81 |
Unit commitment model development for hydropower on the Day-Ahead spot market.Radulesco, Romain January 2020 (has links)
In the aftermath of the liberalization of European Energy Markets in the 2000s, Power Exchange platforms have constantly evolved towards more integrated and competitive designs, where quality forecasts and effective optimization strategies play decisive roles. This study presents the development of a hydropower scheduling optimization algorithm for the Day-Ahead spot market using Mixed Integer Linear Programming (MILP). This work was supported by the hydro asset management team of ENGIE Global Energy Markets (GEM) located in Brussels. The model developed is focusing on the optimization of Coindre Hydraulic Power Plant (HPP), located in the highlands of Massif Central in France. With the combined water discharge of its two interconnected reservoirs, Grande-Rhue and Petite-Rhue, the powerhouse can reach up to 36 MW of power output capacity. The two reservoirs are located kilometres apart from each other and have different storage capacities and catchment areas. The reservoirs naturally exchange water due to the level difference along an interconnection pipe. Maximum power output is limited by water level differences in both reservoirs, which makes modelling complicated. These operational constraints are a limiting factor in terms of operability, as a result the scheduling process is a non-trivial task and is time-consuming. A framing study of the power plant was conducted over a hydraulic year to identify the governing parameters of the model. The multi-reservoir nature of the optimization problem oriented the model development towards a Mixed Integer Linear Formulation. After experimenting with different solvers, Gurobi 28.1.0 was chosen for its performance in the Branch and Cut Algorithm for the power scheduling task. The performance of the new model has been validated by re-running the model on past production plans, results show that reservoir volume errors are less than 5% of their respective capacities on a 5 days’ time-horizon. After backtesting it was found that the new optimization strategy results in higher revenue for the plant due to the optimized operation at higher average energy prices. The results also bring out the importance of proper valve actuation in the optimization strategy, as well as the need for future studies. / Till följd av liberaliseringen av de europeiska energimarknaderna under 2000-talet har energiföretagen och elbörserna ständigt utvecklats mot mer integrerade och konkurrenskraftiga lösningar, där kvalitetsprognoser och effektiva optimeringsstrategier spelar avgörande roller. Detta examensarbete presenterar utvecklingen av en algoritm för optimering av vattenkraftplaneringen på Day-Ahead elmarknaden med hjälp av en matematisk modell av typen Mixed Integer Linear Programming (MILP). Arbetet initierades av och utfördes hos ENGIE Global Energy Markets (GEM) i Bryssel. Modellen som utvecklats är tänkt att optimera Coindre vattenkraftverk, som ligger på höglandet inom Massif Central i Frankrike. Med det kombinerade vattenutsläppet från dess två fördämningar, Grande-Rhue och Petite-Rhue, kan kraftverket leverera upp till 36 MW el netto till elnätet. Vattenreservoarerna ligger flertalet kilometer ifrån varandra och har mycket olika kapacitet och upptagningsområden. Båda reservoarerna är kopplade till varandra genom det gemensamma tilloppsröret till kraftverket, där en reglerventil finns endast vid Petite-Rhue. Vatten kan växlas naturligt mellan de två dammarna när ventilen är öppen på grund av skillnaden i varderas vattennivå. Den maximala effekten från kraftverket är begränsad av vattennivåerna i båda reservoarerna vilket gör optimeringsmodelleringen komplicerad. Dessa operationella begränsningar är mycket hindrande vad gäller valet av driftsregim, eftersom kalkylering av driftsplaneringen blir en svår och tidskrävande uppgift. En ramstudie av vattenkraftverket genomfördes under ett typiskt hydrauliskt år för att identifiera modellens styrparametrar. Den möjliga vattenöverföringen mellan de två dammarna orienterade modellutvecklingen mot en Mixed Integer Linear Programming (MILP) formulering. Efter att ha experimenterat med olika kalkylverktyg valdes Gurobi 28.1.0 för sin bra prestation i lösningen av Branch and Cut-algoritmen. Systemets hydraulik har validerats genom att injicera realiserade produktionsplaner som input till modellen. Resultaten visar att volymfelet är mindre än 5% av deras respektive kapacitet under en 5-dagars tidshorisont. Efter tvärstester mot historiska data konstaterades det att den nya optimeringsstrategin resulterar i bättre genomsnittliga elpriser på varje kWh inmatad till nätet och högre intäkter för kraftverket. Resultaten visar också på vikten av korrekt ventilmanövrering i optimeringsstrategin. Modellen körs i rimliga beräkningstider och redan används i den dagliga optimeringen av Coindre kraftverket, vilket sparar mycket tid. Specifika exempel på den optimerade prestandan och framtida förbättringar hittas i slutet av denna rapport.
|
82 |
[pt] PROBLEMA DE ROTEIRIZAÇÃO DE VEÍCULOS COM PROBABILIDADE DE ROUBO DE CARGA: RESOLUÇÃO COM SIMULATED ANNEALING / [en] VEHICLE ROUTING PROBLEM WITH CARGO THEFT PROBABILITY: RESOLUTION WITH SIMULATED ANNEALINGRODRIGO RANGEL RIBEIRO BEZERRA 02 February 2016 (has links)
[pt] O Problema de Roteirização de Veículos (Vehicle Routing Problem - VRP) é um problema clássico combinatório bem conhecido. Este trabalho apresenta um novo fator no modelo de otimização matemática de otimização do VRP, considerando restrições que abordam a probabilidade de roubo de cargas nas regiões visitadas, além das restrições tradicionais, tais como o número de veículos, janelas de tempo, a capacidade do veículo e tempo de ciclo dos veículos. O modelo desenvolvido é testado em um estudo de caso real, considerando uma empresa de distribuição de produtos farmacêuticos do Rio de Janeiro. As soluções de rota com e sem risco de roubo de carga são comparadas. O modelo é resolvido usando o software AIMMS, para análises com instância pequenas, e resolvidas executando a Metaheurística Simulated Annealing, para o estudo de caso, onde se utiliza de duas instâncias. / [en] The Vehicle Routing Problem (VRP) is a classic well-known combinatorial problem. This paper introduces a new factor in the VRP mathematical optimization model, considering restrictions that address the probability of cargo theft in the regions visited, beyond the traditional constraints such as the number of vehicles, time windows, the capacity of the vehicle and the vehicle s cycle time. The paper proposes a mixed integer linear model that minimizes total transportation costs and cargo theft costs. The model is tested in a real-life case study, a company that distributes pharmaceutical products in Rio de Janeiro. The route solutions with and without cargo theft risk are compared. The model is solved using AIMMS software for analysis with small instance, and resolved by running the Simulated Annealing Metaheuristic, for the case study, which uses two instances.
|
83 |
[en] ASSESSMENT OF THE PROCESSING CAPACITY IN SORTING RAILWAY YARDS THROUGH OPTIMIZATION MODEL / [pt] AVALIAÇÃO DE CAPACIDADE DE PROCESSAMENTO EM PÁTIOS FERROVIÁRIOS PLANOS DE CLASSIFICAÇÃO ATRAVÉS DE MODELO DE OTIMIZAÇÃORENATA FERREIRA DE SA 08 November 2021 (has links)
[pt] Este trabalho trata do problema real de avaliar a capacidade de processamento
de pátios ferroviários planos de classificação. Nesses pátios, os vagões
são recebidos em trens e movimentam respeitando a disposição dos trilhos e
a formação sequencial do trem de saída. Movimentações ineficientes implicam
em uma capacidade de processamento inferior à potencial do pátio dado seu
layout. O objetivo desta pesquisa é descrever o problema e incitar um método
capaz de calcular a capacidade de processamento de pátios ferroviários planos
de classificação no horizonte estratégico, indicando se existe ou não a necessidade
de um projeto de expansão para garantir atendimento à demanda prevista.
O problema foi modelado através de programação linear inteira mista
(MILP) baseado na teoria de sequenciamento de produção. O modelo foi aplicado
em instâncias de teste, reproduzindo movimentações reais de vagões, e
provou avaliar diferentes layouts adequadamente, porém com elevado tempo
de execução. A inicialização de algumas variáveis binárias do modelo permitiu
um incremento de tamanho nas instâncias, porém ainda inviável para aplicação
na prática. / [en] This work deals with the real problem of evaluating the processing
capacity of flat rail classification yards. In these yards, the railway cars are
received on trains and move respecting the car sequence of the outgoing
train. Inefficient movements imply a lower processing capacity than the yard s
potential given its layout. The objective of this research is to describe the
problem and to incite a method capable of calculating the processing capacity
of flat rail classification yards in the strategic horizon, indicating whether or
not there is a need for an expansion project to ensure meeting the expected
demand. The problem was modeled using mixed integer linear programming
(MILP) based on production scheduling theory. The model was applied to test
instances, reproducing real railway car movements, and proved to evaluate
different layouts properly, but with a high execution time. The initialization
of some binary variables of the model allowed an increase in the size of the
instances, however it is still unfeasible for practical application.
|
84 |
Analyzing the Improvement Potential of Workforce Scheduling with Focus on the Planning Process and Caregiver Continuity : A Case Study of a Swedish Home Care Planning System / Analys av förbättringspotential inom schemaläggning med fokus på planeringsprocess och personalkontinuitet : En fallstudie av ett planeringssystem inom den Svenska HemtjänstenUyanga, Enkhzul, Wang, Lida January 2019 (has links)
Swedish home care industry has been facing both external and internal problems, such as ageing population, varying quality and unsatisfactory continuity. Accordingly, workforce scheduling system, as one of the most common and useful software within home care planning nowadays, is in need of constant improvement and upgrading. This master’s thesis aimed to explore and analyze improvement potential of an established workforce scheduling system for an IT-company. The thesis was divided into two phases, of which a pre-study in Phase I tried to understand the planning process for planners and identify the perceived problems and shortcomings of the current system from a planner’s perspective. Based on the analysis from the pre-study, the caregiver continuity was chosen as the research area for Phase II. The current system was re-implemented and was modelled as an optimization problem. Furthermore, the system mainly consisted of two key parts, mixed integer linear programming (MILP) and heuristics. Different approaches in terms of modifications in both MILP and heuristics were applied to the re-implemented system. The performance of the modifications was measured by multiple evaluation indicators. The test results showed that there was a potential to improve caregiver continuity with 1.2% to almost 13% depending on the modification type. The modifications were lastly suggested for further examination regarding their practical appropriateness by applying them to the current running algorithm. / Den svenska hemtjänsten möter både yttre och inre problem såsom åldrande befolkning, varierande kvalitet och bristande kontinuitet. Schemaläggningssystemet som är en av de vanligaste och användbaraste programvarorna inom hemtjänsten behöver därmed en ständig förbättring och uppgradering som bemöter de existerande utmaningarna. Detta examensarbete hade som syfte att utforska och analysera förbättringspotentialen av ett etablerat schemaläggningssystem för ett ITföretag. Arbetet var indelat i två faser, varav förstudien i Fas I försökte förstå planerarnas planeringsprocesser och identifiera upplevda problem och brister i det nuvarande systemet utifrån ett planerares perspektiv. Baserat på analysen från förstudien, personalkontinuitet valdes som ett forskningsområde för Fas II. Nuvarande systemet implementerades om och det modellerades som ett optimeringsproblem. Systemet bestod huvudsakligen av två nyckeldelar, blandat heltalslinjärprogrammering (MILP) och heuristik. Olika metoder i form av modifieringar i både MILP och heuristik tillämpades på det omimplementerade systemet. Modifieringarnas prestanda mättes sedan med flera utvärderingsindikatorer. Testresultaten visade att, beroende på vilken modifiering det gäller, fanns det en potential att förbättra personalkontinuiteten med 1,2% till nästan 13%. Det föreslogs slutligen att modifieringarnas praktiska lämplighet behövs undersökas ytterligare genom att applicera det på det nuvarande systemet som är i drift.
|
85 |
Optimal Multi-Skilled Workforce Scheduling for Contact Centers Using Mixed Integer Linear Programming : A Method to Automatize Workforce Management / Optimal schemaläggning av multikompetent arbetskraft vid kundtjänstkontor med mixad linjär heltalsprogrammering : En metod för att automatisera personalplaneringEriksson, Sara January 2020 (has links)
This master thesis in optimization and systems theory is a development of two different optimization models formulated to schedule multi-skilled agents for contact centers depending on the forecasted demand, assigned by Teleopti. Four mixed integer linear programming models are created with the optimization programming language GAMS and solved by the internet based solver NEOS. Two of the models are formulated to perform an optimal scheduling that matches a forecasted demand per skill and day and the remaining two models are formulated to perform an optimal scheduling that matches a forecasted demand per skill, day and half hour. The first two models are referred to as the Basic Models and the second two are referred to as the Complex Models. The Basic Models includes seven constraints and the Complex Model includes nine constraints, describing regulations at the contact center. The main goal of the project is to find an optimal solution that results in an as even distribution of under or over scheduling. The scheduling optimization covers a period of 28 days, starting on a Monday which results in four weeks. The optimization models are based on two sets of data, there are 104 assigned agents that possesses one, two or three of the skills Channel, Direct and Product. All agents are bound to work according to a contract specified through the constraints. In the Basic Model the forecasted demand is given in amount of hours per day and skill, the demand is non-cyclical. In the Complex model the forecasted demand is given in amount of half hours per day, skill and half hour. Each day is scheduled from 7 a.m. to 11 p.m. resulting in 32 available half hours. All optimization models are developed to correctly mathematically formulate the constraints specified by Teleopti. Any non-linear equation that arises are linearized to maintain linearity, this is favourable in the sense of computational time solving the models. The objective functions in this thesis are formulated to describe the main goal of even distribution as correctly as possible. The result for the Basic Model shows that an optimal solution is achieved after 34 seconds. This model contains 169,080 variables and 39,913 equations. In the Complex Models integer solutions are achieved, but no optimal solution is found in 8 hours of computational time. The larger Complex Model contains 9,385,984 variables and 1,052,253 equations and the smaller Complex Model contains 5,596,952 variables and 210,685 equations. Teleopti’s scheduler produces an integer solution matching the Complex Model in 4 minutes. / Detta examensarbete i optimering och systemteori är framtagningen av två olika optimeringsmodeller formulerade för att schemalägga multikompetenta agenter för kontaktcenters beroende av den förväntade efterfrågan, tilldelad av Teleopti. Fyra blandade heltals linjära programmeringsmodeller skapas med optimeringsprogrammeringsspråket GAMS och löses av den internetbaserade lösaren NEOS. Två av modellerna är formulerade för att utföra en optimal schemaläggning som matchar en prognostiserad efterfrågan per skicklighet och dag och de återstående två modellerna är formulerade för att utföra en optimal schemaläggning som matchar en prognostiserad efterfrågan per färdighet, dag och en halvtimme. De två första modellerna i detta arbete benämns de Grundläggande Modellerna och de resterande två benämns de Komplexa Modellerna. Grundmodellerna inkluderar sju bivillkor och de Komplexa modellerna innehåller nio bivillkor, vilka beskriver arbetsvillkoren på kontaktcentret. Projektets huvudmål är att hitta en optimal lösning som resulterar i en jämn fördelning av under- eller överschemaläggning. Den schemalagda optimeringen täcker en period av 28 dagar, vilken börjar på en måndag vilket resulterar i fyra veckor. Optimeringsmodellerna är baserade på två uppsättningar data, det finns 104 tillgängliga agenter vilka har en, två eller tre av kompetenserna Channel, Direct och Product. Alla agenter är bundna att arbeta enligt det kontrakt som specificeras genom bivillkoren. I grundmodellen anges den prognostiserade efterfrågan i timmar per dygn och kompetens, efterfrågan är icke-cyklisk. I den komplexa modellen anges den beräknade efterfrågan i mängd halvtimmar per dag, kompetens och halvtimme. Varje dag är schemalagd från kl. 07.00 till 23.00 vilket resulterar i 32 tillgängliga halvtimmar. Alla optimeringsmodeller är utvecklade för att matematiskt beskriva de begränsningar som Teleopti specificerar. Alla icke-linjära ekvationer som uppstår linjäriseras för att upprätthålla linjäritet, detta är gynnsamt i avseendet mängd tid beräkningen av modellerna tar. Målfunktionerna i detta arbete är formulerade för att beskriva huvudmålet för jämn distribution så korrekt som möjligt. Resultatet för grundmodellen visar att en optimal lösning uppnås efter 34 sekunder. Denna modell innehåller 169,080 variabler och 39,913 ekvationer. I de komplexa modellerna uppnås heltalslösningar, men ingen optimal lösning hittas på 8 timmars beräkningstid. Den större komplexa modellen innehåller 9,385,984 variabler och 1,052,253 ekvationer och den mindre komplexa modellen innehåller 5,596,952 variabler och 210,665 ekvationer. Teleoptis schemaläggare producerar en heltalslösning som matchar den komplexa modellen på 4 minuter.
|
86 |
Active distribution network operation: A market-based approachZubo, Rana H.A., Mokryani, Geev 11 May 2021 (has links)
Yes / This article proposes a novel technique for operation of distribution networks with considering active network management (ANM) schemes and demand response (DR) within a joint active and reactive distribution market environment. The objective of the proposed model is to maximize social welfare using market-based joint active and reactive optimal power flow. First, the intermittent behavior of renewable sources (solar irradiance, wind speed) and load demands is modeled through scenario-tree technique. Then, a network frame is recast using mixed-integer linear programming, which is solvable using efficient off-the-shelf branch-and cut solvers. Additionaly, this article explores the impact of wind and solar power penetration on the active and reactive distribution locational prices within the distribution market environment with integration of ANM schemes and DR. A realistic case study (16-bus UK generic medium voltage distribution system) is used to demonstrate the effectiveness of the proposed method. / This work was supported in part by the Ministry of Higher Education Scientific Research in Iraq and in part by British Academy under Grant GCRFNGR3\1541.
|
87 |
Dispatch Optimization of the TES.POD Cluster using Mixed-Integer Linear Programming ModelsWikander, Ivar January 2023 (has links)
With increasing shares of variable renewable energy sources in the power mix, the need for energy storage solutions is projected to increase as well. Storage can in such combined systems help mitigate the issues with relying on intermittent sources by time-shifting the supply and smoothing out frequency fluctuations, to name some examples. This thesis has focused on Azelio ABs flagship product, the TES.POD, which is a long-duration thermal energy storage technology. When integrated with, for example, solar PV power, the TES.POD can store excess energy and dispatch it during times of low supply or when during the evening/night. The aim of the thesis has been the development of a day-ahead dispatch optimization tool for systems that include multiple TES.PODs, combined into a Cluster, and solar PV. The model was to be built using the Python programming language and based on Mixed-Integer-Linear-Programming (MILP) methods. The PV+storage system was then allowed to be connected to supplementary power sources such as a larger electric grid, or diesel generators in off-grid locations. The purpose of the optimization model is to find the most economic way to operate the individual TES.PODs while also keeping track of other system components, using a cost-based objective function (minimize costs). A focus has been on using high time resolution (small time step) in order to investigate the impact that the TES.PODs dynamic constraints has on operation. Another strength compared to pre-existing models was the ability to operate individual units indifferent to each other, as opposed to having them all operated in unison. Final results from benchmarking tests and two case studies indicated that using the optimization tool with smaller time steps had an effect on key indicators, and could lead to improved economy in the system. It was observed in both cases that the cost of electricity was reduced by running the optimization tool with time steps of either two or three minutes when compared with using an hourly resolution. Furthermore, several usage parameters for the TES.PODs, notably the total amount of operated hours and energy output per cycle, saw improvements which could lead to reduced cost of operation and maintenance. While not the main intent, testing different Cluster sizes and amount of installed PV capacity with the model, it could also be used in strategic decisions for system sizing. However, due to rapidly growing computational times in systems with large TES.POD clusters and using smaller time steps, the possibility of adding more complexity to the model in future work must be done with caution. To combat this issue, either improvements to the model formulation could be attempted, or by using more powerful hardware or optimizer (imported software algorithm that handles solving the model).
|
88 |
Towards positive energy districts: assessing the contribution of virtual power plants and energy communitiesKondziella, Hendrik, Specht, Karl, Mielich, Tim, Bruckner, Thomas 12 October 2023 (has links)
The concept of positive energy districts (PED) encompasses a range of policies and strategies in response to climate protection targets in urban areas. Due to the limited potential of renewable energy in urban neighborhoods, broader definitions of PED are proposed that allow for energy exchange through the grid infrastructure. This study evaluates demand side management in combination with a virtual power plant (VPP) to assess the impact on the design of PED. In particular, the optimal customer behavior in response to flexible electricity tariffs is analyzed. A techno-economic energy system model is proposed for an urban area in Germany that optimizes the customer cost and the VPP’s margin. This includes electrical energy generation, storage, demand, and access to the short-term electricity market. Based on economic analysis, a dynamic market-based tariff allows the VPP to maximize profit margins. Consumers benefit when the local balances of renewable energy supply and demand are integrated into the dynamic tariff.
|
89 |
Reducing Power Consumption For Signal Computation in Radio Access Networks : Optimization With Linear Programming and Graph Attention Networks / Reducering av energiförbrukning för signalberäkning i radioaccessnätverk : Optimering med linjär programmering och graf uppmärksamhets nätverkNordberg, Martin January 2023 (has links)
There is an ever-increasing usage of mobile data with global traffic having reached 115 exabytes per month at the end of 2022 for mobile data traffic including fixed wireless access. This is projected to grow up to 453 exabytes at the end of 2028, according to Ericssons 2022 mobile data traffic outlook report. To meet the increasing demand radio access networks (RAN) used for mobile communication are continuously being improved with the current generation enabling larger virtualization of the network through the Cloud RAN (C-RAN) architecture. This facilitates the usage of commercial off-the-shelf servers (COTS) in the network replacing specialized hardware servers and making it easier to scale up or down the network capacity after traffic demand. This thesis looks at how we can efficiently identify servers needed to meet traffic demand in a network consisting of both COTS servers and specialized hardware servers while trying to reduce the energy consumption of the network. We model the problem as a network where the antennas and radio heads are connectedto the core network through a C-RAN and a specialized hardware layer. The network is then represented using a graph where the nodes represent servers in the network. Using this problem model as a base we then generate problem instances with varying topologies, server profiles, and traffic demands. To find out how the traffic should be passed through the network we test two different methods: A mixed integer linear programming (MILP) method focused on energy minimization and a graph attention network (GAT) predictor combined with the energy minimization MILP. To help evaluate the results we also create three other methods: a MILP model that tries to spread the traffic as evenly as possible, a random predictor combined with the energy minimization MILP and a greedy method. Our results show that the energy optimization MILP method can be used to create optimal solutions, but it suffer from a slow computation time compared to the other methods. The GAT model shows promising results in making predictions regarding what servers should be included in a network making it possible to reduce the problem size and solve it faster with MILP. The mean energy cost of the solutions created using the combined GAT/MILP method was 4% more than just using MILP but the time gain was substantial for problems of similar size as the GAT was trained on. With regards to computation time the combined GAT/MILP method used was 85% faster than using only MILP. For networks of almost double the size than the ones that the GAT model was trained on the solutions of the combined GAT and MILP methods had a mean energy cost increase of 7% while still showing a strong speedup, being 93% faster than when only using MILP.
|
90 |
Optimized Escape Path Planning for Commercial Aircraft FormationsSaber, Safa I. 07 1900 (has links)
There is growing interest in commercial aircraft formation flight as a means of reducing both airspace congestion and the carbon footprint of air transportation. Wake vortex surfing has been researched extensively and proven to have significant fuel-saving benefits, however, commercial air transportation has yet to take advantage of these formation benefits due to understandable safety concerns. The realization of these formations requires serious consideration of formation contingencies and safety during closer-in maneuvering of large commercial aircraft. Formation contingency scenarios are much more complex than those of individual aircraft and have not yet been studied in depth. This thesis investigates the utility of optimization modeling in providing insight into generation of aircraft escape paths for formation contingency planning. Three high-altitude commercial aircraft formation scenarios are presented; formation join, formation emergency exit, and formation escape. The model-generated paths are compared with pilot-generated escape plans using the author’s pilot expertise. The model results compare well with pilot intuition and are useful in presenting solutions not previously considered, in evaluating separation requirements for improvement of escape path planning and in confirming the viability of the pilot-generated plans. The novel optimization model formulation presented in this thesis is the first model shown to be capable of generating escape paths comparable to pilot- generated escape plans and is also the first to incorporate avoidance of persistent and drifting wake turbulence within the formation.
|
Page generated in 0.0862 seconds