• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • Tagged with
  • 15
  • 14
  • 9
  • 8
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mikroskopische Theorie der optischen Eigenschaften indirekter Halbleiter-Quantenfilme

Imhof, Sebastian 01 February 2012 (has links) (PDF)
Indirekte Halbleiter, wie beispielsweise Silizium, zählen bei technischen Anwendungen zu den wichtigsten halbleitenden Materialien. Die indirekte Bandstruktur führt jedoch dazu, dass diese Materialien schlechte Lichtemitter sind. Die theoretische Beschreibung der optischen Eigenschaften dieser Materialien wurde in früheren Betrachtungen über phänomenologische Ansätze verfolgt. In dieser Arbeit wird eine mikroskopische Theorie, basierend auf den Heisenberg-Bewegungsgleichungen, entwickelt, um die Prozesse im Bereich der indirekten Energielücke zu beschreiben. Nach Herleitung der relevanten Gleichungen wird im ersten Anwendungskapitel die Absorption und optische Verstärkung im thermischen Gleichgewicht diskutiert. Bei der Diskussion wird insbesondere auf den Unterschied zu direkten Halbleitern eingegangen. Es zeigt sich, dass sich die optische Verstärkung in indirekten Halbleitern fundamental von denen in direkten unterscheidet. Im Gegensatz zum direkten Halbleiter kann die maximale optische Verstärkung eines indirekten Übergangs die maximale Absorption um Größenordnungen übertreffen. Im zweiten Anwendungsteil werden Nichtgleichgewichtsphänomene diskutiert. Durch starke optische Anregung kann eine hohe Elektronenkonzentration am Gamma-Punkt erzeugt werden. Da das globale Bandstrukturminimum aber am Rand der Brillouinzone liegt, verweilen die Elektronen nicht lange dort, sondern streuen in das Leitungsbandminimum. Dieser Prozess der sogenannten Intervalley-Streuung wird im Hinblick auf Gedächtniseffekte diskutiert. Nach dem Streuprozess der Elektronen besitzt das System eine Überschussenergie, die sich in einem Aufheizen der Ladungsträger zeigt. Das zweite Nichtgleichgewichtsphänomen ist das Abkühlen des Lochsystems, welches aufgrund der Trennung der Elektronen und Löcher in indirekten Halbleiter auch im Experiment getrennt untersucht werden kann. Mithilfe eines Experiment-Theorie-Vergleichs wird ein schneller Elektron-Loch-Streuprozess nachgewiesen, der dazu führt, dass in indirekten Halbleitern das Thermalisieren und Equilibrieren der Elektronen und Löcher auf der gleichen Zeitskala stattfindet.
12

Mikroskopische Theorie der optischen Eigenschaften indirekter Halbleiter-Quantenfilme: Mikroskopische Theorie der optischen Eigenschaftenindirekter Halbleiter-Quantenfilme

Imhof, Sebastian 19 December 2011 (has links)
Indirekte Halbleiter, wie beispielsweise Silizium, zählen bei technischen Anwendungen zu den wichtigsten halbleitenden Materialien. Die indirekte Bandstruktur führt jedoch dazu, dass diese Materialien schlechte Lichtemitter sind. Die theoretische Beschreibung der optischen Eigenschaften dieser Materialien wurde in früheren Betrachtungen über phänomenologische Ansätze verfolgt. In dieser Arbeit wird eine mikroskopische Theorie, basierend auf den Heisenberg-Bewegungsgleichungen, entwickelt, um die Prozesse im Bereich der indirekten Energielücke zu beschreiben. Nach Herleitung der relevanten Gleichungen wird im ersten Anwendungskapitel die Absorption und optische Verstärkung im thermischen Gleichgewicht diskutiert. Bei der Diskussion wird insbesondere auf den Unterschied zu direkten Halbleitern eingegangen. Es zeigt sich, dass sich die optische Verstärkung in indirekten Halbleitern fundamental von denen in direkten unterscheidet. Im Gegensatz zum direkten Halbleiter kann die maximale optische Verstärkung eines indirekten Übergangs die maximale Absorption um Größenordnungen übertreffen. Im zweiten Anwendungsteil werden Nichtgleichgewichtsphänomene diskutiert. Durch starke optische Anregung kann eine hohe Elektronenkonzentration am Gamma-Punkt erzeugt werden. Da das globale Bandstrukturminimum aber am Rand der Brillouinzone liegt, verweilen die Elektronen nicht lange dort, sondern streuen in das Leitungsbandminimum. Dieser Prozess der sogenannten Intervalley-Streuung wird im Hinblick auf Gedächtniseffekte diskutiert. Nach dem Streuprozess der Elektronen besitzt das System eine Überschussenergie, die sich in einem Aufheizen der Ladungsträger zeigt. Das zweite Nichtgleichgewichtsphänomen ist das Abkühlen des Lochsystems, welches aufgrund der Trennung der Elektronen und Löcher in indirekten Halbleiter auch im Experiment getrennt untersucht werden kann. Mithilfe eines Experiment-Theorie-Vergleichs wird ein schneller Elektron-Loch-Streuprozess nachgewiesen, der dazu führt, dass in indirekten Halbleitern das Thermalisieren und Equilibrieren der Elektronen und Löcher auf der gleichen Zeitskala stattfindet.
13

THz Near-Field Microscopy and Spectroscopy

von Ribbeck, Hans-Georg 31 March 2015 (has links)
Imaging with THz radiation at nanoscale resolution is highly desirable for specific material investigations that cannot be obtained in other parts of the electromagnetic spectrum. Nevertheless, classical free-space focusing of THz waves is limited to a >100 μm spatial resolution, due to the diffraction limit. However, the scattering- type scanning near-field optical microscopy (s-SNOM) promises to break this diffraction barrier. In this work, the realization of s-SNOM and spectroscopy for the THz spectral region from 30–300 μm (1–10 THz) is presented. This has been accomplished by using two inherently different radiation sources at distinct experimental setups: A femtosecond laser driven photoconductive antenna, emitting pulsed broadband THz radiation from 0.2–2 THz and a free-electron laser (FEL) as narrow-band high-intensity source, tunable from 1.3–10 THz. With the photoconductive antenna system, it was demonstrated for the first time that near-field spectroscopy using broadband THz-pulses, is achievable. Hereby, Terahertz time-domain spectroscopy with a mechanical delay stage (THz-TDS) was realized to obtain spectroscopic s-SNOM information, with an additional asynchronous optical sampling (ASOPS) option for rapid far-field measurements. The near-field spectral capabilities of the microscope are demonstrated with measurements on gold and on variably doped silicon samples. Here it was shown that the spectral response follows the theoretical prediction according to the Drude and the dipole model. While the broadband THz-TDS based s-SNOM in principle allows for the parallel recording of the full spectral response, the weak average power of the THz source ultimately limits the technique to optically investigate selected sample locations only. Therefore, for true THz near-field imaging, a FEL as a high-intensity narrow- band but highly-tunable THz source in combination with the s-SNOM technique, has been explored. Here, the characteristic near-field signatures at wavelengths from 35–230 μm are shown. Moreover, the realization of material sensitive THz near-field imaging is demonstrated by optically resolving, a structured gold rod with a reso- lution of up to 60 nm at 98 μm wavelength. Not only can the gold be distinguished from the silica substrate but moreover parts of the structure have been identified to be residual resin from the fabrication process. Furthermore, in order to explore the resolution capabilities of the technique, the near-fields of patterned gold nano- structures (Fischer pattern) were imaged with a 50 nm resolution at wavelengths up to 230 μm (1.2 THz). Finally, the imaging of a topography-independent optical material contrast of embedded organic structures, at exemplary 150 μm wavelength is shown, thereby demonstrating that the recorded near-field signal alone allows us to identify materials on the nanometer scale. The ability to measure spectroscopic images by THz-s-SNOM, will be of benefit to fundamental research into nanoscale composites, nano-structured conductivity phenomena and metamaterials, and furthermore will enable applications in the chemical and electronics industries. / Die Bildgebung mit THz Strahlung im Nanobereich ist höchst wünschenswert für genaue Materialuntersuchungen, welche nicht in anderen Spektralbereichen durchgeführt werden kann. Aufgrund des Beugungslimits ist kann jedoch mit klassischen Methoden keine bessere Auflösung als etwa 100 μm für THz-Strahlung erreicht werden. Die Methode der Streulicht-Nahfeldmikroskopie (s-SNOM) verspricht jedoch dieses Beugungslimit zu durchbrechen. In der vorliegenden Arbeit wird die Realisierung der Nahfeld-Mikroskopie und Spektroskopie im THz-Spektralbereich von 30–1500 μm (0.2–10 THz) präsentiert. Dies wurde mittels zweier grundsätzlich unterschiedlichen Strahlungsquellen an separaten Experimentaufbauten erreicht: Einer photoleitenden Antenne welche gepulste breitbandige THz-Strahlung von 0.2–2 THz emittiert, sowie einem Freie- Elektronen Laser (FEL) als schmalbandige hochleistungs Quelle, durchstimmbar von 1.3–10 THz. Mit dem photoleitenden Antennensystem konnte zum ersten mal demonstriert werden, dass mit breitbandigen THz-Pulsen Nahfeldspektroskopie möglich ist. Dazu wurde die übliche THz-Time-Domain-Spektroskopie (THz-TDS) zur Erhaltung der spektroskopischen s-SNOM Informationen, sowie asynchrones optisches Abtasten (ASOPS) für schnelle Fernfeld Spektroskopie eingesetzt. Die nahfeldspektroskopischen Fähigkeiten des Mikroskops wurden anhand von Messungen an Gold sowie unterschiedlich dotierten Siliziumproben demonstriert. Dabei konnte gezeigt werden, dass die spektrale Antwort den theoretischen Voraussagen des Drude- sowie Dipol Modells folgt. Während das breitband THz-TDS basierte s-SNOM spektroskopische Nahfelduntersuchungen zulässt, limitiert jedoch die schwache Ausgangsleistung der THz-quelle diese Technik insofern, dass praktisch nur Punktspektroskopie an ausgesuchten Probenstellen möglich ist. Für echte nanoskopische Nahfeldbildgebung wurde daher ein FEL als durchstimmbare hochleistungs THz-Quelle in Kombination mit der s-SNOM-Technik erforscht. Hierzu wurden die charakteristischen Nahfeld-Signaturen bei Wellenlängen von 35–230 μm untersucht, gefolgt von die Verwirklichung materialsensitiver THz Nahfeldbildgebung gezeigt an Goldstreifen mit bis zu 60 nm Auflösung. Dabei kann nicht nur das Gold von dem Glassubstrat unterschieden werden, sondern auch Ablagerungen als Überreste des Fabrikationsprozesses identifiziert werden. Um die Grenzen der Auflösungsmöglichkeiten dieser Technik zu sondieren, wurden weiterhin die Nahfelder von gemusterten Gold-Nanostrukturen (Fischer-Pattern) bei Wellenlängen bis zu 230 μm (1.2 THz) abgebildet. Hierbei wurde eine Auflösung von 50 nm festgestellt. Schliesslich konnte der topographieunabhängige Materialkontrast von eingebetteten organischen Strukturen, exemplarisch bei 150 μm Wellenlänge, gezeigt werden. Die Fähigkeit, spektroskopische Aufnahmen mittels der THZ-s-SNOM Technik zu erzeugen, wird der Grundlagenforschung und in der Nanotechnologie zu Gute kommen, und weiterhin Anwendungen in der Chemischen- und Halbleiterindustrie ermöglichen.
14

DFT-based microscopic magnetic modeling for low-dimensional spin systems

Janson, Oleg 26 September 2012 (has links) (PDF)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined. Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%). Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations. Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration. To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data. The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized. Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization. Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales. Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems. The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound. Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models. The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.
15

DFT-based microscopic magnetic modeling for low-dimensional spin systems

Janson, Oleg 29 June 2012 (has links)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined. Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%). Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations. Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration. To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data. The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized. Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization. Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales. Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems. The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound. Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models. The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.:List of Figures List of Tables List of Abbreviations 1. Introduction 2. Magnetism of cuprates 3. Experimental methods 4. DFT-based microscopic modeling 5. Simulations of a magnetic model 6. Model spin systems: challenging the computational approach 7. Kagome lattice compounds 8. Summary and outlook Appendix Bibliography List of publications Acknowledgments

Page generated in 0.0421 seconds