activate the SAC. To determine if and how other KT mis-attachments may activate the SAC, we studied how molecular composition and structure of the KT changes in response to different types of attachments. Our data suggest that monotelic attachment is the only type of attachment that can induce a SAC response thanks to the accumulation of the SAC protein Mad2 at the KT. Our data also indicate that structural changes of the KT, measured as intra- or inter-KT stretching, do not directly induce a SAC response. Instead, our findings suggest decreased KT stretching, especially in inter-KT stretching of syntelic chromosomes, may play a key role in bringing MCAK and other KT substrates closer to Aurora B kinase for rapid and efficient correction of KT mis-attachments. / Master of Science
136

Auristatin PYE, a novel synthetic derivative of dolastatin 10, is highly effective in human colon tumour models

Shnyder, Steven, Cooper, Patricia A., Millington, Nicola J., Pettit, G.R., Bibby, Michael C. January 2007 (has links)
No / Despite promising early data, the natural product dolastatin 10 has not been successful as a single agent in phase II clinical trials. Herein the mechanism of action and efficacy of a synthetic analogue, auristatin PYE, was investigated in 2 human colon adenocarcinoma models, DLD-1 and COLO 205. In vivo efficacy was assessed in subcutaneous xenografts following intravenous administration. Mechanistic studies investigated effects of auristatin PYE on microtubule disruption using immunocytochemistry, whilst cell cycle effects were studied using flow cytometry. Possible effects on tumour functional blood vasculature were assessed in tumour-bearing mice. Auristatin PYE was less potent in vitro than dolastatin 10, but was significantly more effective (p<0.01) in vivo against both tumours. Significant effects on tumour blood vasculature were seen, with optimal shutdown at 6-h post-treatment. Extensive necrosis became more evident over time after treatment. Auristatin PYE caused severe disruption of normal microtubule structure at concentrations and times comparable with the IC50 data, and also instigated a G2/M cell cycle block. Auristatin PYE was more effective in the DLD-1 and COLO 205 models than dolastatin 10, with anti-tumour effects mediated through vascular shutdown. These data suggest that auristatin PYE has good potential as an anti-cancer agent.
137

Meiotic spindle assembly on chromatin micropatterns : investigating the roles of Augmin, Kinesin-10 and Kinesin-4 / Assemblage de fuseaux meiotiques sur micro-motifs de chromatine : étude du role de l’Augmin, de la Kinesine-10 et la Kinesine-4

Pugieux, Céline 12 March 2014 (has links)
La division cellulaire est essentielle pour la survie de chaque être vivant. Au cours de ce processus, les chromosomes de la cellule en division sont transmis aux deux cellules filles. La répartition des chromosomes est orchestrée par une structure cellulaire transitoire appelée fuseau mitotique (ou fuseau méiotique dans les cellules reproductrices). Le fuseau est composé de microtubules, de nombreuses protéines et de moteurs moléculaires, qui interagissent de manière complexe et précise aboutissant à l’organisation d’une structure bipolaire dynamique. Comme certains mécanismes moléculaires restent mal compris, nous avons choisi d'aborder la question de l'assemblage du fuseau méiotique dans des extraits d'oeufs de grenouille. Xenopus laevis est un organisme modèle car il est proche, d’un aspect phylogénétique, de l'homme, et il est particulièrement adapté à l’étude de la division cellulaire. Nous avons également utilisé une méthode in vitro (appelée spindle array ou puce à fuseaux) qui a été développée au sein du groupe de recherche auparavant, et qui offre certains avantages par rapport aux approches existantes. Une puce à fuseaux est composée de billes recouvertes de chromatine immobilisées selon des micro-motifs géométriques obtenus selon une technique d’impression par microcontact. L'assemblage des fuseaux méiotiques a été visualisé par microscopie confocale à fluorescence. Grâce à ces outils, nous avons, lors d’un premier projet, abordé le rôle de l’Augmin dans l'assemblage des fuseaux. L’Augmin est un complexe protéique récemment identifié grâce à son hypothétique rôle dans la nucléation de microtubules à partir de microtubules existants. Après déplétion de l’Augmin, nous avons constaté que la nucléation des microtubules était réduite et que les fuseaux avaient une morphologie anormale. De plus, ces derniers qui étaient essentiellement multipolaires sont progressivement devenus bipolaires grâce à une voie de nucléation des microtubules, découverte lors de notre étude, émanant des pôles acentrosomaux et qui est indépendante de l’Augmin. Nos résultats révèlent que l’Augmin est essentiel pour l’assemblage et la bipolarité du fuseau acentrosomal. Au cours d’un second projet, nous avons étudié les fonctions des chromokinésines kinésine-4 (Xklp1) et kinésine-10 (Xkid) dans l'assemblage des fuseaux et leurs mouvements. Xkid participe à la force d’éjection polaire nécessaire à la congression des chromosomes alors que Xklp1 contribue principalement à la régulation de la dynamique des microtubules. En étudiant l'assemblage de fuseaux dans des extraits après déplétion de Xkid, Xklp1 ou les deux, nous avons démontré que Xkid limite la dynamique des mouvements longitudinaux des fuseaux, contribue à la mise en place de la bipolarité et régule la longueur des fuseaux. Nous avons également quantifié la cinétique de nucléation des microtubules et confirmé le rôle de Xklp1 dans la régulation de la dynamique des microtubules. L’ensemble de nos travaux contribuent à une meilleure compréhension des mécanismes d’assemblage du fuseau méiotique et confirme la pertinence de notre méthode pour l'étude de sa morphogenèse. / Cell division is essential for the survival of every living organism. During this process, the chromosomes of the dividing cell are transmitted to the two daughter cells. The partition of the chromosomes is orchestrated by a transient sub-cellular structure called the mitotic spindle (or meiotic spindle in gamete cells). The spindle is composed of microtubules, numerous proteins and molecular motors, which interact in an intricate and yet precise manner leading to a highly dynamic and complexstructure. As some molecular mechanisms remain elusive, we have chosen to address the question of meiotic spindle assembly in Xenopus egg extracts. Xenopus laevis is a model system that is evolutionary close to human, and suitable for cell division studies. We have combined this with an in vitro assay - spindle array - which we developed prior to this work, and which provides advantages over existing approaches. A spindle array is composed of chromatin-coated beads that are immobilized according to geometrical patterns obtained by microcontact printing. The assembly of meiotic spindles wasvisualized by time-lapse fluorescence confocal microscopy. Using these tools, we first addressed the role of augmin in the assembly of meiotic spindles. Augmin is a recently identified protein complex that has been hypothesized to induce microtubule nucleation from the side of preexisting microtubules. By depleting augmin, we found that microtubule nucleationwas reduced and that spindles were morphologically impaired. Spindles were predominantly multipolar but finally reached bipolarity as a result of a newly uncovered augmin-independent microtubule nucleation pathway from acentrosomal poles. Our results thus reveal that augmin is essential for the proper establishment of the microtubule scaffolding and the bipolarity ofacentrosomal spindles. Secondly, we investigated the functions of the chromokinesins kinesin-4 (Xklp1) and kinesin-10 (Xkid)in acentrosomal spindle architecture and motions. Xkid plays a major role in the polar ejection forces leading chromosome movements during congression while the main function of XKlp1 is to regulate microtubule dynamics. We studied spindle assembly in depleted extracts and we report that Xkid limits the dynamics of spindle longitudinal movements, contributes to spindle bipolarity and affects spindle length while XKlp1 controls the spindle microtubule mass. Altogether these findings contribute to a better understanding of meiotic spindle assembly and confirm the pertinence of our method to study spindle morphogenesis.
138

Theoretical aspects of motor protein induced filament depolymerisation

Klein, Gernot A. 15 February 2006 (has links)
Many active processes in cells are driven by highly specialised motor proteins, which interact with the cytoskeleton: a network of filamentous structures, e.~g.~ actin filaments and microtubules, which organises intracellular transport and largely determines the cell shape. These motor proteins are able to transduce the chemical energy, stored in ATP molecules, to do mechanical work while interacting with a filament. Certain motor proteins, e.~g.~members of the KIN-13 kinesin subfamily, are able to interact specifically with filament ends and induce depolymerisation of the filament ends. One important role for KIN-13 family members is in the mitotic spindle, a microtubule structure that is formed in the process of cell division and is responsible for separation and distribution of the duplicated genetic material to the forming daughter cells. The aim of this work is to develop a theoretical framework capable of describing experimentally observed behaviour and shed light on underlying principles of motor induced filament depolymerisation. We use two different theoretical approaches to describe motor dynamics in this non- equilibrium situation: On the one hand we use phenomenological continuum equations which themselves are to a large extent independent of the underlying molecular details of the system. Molecular details of the system are incorporated in the equations through the specific values of macroscopic parameters which are determined by the underlying details. On the other hand, we use one- and two-dimensional discrete stochastic descriptions of motors on a filament. These kind of descriptions enable us to investigate the effects of different microscopic mechanisms of filament depolymerisation, and to investigate the role of fluctuations on the dynamic behaviour of motor proteins. We additionally discuss filament depolymerisation in the case where motors are not free to move but are fixed to a common anchoring point and depolymerise filaments under the influence of applied forces, mimicking the situation in the mitotic spindle. Our results can be related to recent experiments on members of the KIN-13 subfamily and predictions made in our theory can be tested by further experiments. Although motivated by experiments involving members of the KIN-13 subfamily, our theory is not restricted to these motors but applies in general to associated proteins which regulate dynamics of filament ends.
139

Cytokinesis in the mouse preimplantation embryo : mechanism and consequence of failure

Gomes Paim, Lia Mara 01 1900 (has links)
Essentiel au maintien d’un organisme sain, la division cellulaire est un processus biologique composée de deux phases : la mitose et la cytokinèse. Au cours de la mitose, un fuseau mitotique bipolaire est assemblé et les chromosomes s’alignent au niveau de la plaque métaphasique par l’attachement des kinétochores aux microtubules du fuseau. Une fois les chromosomes alignés, les chromatides soeurs sont séparées par les microtubules pendant l'anaphase et sont ségréguées entre les cellules filles. La cytokinèse est initiée peu après le début de l'anaphase, marquant ainsi la fin de la division cellulaire en séparant le cytoplasme en deux nouvelles cellules filles. Une exécution précise de la mitose et de la cytokinèse est essentielle pour le maintien de l'intégrité du génome. L'échec de l'un de ces processus affecte la fidélité génétique. Les erreurs de ségrégation des chromosomes durant la mitose peuvent entraîner un gain ou une perte de chromosomes entiers, appelé aneuploïdie. Tandis que l'échec de la cytokinèse conduit à la formation d'une cellule binucléée avec un génome entièrement dupliqué, appelé tétraploïdie. Dans les cellules somatiques, la tétraploïdie peut conduire à l'arrêt du cycle cellulaire, à la mort cellulaire, ou provoquer une instabilité chromosomique (CIN), favorisant ainsi la prolifération de cellules avec un potentiel tumorigène. Par conséquent, il est essentiel de bien comprendre la régulation et les causes potentielles de l’échec de la cytokinèse en particulier dans le contexte des systèmes multicellulaires comme l’embryon. En effet, dans ces systèmes, la réduction progressives de la taille des cellules coïncident avec les principaux évènements du développement. De plus, la binucléation est fréquemment observée dans les cliniques de fertilité chez les embryons humains. Cependant, l’impact de la binucléation sur les divisions préimplantatoires demeure inexpliqué à ce jour. Afin de déterminer les conséquences de la tétraploïdie, nous avons utilisé l'embryon de souris pour modèle et réalisé des expériences d'immunofluorescence à haute résolution et une imagerie sur cellules vivantes. Nous avons découvert que la tétraploïdie chez les embryons de souris provoque une CIN et l'aneuploïdie par un mécanisme différent de celui des cellules somatiques. Dans les cellules somatiques, la formation des fuseaux multipolaires causée par des centrosomes surnuméraires est le principal mécanisme conduisant à la tétraploïdie et ainsi, à une CIN. En revanche, chez les embryons de souris, qui ne possèdent pas de centrosomes, la tétraploïdie ne conduit pas à la formation des fuseaux multipolaires. Les embryons tétraploïdes de souris développent une CIN en raison d’une réduction du renouvellement des microtubules et d’une altération de l’activité de correction d’erreurs dans l’attachement des kinétochores aux microtubules. Ainsi, une mauvaise correction de l’attachement des kinétochores aux microtubules entraîne des niveaux élevés d'erreurs de ségrégation chromosomique. Dans le cadre d'une étude de suivi, nous avons ensuite utilisé des différentes expériences d'imageries sur des cellules vivantes et d'immunofluorescences. Celles-ci furent couplées à des micromanipulations de la taille des cellules, des techniques modifiant l'adhésion cellulaire et des approches de knock-down des protéines pour étudier les mécanismes de régulation de la cytokinèse. Les expériences d'imageries sur cellules vivantes et les micromanipulations du volume cytoplasmique ont démontré que la taille des cellules détermine la vitesse de constriction de l'anneau contractile, c'est-à-dire que la vitesse de constriction devient progressivement plus lente à mesure que la taille des cellules diminue. Cependant, ce phénomène n'a lieu que lorsque les embryons atteignent le stade de 16 cellules ce qui suggère qu'une limite supérieure de vitesse de constriction peut exister pour restreindre l’augmentation de cette vitesse quand les cellules sont trop grandes. La taille des cellules étant un déterminant de la progression de la cytokinèse, nos expériences de knock-down des protéines ont, de plus, démontré que la formation de la polarité cellulaire a un impact négatif sur l'assemblage et la constriction de l'anneau contractile dans les cellules externes au stade de morula. Plus précisément, nous avons constaté que la polarité limite le recrutement des composants de la cytokinèse spécifiquement d'un côté de l'anneau contractile, provoquant ainsi un déséquilibre de l’ingression du sillon de clivage et réduisant la vitesse de constriction dans les cellules externes. Nous spéculons que la polarité cellulaire agit comme un obstacle à la progression de la cytokinèse, rendant ainsi les cellules externes plus sensibles à un échec de la cytokinèse. Ces études ont démontré un nouveau mécanisme par lequel la tétraploïdie conduit à l’instabilité chromosomique et à l’aneuploïdie chez les embryons. Ainsi un défaut de la dynamique de correction de l’attachement des kinétochores aux microtubules entraîne une mauvaise ségrégation des chromosomes indépendamment à la formation des fuseaux multipolaires. Ce travail a mis en évidence un rôle inhibiteur de la polarité apicale inattendu sur la machinerie cytokinétique. Cette inhibition pourrait fournir une explication mécanistique de l’incidence élevée de la binucléation dans le trophectoderme. Dans l'ensemble, ces résultats contribuent à notre compréhension du contrôle spatio-temporel de la cytokinèse au cours du développement embryonnaire et fournissent de nouvelles informations mécanistiques sur les origines et les conséquences biologiques de la tétraploïdie chez les embryons préimplantatoires. Les résultats présentés dans cette thèse ont des implications cliniques importantes, puisqu’ils fournissent des preuves définitives que la tétraploïdie générée par un échec de la cytokinèse est délétère pour le développement embryonnaire. Ces travaux mettent ainsi en lumière que la binucléation est un critère de sélection embryonnaire important à considérer lors des traitements de fertilité. / Cell division is comprised of mitosis and cytokinesis and is an essential biological process for the maintenance of healthy organisms. During mitosis, a bipolar spindle is assembled, and the chromosomes are aligned at the metaphase plate via the attachment of kinetochores to spindle microtubules. Once chromosome alignment is achieved, the sister chromatids are pulled apart by the microtubules during anaphase and segregated into the nascent daughter cells. Cytokinesis is initiated after anaphase onset and marks the completion of cell division by partitioning the cytoplasm of the dividing cell into two new daughter cells. Successful and timely completion of both mitosis and cytokinesis is key for the maintenance of genome integrity, and failure in either one of these processes affects genetic fidelity. Whereas chromosome segregation errors in mitosis can lead to whole chromosome gains or losses, termed aneuploidy, cytokinesis failure leads to the formation of a binucleated cell with an entirely duplicated genome, termed tetraploidy. In somatic cells, tetraploidy can either lead to cell cycle arrest and death or cause chromosomal instability (CIN), thereby promoting the proliferation of cells with high tumorigenic potential. Therefore, understanding cytokinesis regulation and the potential causes of cytokinesis failure is key, especially in the context of multicellular embryonic systems, wherein progressive cell size reductions coincide with developmental transitions. Moreover, binucleation is frequently observed in human embryos in fertility clinics, and whether binucleation impacts early divisions remains elusive. To elucidate the consequences of tetraploidy, we used the mouse embryo as a model and employed high-resolution immunofluorescence and live-cell imaging experiments. We found that tetraploidy in mouse embryos causes CIN and aneuploidy by a mechanism distinct from that of somatic cells. Whereas in somatic cells multipolar spindle formation caused by supernumerary centrosomes is the major mechanism by which tetraploidy leads to CIN, in mouse embryos - which are acentriolar – tetraploidy does not lead to multipolar spindle formation. Instead, mouse tetraploid embryos develop CIN due to reduced microtubule turnover and impaired error correction activity, which prevents the timely resolution of kinetochore-microtubule mis-attachments, thereby leading to high levels of chromosome segregation errors. As a follow-up study, we next employed live imaging and immunofluorescence experiments, coupled with micromanipulations of cell size, cell adhesion and protein knockdown approaches to investigate the regulatory mechanisms of cytokinesis. Live imaging experiments and micromanipulations of cytoplasmic volume demonstrated that cell size determines the speed of contractile ring constriction i.e., constriction speed becomes progressively slower as the cells decrease in size. However, this phenomenon takes place only when embryos reach the 16-cell stage, suggesting that an upper limit of constriction speed may exist to restrict the scalability of ring constriction to cell size. In addition to cell size being a powerful determinant of cytokinesis progression, our loss-of-function experiments revealed that the emergence of cell polarity negatively impacts contractile ring assembly and constriction in outer cells at the morula stage. More specifically, we found that polarity limits the recruitment of cytokinesis components specifically to one side of the contractile ring, thereby causing unbalanced furrow ingression and reducing constriction speed in outer cells. We speculate that cell polarity may act as an obstacle for cytokinesis progression and render outer cells to be more susceptible to cytokinesis failure. These studies have revealed a novel mechanism by which tetraploidy leads to chromosomal instability and aneuploidy in embryos, wherein defective kinetochore-microtubule dynamics cause chromosome mis-segregation in a manner independent of multipolar spindle formation. In addition, this work unravelled an unexpected inhibitory role of apical polarity on the cytokinetic machinery that might provide a mechanistic explanation for the high incidences of binucleation in the outer layer of blastocysts. Altogether, these findings contribute to our understanding of the spatiotemporal control of cytokinesis during embryonic development and provide new mechanistic insights into the origins and biological consequences of tetraploidy in preimplantation embryos. The results presented in this thesis have substantial clinical implications, as they provide definitive evidence that tetraploidy generated by cytokinesis failure is deleterious to embryonic development, therefore underlining binucleation as an important embryo selection criterion to be considered during fertility treatments.
140

Interactions moléculaires et cellulaires entre les protéines E3-14.7K, FIP-1 et les microtubules : application dans le transfert de gènes

Pigeon, Lucie 21 December 2012 (has links) (PDF)
L'objectif de la thérapie génique est de guérir des déficiences génétiques et de nombreuses maladies acquises par l'introduction d'acides nucléiques dans les cellules mammifères. Les vecteurs chimiques sont une alternative aux vecteurs viraux pour le transfert de gène, leur immunogénicité est réduite, en plus de leur faible coût et de la facilité de leur production. Jusqu'à présent, les liposomes et les polymères cationiques sont les vecteurs chimiques les plus étudiés et utilisés pour le transfert d'ADN plasmidique (ADNp) thérapeutique. Parmi les multiples barrières biologiques, la diffusion cytosolique limitée de l'ADNp est critique pour le niveau d'expression du transgène. Le but de ce travail de thèse était d'identifier un peptide de liaison à la dynéine, qui serait capable de recruter la protéine motrice dynéine et de faciliter le transport d'ADNp vers le noyau le long des microtubules. Nous avons donc étudié le réseau d'interaction de la protéine adénovirale E3-14.7K. E3-14.7K est indirectement en interaction avec la chaîne légère de la dynéine TCTEL1 par l'intermédiaire de FIP-1. Différentes techniques ont été utilisées pour analyser les interactions de ces différentes protéines telles que Bioluminescence Resonance Energy Transfer (BRET), Förster Resonance Energy Transfer (FRET), Fluorescence Lifetime Imaging (FLIM), immunoprécipitation et Laser Scanning Confocal Microscopy (LSCM). La technique de BRET nous a permis d'identifier un peptide de 20 acides aminés d'E3-14.7K (P79-98) responsable de son interaction avec FIP-1. Associé à des Quantum Dots P79-98 (P79-98-Qdot) colocalise avec les microtubules isolés et dans les cellules HeLa. Nous avons mis au point une méthode de greffage du peptide directement sur l'ADNp. Une fois greffé avec P79-98 l'ADNp est capable d'interagir avec les microtubules dans les cellules HeLa et de migrer activement jusqu'au noyau. P79-98 améliore l'efficacité de la transfection des HeLa jusqu'à 77%.

Page generated in 0.0456 seconds