• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Participación del poro de transición de permeabilidad mitocondrial (mPTP) en precondicionamiento por taquicardia

Fernández Pérez, Carolina Isabel January 2009 (has links)
Memoria para optar al título de Bioquímico / El poro de transición de permeabilidad mitocondrial (mPTP) es una estructura que se forma en la mitocondria y que comunica la matriz mitocondrial directamente con el citoplasma. Se han propuesto como componentes estructurales del mPTP a tres proteínas, el canal aniónico sensible a potencial (VDAC) ubicado en la membrana externa mitocondrial, el transportador de nucleótidos de adenina (ANT) en la membrana interna y Ciclofilina D (CypD) en la matriz mitocondrial. El mPTP se puede abrir tanto por aumentos de ión calcio como de especies reactivas de oxígeno (ROS) al interior de la mitocondria. Aperturas transitorias de este poro tienen por objetivo liberar el exceso de ión calcio que se acumula en la mitocondria, pero aperturas prolongadas pueden provocar la entrada masiva de agua a la mitocondria lo que lleva a muerte celular luego de una isquemia prolongada. El corazón puede precondicionarse, esto es hacerse resistente al daño producido por isquemia - reperfusión. Existen diversos modos para precondicionar al corazón, y en todos ellos se ha determinado que existe un aumento en la producción de ROS, las que son determinantes para el desarrollo de la protección. El precondicionamiento por taquicardia consiste en episodios cortos de taquicardia realizados antes de una isquemia prolongada, lo que protege del daño producido por isquemia - reperfusión. Diversos modelos de precondicionamiento sugieren que el mecanismo de protección involucra la inhibición de la apertura del mPTP. El objetivo principal de este trabajo es demostrar que el precondicionamiento por taquicardia provoca un retardo en el ensamblaje del mPTP y que los ROS, por medio de modificaciones oxidativas de proteínas mitocondriales, median este efecto. Para ello se evaluó el cambio de volumen mitocondrial por sobrecarga de ión calcio de mitocondrias provenientes de corazones de animales controles y animales precondicionados por taquicardia. Se encontró que el cambio de volumen mitocondrial es más lento en las mitocondrias de los animales sometidos a taquicardia, lo que indica que ésta produce un retardo en la apertura del mPTP. Además, se observó que en las mitocondrias de corazones de animales sometidos a taquicardia se encuentran disminuidas dos proteínas claves para la formación del mPTP, ANT y CypD, lo que podría ser responsable del retardo en el ensamblaje del mPTP. Además la taquicardia precondicionante produjo un aumento generalizado de una modificación postraduccional de tipo oxidativa, la S-glutationilación, de proteínas mitocondriales. De acuerdo a los resultados obtenidos en este trabajo se puede concluir que el mPTP participa en el mecanismo de precondicionamiento por taquicardia. El retardo observado en la apertura del mPTP se correlaciona con la disminución de las proteínas ANT y CypD en las mitocondrias de los corazones de los animales precondicionados. Además, los ROS podrían estar mediando este efecto a través de la S-glutationilación de proteínas. / Mitochondrial permeability transition pore (mPTP) is a multiprotein complex that communicates directly the mitochondrial matrix with the cytoplasm. It has been proposed that mPTP is structurally formed by three proteins: the voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, the adenine nucleotide translocator (ANT), located in the inner mitochondrial membrane, and Cyclophilin D (CypD) located in the mitochondrial matrix. Increases in either calcium or reactive oxygen species (ROS) inside the mitochondria can induce the opening of mPTP. Transitory openings of this pore may be necessary to release calcium excesses accumulated inside the mitochondria, but long openings could provoke the massive entrance of water into the mitochondria and this is believed to be the cause of cell death after a sustained ischemia. The heart can be preconditioned, i.e. it can increase its resistance to the damage produced by ischemia-reperfusion. There are several protocols for heart preconditioning. Tachycardia preconditioning includes several short episodes of tachycardia before a sustained ischemia, which protect against the damage produced for ischemia-reperfusion. An increase in ROS production during the preconditioning maneuver is determinant for the development of the protection in all protocols of preconditioning. Several preconditioning models suggest that the protective mechanism involve the inhibition of mPTP opening. The main objective of this work is to show that tachycardia preconditioning produces a delay in mPTP assembly and that ROS, through oxidative modifications of mitochondrial proteins, mediate this effect. To answer this question we evaluated the volume change induced by calcium overload in mitocondria isolated from control and tachycardia preconditioned hearts. The results showed that the change in volume is slower in mitochondria from animals subjected to tachycardia, indicating that the mPTP opening is delayed. Furthermore, we observed a decrease in two proteins necessary to mPTP assembly, ANT and CypD. The decrease in the content of these two proteins could be responsible of the delay in mPTP assembly and the decrease in volume change. Besides, tachycardia preconditioning produced an increase in S-glutathionylation of mitochondrial proteins. S-glutathionylation is an oxidative post-transductional modification that could alter protein function. According to the results obtained in this thesis, it is possible to conclude that mPTP has a role in the tachycardia preconditioning mechanism. The preconditioning protocol would delay the mPTP opening, which correlates with the diminishing of ANT and CypD proteins in mitochondria from hearts of preconditioned animals. Besides, ROS could be mediating this effect through protein S-glutathionylation. / Fondecyt
2

Características Clínicas en personas afectadas con Enfermedades Mitocondriales que acuden al Instituto Nacional de Ciencias Neurológicas , período 2015-2020

Alarcón, Jorge, Carballo, Ximena 05 August 2020 (has links)
Las enfermedades mitocondriales representan uno de los grupos más frecuentes de enfermedades metabólicas. A pesar de que se les ha considerado como enfermedades raras o huérfanas, se han contabilizado más de 200 enfermedades mitocondriales (1). Además, se ha reportado que la frecuencia de las citopatías mitocondriales, es decir, trastornos primarios sobre la cadena respiratoria es de 1/ 5000 - 1/ 10 000 personas (2). También, se ha estimado que de las enfermedades mitocondriales se presentan entre 10-15 casos por cada 100,000 personas, lo que se asemeja a ciertas enfermedades neurológicas como la esclerosis lateral amiotrófica y las distrofias musculares
3

Regulación del metabolismo energético cardiaco por insulina y su relación con la fusión y fisión mitocondrial

Parra Ortíz, María Valentina January 2011 (has links)
Tesis presentada a la Universidad de Chile para optar al grado de Doctor en Bioquímica / Las mitocondrias corresponden a una red organelar altamente dinámica e interconectada, mantenida por eventos frecuentes de fisión y fusión. A través de estos procesos, las mitocondrias adoptan diferentes formas en respuesta a señales internas y externas, así como también presentan diferencias de distribución y forma en los diferentes tejidos de los seres pluricelulares. En las células mamíferas, las principales reguladoras del proceso de fusión mitocondrial, corresponden a la GTPasa Mitofusina (Mfn) y la proteína de la atrofia óptica-1 (Opa-1). Aunque la disrupción de la expresión de cualquiera de ellas, disminuye la función mitocondrial, aún no está claro si la regulación fisiológica del metabolismo involucra directamente cambios en la dinámica de este organelo. Los cardiomiocitos corresponden a la unidad funcional básica del corazón, los cuales para funcionar adecuadamente necesitan del aporte continuo y elevado de sustratos metabólicos en la forma de ácidos grasos libres (AGL), glucosa y oxígeno. En el corazón, la insulina regula el ingreso de glucosa al compartimento intracelular, la velocidad de la glicólisis, la síntesis del glicógeno, así como el crecimiento, contractibilidad y sobrevida de los cardiomiocitos. Sus acciones metabólicas son mediadas por la activación del receptor de insulina (RI) y una serie de otras proteínas de señalización río abajo, entre las que se incluyen a la familia de las proteínas sustrato del receptor de insulina (IRS-1 e IRS-2), la proteína fosfatidilinositol 3-kinasa (PI3-K) y la proteína serina/treonina kinasa Akt. Dado el papel crítico de insulina en el control metabólico y energético del corazón, el principal objetivo de este trabajo consistió en investigar si insulina modifica el metabolismo mitocondrial a través de la regulación de la dinámica. Trabajos recientes han mostrado alteraciones de la maquinaria proteica reguladora de estos procesos en pacientes obesos e insulino-resistentes, haciendo relevante el estudio de la señalización de insulina y su implicancia en la regulación de la morfología mitocondrial. Para probar esta hipótesis, cultivos primarios de cardiomiocitos de rata neonata se trataron con insulina 10 nM por 0 – 24 h y se incubaron con la sonda Mitotracker Green en los últimos 30 min de exposición a la hormona. Posteriormente, las células se visualizaron en un microcopio confocal, la red mitocondrial se reconstruyó tridimensionalmente a partir de las imágenes obtenidas, determinándose el número y volumen promedio de las mitoncondrias. Los resultados muestran que insulina indujo fusión de la red mitocondrial a las 3 h de tratamiento, lo cual se evidenció por un aumento del volumen mitocondrial promedio (+156%; p<0,001) y una disminución del número de mitocondrias por célula (-60%; p<0,001). Al mismo tiempo, estos cambios, se asociaron a un aumento en los niveles de la proteína Opa-1 (+3,7±1,5; p<0,05) y su colocalización efectiva con Mfn2. Por medio de microscopía electrónica también se observó la aparición de mitocondrias de gran tamaño en el mismo tiempo descrito anteriormente. Sin embargo, bajo estas mismas condiciones experimentales, tanto los niveles de Mfn2 y de la proteína constitutiva mitocondrial mtHsp70 no se modificaron en relación a los controles. Con respecto a la regulación del metabolismo energético, insulina aumentó el potencial de la membrana mitocondrial (+21%; p<0,05), los niveles intracelulares de ATP (+28%; p<0,001) y la respiración celular (+19%; p<0,01). Paralelamente, la transducción de los cardiomiocitos con un adenovirus que codifica para un antisentido contra Mfn2 o un micro RNA dirigido a Opa-1 previno todos los incrementos metabólicos y morfológicos inducidos por insulina antes descritos. Para confirmar si estos resultados también ocurrían en un modelo in vivo, ratones silvestres C57BL6 se sometieron a un clamp euglicémico - hiperinsulinémico por 2 h, extrayéndose los corazones al término del experimento. Insulina aumentó los niveles totales de Opa-1 en el tejido cardiaco (1,8 veces; p<0,001) respecto a los controles así como la respiración (+38; p<0,05) y síntesis de ATP (+50%; p<0,05) en fibras cardiacas aisladas. Finalmente, el tratamiento previo de cardiomiocitos con inhibidores generales de la vía transduccional RI/PI3-K/Akt y del inhibidor específico del complejo mTORc1, rapamicina, previno la fusión mitocondrial inducida por insulina, Este último inhibidor también previno los incrementos en el metabolismo energético y en los niveles de Opa-1, sugiriendo un papel clave del complejo mTORc1 en la señalización río abajo activada insulina, en el control de la dinámica mitocondrial. En conclusión, estos antecedentes colectivamente indican que insulina regula el metabolismo energético en el cardiomiocito a través de un mecanismo dependiente de la fusión mitocondrial y de la vía transduccional Akt/mTORc1. / Mitochondria exist as a dynamic network of interconnected organelles that undergo frequent fission and fusion events. Through these processes mitochondria may adopt different shapes in response to internal and external signals and also display particular morphologies and distributions in the many different cell types of higher eukaryotes. In mammalian cells, the main regulators of mitochondrial fusion are the dynamin-related GTPase mitofusin (Mfn) and optic atrophy protein 1 (Opa- 1). Although a disruption in the expression of these proteins impairs mitochondrial function, it is not clear if the physiological regulation of mitochondrial metabolism directly involves changes in mitochondrial dynamics. Cardiomyocytes are the basic functional unit of the heart and in order to function properly, they require a constantly high supply of metabolic substrates in the form of free fatty acids (FFA), glucose and oxygen. In the heart, insulin regulates glucose transport inside the cell, glycolysis rate, glycogen synthesis, growth, cardiomyocyte contractility and survival. The metabolic actions of insulin are mediated through the activation of the insulin receptor (IR) and a series of downstream associated proteins, including the insulin receptor substrate family proteins (IRS-1 and IRS-2), the phosphoinositide 3-kinase (PI3-K) and the serine/threonine kinase Akt. Given the critical role of insulin in the metabolic and energetic control of heart, the goal of this study was to determine if insulin regulates mitochondrial metabolism affecting mitochondrial dynamics. Previous work from other groups had shown that obese and insulin-resistant patients have alterations in the protein machinery of mitochondrial dynamics, further implying insulin signaling in the control of mitochondrial morphology. To prove our hypothesis, cultured rat neonatal ventricular cardiomyocytes were treated with 10 nM of insulin for 0 - 24 h and three-dimensional images of cells were obtained using the mitochondrial dye Mitotracker Green and confocal microscopy. Three hours of insulin treatment promoted mitochondrial fusion as evidenced by an increase in the mean mitochondrial volume (+156%; p<0.001) and a reduction in the mitochondrial number (-60%; p<0.001). These changes were associated with both an increase in the levels of Opa-1 protein (+3.7±1.5; p<0.05) and in its effective colocalization with the protein Mfn2. By means of electronic microscopy we also observed the apparition of giant mitochondria at 3 hours of treatment. However, at these same conditions, we did not find any change in the total levels of Mfn2 or in the constitutive mitochondrial protein, mtHsp70, ruling out mitochondrial biogenesis or degradative processes. Regarding the control of metabolism, the treatment with insulin increased mitochondrial membrane potential (+21%; p<0.05), intracellular levels of ATP (+28%; p<0.001) and oxygen consumption rate (+19%; p<0.01). Transduction of cardiomyocytes with an adenovirus harboring an antisense Mfn2 oligonucleotide or a micro RNA against Opa-1 prevented all the insulin-induced changes in mitochondrial morphology and function. To confirm that these changes also occur in an in vivo model, C57BL6 mice were subjected to hyperinsulinemic-euglycemic clamps for 2 h, at the end of which, hearts were harvested. Relative to controls, insulin increased the total levels of Opa-1 protein by 1.8±0.1- fold; (p<0.001), the ADP-stimulated respiration rate (+38; p<0.05) and ATP synthesis (+50%; p<0.05) evaluated in saponin-permeabilized fibers. Finally, the pre-treatment of cardiomyocytes with general inhibitors of the insulin transduction pathway RI/PI3- K/Akt avoided the insulin induced fusion, while rapamycin, a specific inhibitor of the mTORc1 protein, inhibited fusion and also also prevented the metabolic boost and the Opa-1 protein increase observed after insulin treatment, suggesting an active role for mTORc1, downstream the canonical insulin route in the control of mitochondrial dynamics. These data indicate for first time that insulin acutely regulates mitochondrial metabolism through a mechanism that is dependent upon increased mitochondrial fusion. / FONDAP; FONDECYT; MECESUP
4

Diferencias genéticas entre ratas abstemias (UChA) y bebedoras de alcohol (UChB) en los genes de siete subunidades del complejo I codificadas en el genoma mitocondrial

González Martínez, Ginez Andrés January 2007 (has links)
La predisposición al alcoholismo está en gran parte determinada por factores genéticos que son difíciles de abordar en humanos, por lo que se han desarrollado en el mundo líneas de ratas bebedoras y no bebedoras de alcohol para estudiar los factores permisivos y protectores del alcoholismo. En Chile se encuentran la línea UChA (Universidad de Chile, Abstemias) y la línea UChB (Universidad de Chile, Bebedoras) que corresponden a ratas derivadas de la cepa Wistar. Las ratas UChA beben entre 0,1 y 1 g de etanol/kg/día, en cambio las ratas UChB beben entre 4 y 6 g/kg/día. En la ratay el hombre la metabolización del etanol ocurre principalmente en el hígado, donde la deshidrogenasa alcohólica (ADH) transforma el etanol en acetaldehído que es transformado en acetato por la deshidrogenasa aldehídica mitocondrial (ALDH2). La ADH y la ALDH2 utilizan NAD+ como cofactor en las reacciones de oxidación. El linaje UChA se diferencia del linaje UChB en el gen Aldh2: el alelo Aldh22 se encuentra exclusivamente en el linaje UChA y los alelos Aldh21 y Aldh23 se encuentran en el linaje UChB, siendo el alelo Aldh23 exclusivo del linaje bebedor. Además, el linaje UChA se diferencia del UChB en la capacidad de generación de NAD+ de las mitocondrias: menor en las mitocondrias del linaje UChA que en las del linaje UChB. En ratas, la variante ALDH23 es suficiente para generar un consumo elevado de alcohol, independientemente de la mitocondria que posean. En cambio, la variante ALDH22 es necesaria pero no suficiente para determinar un bajo consumo de alcohol, fenotipo que sí se manifiesta cuando, además de la ALDH22, las ratas tienen mitocondrias de menor capacidad de generar NAD+. Las diferencias en las capacidades respiratorias mitocondriales se deben al complejo I (deshidrogenasa de NADH) formado por 46 subunidades. Nueve de ellas son de herencia exclusivamente materna, dos codificadas en el cromosoma X y siete en el genoma mitocondrial. En esta memoria se estudiaron los genes mitocondriales que codifican subunidades del complejo I de las ratas UChA y UChB con el propósito de identificar las bases moleculares de las diferencias bioquímicas entre ambos linajes. Se amplificaron, secuenciaron y analizaron, de cinco ratas UChA (Aldh22/Aldh22) y cinco ratas UChB (Aldh23/Aldh23), siete genes mitocondriales que codifican sendas subunidades del complejo I mitocondrial. No se encontró heteroplasmia puesto que hay un sólo tipo de mitocondria por linaje, es decir, para cada gen, las cinco ratas UChA son iguales entre sí y las cinco ratas UChB también son iguales entre sí. Se encontró que las ratas UChA (no bebedoras) y UChB (bebedoras de alcohol) se diferencian en los genes mitocondriales Nd1, Nd2, Nd3, Nd4, Nd5 y Nd6 del complejo I. No se encontraron diferencias nucleotídicas en el gen Nd4L. Los genes Nd1 y Nd3 sólo tienen diferencias nucleotídicas silentes mientras que los genes Nd2, Nd4, Nd5 y Nd6 tienen además diferencias nucleotídicas conducentes a cambios aminoacídicos, por lo que ambos linajes difieren en cuatro proteínas. Las subunidades ND2 se diferencian en cuatro posiciones aminoacídicas, (UChA/UChB) posiciones 150 (Ser/Asn), 265 (Thr/Ala), 304 (Met/Thr) y una inserción de histidina en la posición 318 (His/---). Estas variaciones aminoacídicas en la proteína ND2 determinan cambios estructurales que se manifiestan de manera evidente en un modelo tridimensional y en el número de segmentos de transmembrana: nueve en el linaje UChA y diez en el linaje UChB. Las subunidades ND4 se diferencian en las posiciones 23 (Thr/Ile) y 419 (Pro/Leu), las subunidades ND5 se diferencian en la posición 37 (Val/Ile) y las subunidades ND6 en la posición 139 (Val/Ile). Siete de las catorce secuencias genéticas obtenidas en este trabajo son variantes nuevas entre los roedores: los genes Nd1, Nd5 y Nd6 de ambos linajes y el gen Nd4 del linaje UChA. Las secuencias aminoacídicas deducidas de la subunidad ND5 de los linajes UChA y UChB y la secuencia aminoacídica deducida de la subunidad ND4 del linaje UChA corresponden a secuencias proteicas nuevas entre los roedores. Concluyendo, los polimorfismos génicos aquí reportados en subunidades del complejo I mitocondrial, en especial los responsables de variaciones aminoacídicas, pueden establecer nuevos factores (permisivos o protectores) de herencia exclusivamente materna que influyen en la capacidad mitocondrial de regenerar el NAD+ y, por lo tanto, en el consumo de alcohol.
5

Regulación del acoplamiento mitocondriaretículo endoplásmico y el metabolismo mitocondrial durante el estrés proteotóxico mitocondrial

López Crisosto, Camila January 2017 (has links)
Tesis presentada a la Universidad de Chile para optar al grado académico de Doctor en Bioquímica / La acumulación de proteínas mal plegadas dentro de las mitocondrias genera una respuesta transcripcional adaptativa, denominada UPR mitocondrial. A través de esta respuesta, las mitocondrias señalizan hacia el núcleo para aumentar la expresión de genes que permiten restaurar la homeostasis proteica. Sin embargo, se desconoce si además de esta respuesta genética, existe un cambio adaptativo en el metabolismo celular en las etapas tempranas del estrés mitocondrial. El acoplamiento físico-funcional del retículo endoplásmico (RE) con la mitocondria es uno de los principales reguladores del metabolismo mitocondrial, el cual permite el traspaso directo de Ca2+ entre ambos organelos. En la mitocondria, el Ca2+ actúa como cofactor de enzimas que participan en el ciclo de Krebs, potenciando la producción de ATP. No obstante, actualmente no existe información sobre posibles cambios en el acoplamiento mitocondria-RE y su papel durante el estrés mitocondrial. A partir de estos antecedentes, se planteó como hipótesis de esta tesis que la acumulación de proteínas mal plegadas al interior de la mitocondria (UPR mitocondrial) favorece el aumento del metabolismo mitocondrial y el incremento en el contacto funcional entre mitocondria y RE. Para responder esta hipótesis se trabajó con la línea celular HeLa, induciendo el estrés mitocondrial mediante el tratamiento con doxiciclina, antibiótico que inhibe la traducción de proteínas en la mitocondria. De esta forma, se produce un desbalance entre la expresión de las subunidades nucleares y mitocondriales de los complejos respiratorios lo que lleva a estrés por acumulación de proteínas no ensambladas. En estas condiciones se estableció que el tratamiento con doxiciclina produce, entre las 24 y 72 h, un desbalance mito-nuclear de proteínas que son parte de los complejos respiratorios e induce la respuesta frente a este estrés en cuanto a expresión de marcadores de la UPR mitocondrial (CHOP, C/EBPβ, ClpP, mtHsp60), sin afectar la viabilidad celular. Por otra parte, a tiempos cortos de tratamiento, de entre 2 y 4 h, la doxiciclina aumentó los parámetros metabólicos celulares, como los niveles totales de ATP y el consumo de oxígeno. A estos mismos tiempos de tratamiento, doxiciclina incrementó los contactos físicos y funcionales entre mitocondrias y RE, evaluados mediante colocalización por inmunofluorescencia indirecta y cinéticas de captación de Ca2+ mitocondrial por microscopía confocal. Se puede concluir que el estrés mitocondrial inducido por doxiciclina estimula el acoplamiento RE-mitocondria y una potenciación del metabolismo celular a tiempos tempranos. Estos resultados sugieren que esta respuesta metabólica favorece la adaptación celular frente al estrés mitocondrial / The accumulation of unfolded proteins within the mitochondria generates an adaptive transcriptional response, denominated mitochondrial UPR. Through this response, the mitochondria signal back towards the nucleus to increase gene expression that allow restoring protein homeostasis. However, it is still unknown whether, in addition to this genetic response, there is an adaptive change in cell metabolism in the early stages of mitochondrial stress. The physical-functional coupling of the endoplasmic reticulum (ER) with the mitochondria is one of the main regulators of mitochondrial metabolism, which allows the direct transfer of Ca2+ between both organelles. In mitochondria, Ca2+ acts as a cofactor of enzymes involved in the Krebs cycle, enhancing ATP production. However, there is currently no information on possible changes in mitochondrial-ER coupling and its role during mitochondrial stress. From this background, we hypothesized that the accumulation of unfolded proteins inside the mitochondria (mitochondrial UPR) favours the increase in mitochondrial metabolism and in the functional contact between mitochondria and ER. To address this hypothesis, we worked with the HeLa cell line, inducing mitochondrial stress by treatment with doxycycline, an antibiotic that inhibits the translation of mitochondrial-encoded proteins. In this way, there is an imbalance between the expression of nuclear and mitochondrial subunits of the respiratory complexes leading to a stress by accumulation of non-assembled proteins. Under these conditions, we established that the treatment with doxycycline produces a mito-nuclear imbalance of the proteins, between 24 and 72 h, that are part of the respiratory complexes and induces the response against this stress as an expression of the mitochondrial UPR markers (CHOP, C/EBPβ, ClpP, mtHsp60), without affecting cell viability. On the other hand, at short treatment times (between 2 and 4 h), doxycycline increased cellular metabolic parameters, such as total ATP levels and oxygen consumption. At these times, doxycycline increases the physical and functional contacts between mitochondria and ER, evaluated by indirect immunofluorescence colocalization and kinetics of mitochondrial Ca2+ uptake using confocal microscopy. In summary, the mitochondrial stress induced by doxycycline stimulates an early mitochondrial-RE coupling and potentiates cell metabolism. These results suggest that this metabolic response favours cellular adaptation to mitochondrial stress / Conicyt; Fondecyt; Fondap
6

Participación de Miro1 en hipertrofia en cardiomiocitos de rata neonata

Conejeros Vásquez, Carolina January 2017 (has links)
Magíster en fisiopatología / La hipertrofia cardiaca es una respuesta adaptativa del corazón frente a situaciones de sobrecarga de trabajo, la cual funciona inicialmente como un mecanismo compensatorio. Sin embargo, la hipertrofia sostenida en el tiempo puede conducir a la miocardiopatía dilatada, insuficiencia cardiaca y muerte súbita. Los receptores adrenérgicos juegan un papel fundamental en la regulación de la función cardiaca bajo condiciones normales y patológicas. Las mitocondrias son responsables del 90% de la producción de ATP en el cardiomiocito y su función está regulada dinámicamente por procesos de fusión y fisión. Cambios en la dinámica y energética mitocondrial constituyen una característica distintiva de los corazones hipertrofiados. La estimulación de cardiomiocitos con agonistas adrenérgicos genera hipertrofia y aumento de la fisión mitocondrial, lo que se asocia a una disminución de la producción de ATP. Miro1 es una proteína de la membrana mitocondrial externa involucrada en la dinámica y el transporte de este organelo, cuya función ha sido estudiada principalmente a nivel neuronal. Es ampliamente conocido que alteraciones en proteínas mitocondriales están relacionadas directamente con cambios en el funcionamiento mitocondrial, y por ende con patologías como la hipertrofia del cardiomiocito. Es por ello que en base a estos antecedentes nos propusimos la siguiente hipótesis: “Miro1 regula negativamente la hipertrofia inducida por fenilefrina en cardiomiocitos de rata neonata” Para contestar esta hipótesis los objetivos específicos de este trabajo se enfocaron en evaluar tanto en cardiomiocitos control como en aquellos tratados con fenilefrina 50 μM el contenido de Miro1 y los efectos del silenciamiento y sobrexpresión de esta proteína sobre el área celular y los marcadores de hipertrofia. Resultados Cardiomiocitos de rata neonata tratados con fenilefrina 50 μM aumentaron en un 50% el área celular, así como también la expresión de los marcadores hipertróficos de β-MHC, ANP y BNP. El silenciamiento de Miro1 indujo un aumento significativo en los niveles de ARNm de ANP y BNP cuando los cardiomiocitos fueron estimulados con fenilefrina, no observándose cambios en el área celular ni en los niveles de β-MHC. Por el contrario, la sobre expresión de Miro1 en los cardiomiocitos evitó tanto el aumento del área celular como el aumento en la expresión de marcadores de hipertrofia. Estos resultados sugieren la participación de Miro1 como proteína reguladora de la hipertrofia en cardiomiocitos. / Cardiac hypertrophy is an adaptive response to manage the excessive cardiac workload of the heart to maintain normal cardiac function. However, sustained hypertrophy leads to cardiomyopathy, cardiac failure and death. Adrenergic receptors play a key role in the regulation of cardiac function under normal and pathological conditions. Mitochondria are responsible for 90% of ATP production in the cardiomyocyte and their function is dynamically regulated by fusion and fission processes. Changes in mitochondrial dynamics and metabolism are central issues in hypertrophied hearts. The stimulation of cardiomyocytes with adrenergic agonists generate hypertrophy and an increase in mitochondrial fission, which in turn is associated with a decrease in ATP synthesis. Miro1 is a mitochondrial outer membrane protein which is involved in the mitochondrial dynamics and transport at neuronal level. It is known that alterations in mitochondrial dynamics proteins are directly associated with mitochondrial dysfunction and with cardiac pathologies such as cardiomyocyte hypertrophy. Based on these asseverations we hypothesized that: "Miro1 negatively regulates phenylephrine-induced hypertrophy in neonatal rat cardiomyocytes" In order to answer this hypothesis the specific aims were focused on to evaluate Miro1 content, and the effect of silencing or overexpressing Miro1 on surface cellular area and hypertrophic gene markers expression in control cardiomyocytes and phenylephrine treated cardiomyocytes. Results Neonatal rat cardiomyocytes treated with 50 μM phenylephrine 50% increased the surface cell area, as well as the expression of the hypertrophic gene markers: β-MHC, ANP and BNP. Miro1 silencing induced a significant increase in ANP and BNP mRNA levels when cardiomyocytes were stimulated with phenylephrine, with no changes in surface cell area or β-MHC mRNA levels. In contrast, Miro1 overexpression in cardiomyocytes prevented both surface cell area increase and mRNA levels of hypertrophic gene markers. These results suggest the involvement of Miro1 as a regulatory protein of hypertrophy in cardiomyocytes.
7

Función y biogénesis mitocondrial. Diferencias entre géneros

Justo López, Roberto 25 July 2005 (has links)
El objetivo principal de esta tesis se ha centrado en el estudio de las diferencias entre ratas macho y hembra en la morfología, la función y la biogénesis mitocondrial del tejido adiposo marrón (TAM) y del hígado, mediante el análisis de distintas subpoblaciones mitocondriales obtenidas a través del fraccionamiento de la población mitocondrial total. Los resultados han puesto de manifiesto que las diferencias entre géneros a nivel mitocondrial tanto en el TAM y como en el hígado podrían ser atribuidas a la existencia de una subpoblación mitocondrial altamente diferenciada en las hembras, hecho que podría ser indicativo de un proceso de biogénesis mitocondrial distinto entre ambos géneros. Los resultados sugieren la existencia de un factor común a ambos tejidos que influiría en la regulación de dicho proceso. En este sentido, las hormonas sexuales podrían ser uno de los factores candidatos responsables de las diferencias observadas en el presente trabajo. / The main goal of this thesis has been focused on the study of gender differences in the mitochondrial morphology, function and biogenesis both in brown adipose tissue (BAT) and in liver, through the analysis of the several mitochondrial subpopulations isolated by means of the fractionation of the whole mitochondrial population. Results have reflected that the gender dimorphism stated in mitochondrial population both in BAT and in liver could be attributed to the existence to more highly differentiated mitochondria in female rats, which could be the result of a different mitochondrial biogenesis process between genders. Since the existence of a common factor which influences this process in both tissues could be hypothesized, sexual hormones could be one of the main factors responsible for the differences described in the present work
8

Interacció VHC-hoste: Estudi genètic i clínic en pacients coinfectats amb VHC-VIH

Matas Crespí, Marina 14 January 2013 (has links)
L’Organització Mundial de la Salut (OMS) estima que fins a un 3% de la població mundial ha estat infectada pel virus de l’hepatitis C i és la causa més important d’hepatitis crònica, cirrosi i de malaltia hepàtica terminal, que finalment acaba conduint a un transplantament de fetge. La relació entre la variabilitat en la seqüència del virus de l’hepatitis C i el desenvolupament de la malaltia hepàtica és de tipus multifactorial. La infecció crònica causa fibrosi hepàtica, fet que es veu accelerat per mecanismes desconeguts en el cas de pacients coinfectats amb VIH. La progressió de la malaltia produïda pel VHC en pacients coinfectats, està influenciada no només per factors demogràfics, epidemiològics o pels antecedents clínics dels pacients, si no també per diferències genètiques entre els diferents virus i els hostes.

Page generated in 0.0777 seconds