Spelling suggestions: "subject:"monoids"" "subject:"monoid""
21 |
Théories symétriques monoïdales closes, applications au lambda-calcul et aux bigraphes / Symmetric monoidal closed theories, applications to bigraphs and to the λ-calculusPardon, Aurélien 07 April 2011 (has links)
En se fondant sur les travaux de Trimble et al., puis Hughes, on donne une notion de théorie symétrique monoïdale close (smc) et une construction explicite de la catégorie smc engendrée, formant ainsi une adjonction entre théories et catégories. On étudie les exemples du lambda-calcul pur linéaire, du lambda-calcul pur standard, puis des bigraphes de Milner. À chaque fois on donne une théorie smc et on compare la catégorie smc engendrée avec la présentation standard. Entre autres, dans les trois cas, on montre une équivalence entre les deux sur les termes clos. / From the work of Trimble et al. and Hughes, we define a notion of symmetric monoidal closed (smc) theory and give an explicit construction of the smc category generated by it. This construction yields a monadic adjunction between smc theories and smc categories. We study in our algebraic framework different models of programming languages: the linear λ-calculus, the pure λ-calculus and Milner's bigraphs. For each model, we give a smc theory and compare the generated smc category with the standard presentation. We show that, in each case, there is an equivalence on closed terms.
|
22 |
Semi-anneau de fusion des groupes quantiques / Fusion semiring of quantum groupsMrozinski, Colin 05 December 2013 (has links)
Cette thèse se propose d’étudier des problèmes de classification des groupes quantiques via des invariants issus de leur théorie de représentation. Plus précisément, nous classifions les algèbres de Hopf possédant un semi-anneau de fusion isomorphe à un groupe algébrique réductif donné G. De tels groupes quantiques sont alors appelés G-déformations. Dans cette thèse, nous étudions les cas GL(2) et SO(3). Nous donnons une classification complète des GL(2)-déformations en construisant une famille d’algèbres de Hopf indexées par des matrices inversibles. Nous décrivons leurs catégories de comodules et donnons certains résultats de classification quant à leurs objets de Hopf-Galois. Ensuite, nous donnons une classification des SO(3)-déformations compactes tout en étudiant le cas non-compact. Finalement, la dernière partie de la thèse est une étude de l’algèbre sous-jacente à une certaine famille d’algèbres de Hopf, dont nous exhibons une base. Cette base nous permet de calculer le centre des ces algèbres ainsi que quelques groupes de (co)homologie. / The purpose of this dissertation is to classify quantum groups according to invariants coming from their representation theory. More precisely, we classify Hopf algebras having a fusion semiring isomorphic to that of a given reductive algebraic group G. Such a quantum group is called a G-deformation. We study the case of GL(2) and SO(3). We give a complete classification of GL(2)-deformations by building a family of Hopf algebras parametrized by invertible matrices. We describe their comodule category and we give some classification results about the Hopf-Galois objects. We also classify compact SO(3)-deformations and we study the noncompact case. Finally, the last part of this dissertation is a study of the underlying algebra of some Hopf algebras, for which we exhibit a linear basis. This basis allows us to compute the centre and some (co)homology groups of those algebras.
|
23 |
Monoidal equivalence of locally compact quantum groups and application to bivariant K-theory / Equivalence monoïdale de groupes quantiques localement compacts et application à la K-théorie bivarianteCrespo, Jonathan 20 November 2015 (has links)
Les travaux présentés dans cette thèse concernent l'équivalence monoïdale de groupes quantiques localement compacts et ses applications. Nous généralisons au cas localement compact et régulier, deux résultats importants concernant les actions de groupes quantiques compacts. Soient G1 et G2 deux groupes quantiques localement compacts réguliers et monoïdalement équivalents. Nous développons un procédé d'induction des actions qui permet d'établir une équivalence canonique des catégories dont les objets sont les actions continues de G1 et G2 sur les C*-algèbres. Comme application de ce résultat, nous obtenons une équivalence canonique des catégories de KK-Théorie équivariante pour G1 et G2. Nous introduisons et étudions une notion d'actions sur les C*-algèbres, de groupoïdes quantiques mesurés sur une base finie. La preuve de la seconde équivalence s'appuie alors sur une version du théorème de bidualité de Takesaki-Takai pour les actions de groupoïdes quantiques mesurés sur une base finie. Enfin, nous terminons en définissant et étudiant une notion de modules hilbertiens équivariants pour des actions de groupoïdes quantiques mesurés sur une base finie. / This dissertation deals with the notion of monoidal equivalence of locally compact quantum groups and its applications. We generalize to the case of regular locally compact quantum groups, two important resultst concerning the actions of compact quantum groups. Let G1 and G2 be two regular locally compact quantum groups monoidally equivalent. We develop an induction procedure and we build an equivalence of the categories, whose objects are the continuous actions of G1 and G2 on C*-algebras. As an application of this result, we obtain a canonical equivalence of the categories of equivariant KK-theory for actions of G1 and G2. We introduce and investigate a notion of actions on C*-algebras of mesured quantum groupoids on a finite basis. The proof of the second equivalence relies on a version of the Takesaki-Takai duality theorem for continuous actions of measured quantum groupoids on a finite basis. We conclude by defining and studying a notion of equivariant Hilbert modules for actions of mesured quantum groupoids on a finite basis.
|
24 |
Pairs in involutionHalbig, Sebastian 08 August 2022 (has links)
Pairs in involution are a Hopf algebraic structure with applications to category theory, cyclic homology and knot theory. In the present dissertation we will answer the question whether every finite-dimensional Hopf algebra admits such pairs, construct and investigate their categorical analogues, and develop, based on our previous findings, the theory of pairs in involutions for Hopf monads.
|
25 |
Mixed Witt rings of algebras with involutionGarrel, Nicolas 04 April 2024 (has links)
Although there is no natural internal product for hermitian forms over an algebra with involution of the first kind, we describe how tomultiply two ε-hermitian forms to obtain a quadratic form over the base field. This allows to define a commutative graded ring structure by taking together bilinear forms and ε-hermitian forms, which we call the mixedWitt ring of an algebra with involution. We also describe a less powerful version of this construction for unitary involutions, which still defines a ring, but with a grading over Z instead of the Klein group. We first describe a general framework for defining graded rings out of monoidal functors from monoidal categories with strong symmetry properties to categories of modules. We then give a description of such a strongly symmetric category Brₕ(K, ι) which encodes the usual hermitian Morita theory of algebras with involutions over a field K. We can therefore apply the general framework to Brₕ(K, ι) and theWitt group functors to define our mixed Witt rings, and derive their basic properties, including explicit formulas for products of diagonal forms in terms of involution trace forms, explicit computations for the case of quaternion algebras, and reciprocity formulas relative to scalar extensions. We intend to describe in future articles further properties of those rings, such as a λ-ring structure, and relations with theMilnor conjecture and the theory of signatures of hermitian forms.
|
26 |
Categorical quantum computationPaquette, Éric Oliver January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
27 |
Categorical quantum computationPaquette, Éric Oliver January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
28 |
Analyse de la structure logique des inférences légales et modélisation du discours juridiquePeterson, Clayton 05 1900 (has links)
Thèse par articles. / La présente thèse fait état des avancées en logique déontique et propose des outils formels pertinents à l'analyse de la validité des inférences légales. D'emblée, la logique vise l'abstraction de différentes structures. Lorsqu'appliquée en argumentation, la logique permet de déterminer les conditions de validité des inférences, fournissant ainsi un critère afin de distinguer entre les bons et les mauvais raisonnements. Comme le montre la multitude de paradoxes en logique déontique, la modélisation des inférences normatives fait cependant face à divers problèmes. D'un point de vue historique, ces difficultés ont donné lieu à différents courants au sein de la littérature, dont les plus importants à ce jour sont ceux qui traitent de l'action et ceux qui visent la modélisation des obligations conditionnelles. La présente thèse de doctorat, qui a été rédigée par articles, vise le développement d'outils formels pertinents à l'analyse du discours juridique. En première partie, nous proposons une revue de la littérature complémentaire à ce qui a été entamé dans Peterson (2011). La seconde partie comprend la contribution théorique proposée. Dans un premier temps, il s'agit d'introduire une logique déontique alternative au système standard. Sans prétendre aller au-delà de ses limites, le système standard de logique déontique possède plusieurs lacunes. La première contribution de cette thèse est d'offrir un système comparable répondant au différentes objections pouvant être formulées contre ce dernier. Cela fait l'objet de deux articles, dont le premier introduit le formalisme nécessaire et le second vulgarise les résultats et les adapte aux fins de l'étude des raisonnements normatifs. En second lieu, les différents problèmes auxquels la logique déontique fait face sont abordés selon la perspective de la théorie des catégories. En analysant la syntaxe des différents systèmes à l'aide des catégories monoïdales, il est possible de lier certains de ces problèmes avec des propriétés structurelles spécifiques des logiques utilisées. Ainsi, une lecture catégorique de la logique déontique permet de motiver l'introduction d'une nouvelle approche syntaxique, définie dans le cadre des catégories monoïdales, de façon à pallier les problèmes relatifs à la modélisation des inférences normatives. En plus de proposer une analyse des différentes logiques de l'action selon la théorie des catégories, la présente thèse étudie les problèmes relatifs aux inférences normatives conditionnelles et propose un système déductif typé. / The present thesis develops formal tools relevant to the analysis of legal discourse. When applied to legal reasoning, logic can be used to model the structure of legal inferences and, as such, it provides a criterion to discriminate between good and bad reasonings. But using logic to model normative reasoning comes with some problems, as shown by the various paradoxes one finds within the literature. From a historical point of view, these paradoxes lead to the introduction of different approaches, such as the ones that emphasize the notion of action and those that try to model conditional normative reasoning. In the first part of this thesis, we provide a review of the literature, which is complementary to the one we did in Peterson (2011). The second part of the thesis concerns our theoretical contribution. First, we propose a monadic deontic logic as an alternative to the standard system, answering many objections that can be made against it. This system is then adapted to model unconditional normative inferences and test their validity. Second, we propose to look at deontic logic from the proof-theoretical perspective of category theory. We begin by proposing a categorical analysis of action logics and then we show that many problems that arise when trying to model conditional normative reasoning come from the structural properties of the logic we use. As such, we show that modeling normative reasoning within the framework of monoidal categories enables us to answer many objections in favour of dyadic and non-monotonic foundations for deontic logic. Finally, we propose a proper typed deontic system to model legal inferences.
|
29 |
Premonoidal *-Categories and Algebraic Quantum Field TheoryComeau, Marc A 16 March 2012 (has links)
Algebraic Quantum Field Theory (AQFT) is a mathematically rigorous framework
that was developed to model the interaction of quantum mechanics and relativity. In
AQFT, quantum mechanics is modelled by C*-algebras of observables and relativity
is usually modelled in Minkowski space. In this thesis we will consider a generalization
of AQFT which was inspired by the work of Abramsky and Coecke on abstract
quantum mechanics [1, 2]. In their work, Abramsky and Coecke develop a categorical
framework that captures many of the essential features of finite-dimensional quantum
mechanics.
In our setting we develop a categorified version of AQFT, which we call premonoidal
C*-quantum field theory, and in the process we establish many analogues of
classical results from AQFT. Along the way we also exhibit a number of new concepts,
such as a von Neumann category, and prove several properties they possess.
We also establish some results that could lead to proving a premonoidal version
of the classical Doplicher-Roberts theorem, and conjecture a possible solution to constructing
a fibre-functor. Lastly we look at two variations on AQFT in which a causal
order on double cones in Minkowski space is considered.
|
30 |
Premonoidal *-Categories and Algebraic Quantum Field TheoryComeau, Marc A 16 March 2012 (has links)
Algebraic Quantum Field Theory (AQFT) is a mathematically rigorous framework
that was developed to model the interaction of quantum mechanics and relativity. In
AQFT, quantum mechanics is modelled by C*-algebras of observables and relativity
is usually modelled in Minkowski space. In this thesis we will consider a generalization
of AQFT which was inspired by the work of Abramsky and Coecke on abstract
quantum mechanics [1, 2]. In their work, Abramsky and Coecke develop a categorical
framework that captures many of the essential features of finite-dimensional quantum
mechanics.
In our setting we develop a categorified version of AQFT, which we call premonoidal
C*-quantum field theory, and in the process we establish many analogues of
classical results from AQFT. Along the way we also exhibit a number of new concepts,
such as a von Neumann category, and prove several properties they possess.
We also establish some results that could lead to proving a premonoidal version
of the classical Doplicher-Roberts theorem, and conjecture a possible solution to constructing
a fibre-functor. Lastly we look at two variations on AQFT in which a causal
order on double cones in Minkowski space is considered.
|
Page generated in 0.0565 seconds