• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 1
  • Tagged with
  • 23
  • 19
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Der Einfluss des Monsuns als bedeutender Klimafaktor auf dem Indischen Subkontinent und seine Beziehung zur geomorphologischen Exposition der Flüsse insbesondere im Bereich des Brahmaputra.

AlSamra, Jana 29 October 2014 (has links) (PDF)
Geprägt wird das Klima auf dem Indischen Subkontinent ganz erheblich durch den Einfluss des Monsuns, der ein Teilelement des gesamten asiatischen Monsunsystems ist. Der Monsun hat als wesentlicher Klimafaktor einen wichtigen Einfluss auf die geomorphologische Entwicklung der Flüsse und Flusstäler des Indischen Subkontinents in Verbindung mit den Überschwemmungen, die durch die Niederschläge des Monsuns verursacht werden.
2

Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models

Salzmann, Marc, Cherian, Ribu, Weser, Hagen 03 February 2016 (has links) (PDF)
The representation of aerosol processes and the skill in simulating the Asian summer monsoon vary widely across climate models. Yet, for the second half of the twentieth century, the models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) show a robust decrease of average precipitation in the South and Southeast Asian (SSEA) continental region due to the increase of anthropogenic aerosols. When taking into account anthropogenic aerosols as well as greenhouse gases (GHGs), the 15 CMIP5 models considered in this study yield an average June–September precipitation least squares linear trend of −0.20 ± 0.20mm d−1 (50 years)−1, or −2.9%, for all land points in the SSEA region (taken from 75 to 120◦E and 5 to 30◦N) in the years from 1950 to 1999 (multimodel average ± one standard deviation) in spite of an increase in the water vapor path of +0.99 ± 0.65 kg m−2 (50 years)−1 (+2.5%). This negative precipitation trend differs markedly from the positive precipitation trend of +0.29 ± 0.14mm d−1 (50 years)−1, or +4.1%, which is computed for GHG forcing only. Taking into account aerosols both decreases the water vapor path and slows down the monsoon circulation as suggested by several previous studies. At smaller scales, however, internal variability makes attributing observed precipitation changes to anthropogenic aerosols more difficult. Over Northern Central India (NCI), the spread between precipitation trends from individual model realizations is generally comparable in magnitude to simulated changes due to aerosols, and the model results suggest that the observed drying in NCI might in part be explained by internal variability.
3

Synoptische, diagnostische und numerische Untersuchungen der Intensitätsänderungen von tropischen Wirbelstürmen und Monsuntiefs

Hell, Reinhard Michael. Unknown Date (has links)
Universiẗat, Diss., 2000--München.
4

Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models

Salzmann, Marc, Cherian, Ribu, Weser, Hagen January 2014 (has links)
The representation of aerosol processes and the skill in simulating the Asian summer monsoon vary widely across climate models. Yet, for the second half of the twentieth century, the models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) show a robust decrease of average precipitation in the South and Southeast Asian (SSEA) continental region due to the increase of anthropogenic aerosols. When taking into account anthropogenic aerosols as well as greenhouse gases (GHGs), the 15 CMIP5 models considered in this study yield an average June–September precipitation least squares linear trend of −0.20 ± 0.20mm d−1 (50 years)−1, or −2.9%, for all land points in the SSEA region (taken from 75 to 120◦E and 5 to 30◦N) in the years from 1950 to 1999 (multimodel average ± one standard deviation) in spite of an increase in the water vapor path of +0.99 ± 0.65 kg m−2 (50 years)−1 (+2.5%). This negative precipitation trend differs markedly from the positive precipitation trend of +0.29 ± 0.14mm d−1 (50 years)−1, or +4.1%, which is computed for GHG forcing only. Taking into account aerosols both decreases the water vapor path and slows down the monsoon circulation as suggested by several previous studies. At smaller scales, however, internal variability makes attributing observed precipitation changes to anthropogenic aerosols more difficult. Over Northern Central India (NCI), the spread between precipitation trends from individual model realizations is generally comparable in magnitude to simulated changes due to aerosols, and the model results suggest that the observed drying in NCI might in part be explained by internal variability.
5

On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century

Salzmann, Marc, Cherian, Ribu 27 September 2016 (has links) (PDF)
The observed summertime drying over Northern Central India (NCI) during the latter half of the twentieth century is not reproduced by the Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensemble average. At the same time, the spread between precipitation trends from individual model realizations is large, indicating that internal variability potentially plays an important role in explaining the observed trend. Here we show that the drying is indeed related to the observed 1950–1999 positive trend of the Pacific Decadal Oscillation (PDO) index and that the relationship is even stronger for a simpler index (S1). Adjusting the CMIP5-simulated precipitation trends to account for the difference between the observed and simulated S1 trend increases the original multimodel average NCI drying trend from −0.09 ± 0.31 mm d−1 (50 years)−1 to −0.54 ± 0.40 mm d−1 (50 years)−1. Thus, our estimate of the 1950–1999 NCI drying associated with Pacific decadal variability is of similar magnitude as our previous CMIP5-based estimate of the drying due to anthropogenic aerosol. The drying (moistening) associated with increasing (decreasing) S1 can partially be attributed to a southeastward (northwestward) shift of the boundary between ascent and descent affecting NCI. This shift of the ascent region strongly affects NCI but not Southeast Asia and south China. The average spread between individual model realizations is only slightly reduced when adjusting for S1 as smaller-scale variability also plays an important role.
6

Simulation ausgewählter Zeitscheiben des Paläoklimas in Asien mit einem hochaufgelösten Regionalmodell / Simulation of selected timeslices of the paleoclimate in Asia with a high-resolution regional climate model

Steger, Christian January 2015 (has links) (PDF)
Das Tibetplateau (TP) ist das höchste Gebirgsplateau der Erde und bildete sich im Verlauf der letzten 50 Millionen Jahre. Durch seine Ausmaße veränderte das TP nicht nur das Klima im heutigen Asien, sondern bewirkte Veränderungen weltweit. Heute stellt das TP einen Hotspot des Klimawandels dar und ist als Quellgebiet vieler großer Flüsse in Asien für die Wasserversorgung von Milliarden von Menschen von zentraler Bedeutung. Vor diesem Hintergrund ist es wichtig, die Prozesse, die das Klima in der Region steuern, besser zu verstehen und die Variabilität des Klimas auf unterschiedlichen Zeitskalen abschätzen zu können. Grundlegendes Ziel der vorliegenden Arbeit ist es, räumlich hochaufgelöste quantitative Informationen über die Veränderung der klimatischen Verhältnisse in Asien während der Bildungsphase des TP und unter warm- und kaltzeitlichen Randbedingungen zur Verfügung zu stellen und dadurch eine Verbindung zwischen den verschiedenen Zeitskalen herzustellen. Hierfür werden das heutige Klima und das Paläoklima der Region mit Hilfe von Klimamodellen simuliert. Da frühere Studien zeigen konnten, dass die Ergebnisse von hochaufgelösten Modellen besser mit Paläoklimarekonstruktionen übereinstimmen, als die von vergleichsweise niedrig aufgelösten Globalmodellen, erfolgt ein dynamisches Downscaling des globalen Klimamodells ECHAM5 mit dem regionalen Klimamodell REMO. Die Heraushebung des TP wird durch eine Serie von fünf Simulationen (Topogra- phieexperimente) approximiert, in denen die Höhe des TP in 25%-Schritten von 0% bis 100% der heutigen Höhe verändert wird. Die Schwankungen des Klimas im spä- ten Quartär sind durch Simulationen für das mittlere Holozän und den Hochstand der letzten Vereisung, das Last-Glacial-Maximum, repräsentiert (Quartärexperi- mente). In den Quartärexperimenten wurden die Treibhausgaskonzentrationen, Orbitalparameter, Landbedeckung und verschiedene Vegetationsparameter an die Bedingungen der jeweiligen Zeitscheibe angepasst. Die Auswertung der Simulati- onsergebnisse konzentriert sich auf jährliche und jahreszeitliche Veränderungen der bodennahen Temperatur und des Niederschlags. Außerdem werden die sich erge- benden Änderungen in der Intensität des indischen Monsuns anhand verschiedener Monsunindizes analysiert. Für das TP und die sich unmittelbar anschließenden Ge- biete wird zusätzlich eine Clusteranalyse durchgeführt, um die dort vorkommenden regionalen Klimatypen identifizieren und charakterisieren zu können. In den Topographieexperimenten zeigt sich, dass die 2m-Temperatur im Bereich des TP im Jahresmittel mit abnehmender Höhe des Plateaus um bis zu 30◦C zunimmt, während es in den übrigen Teilen des Modellgebiets nahezu überall kälter wird. Die Jahressumme des Niederschlags nimmt mit abnehmender Höhe des TP westlich und nördlich davon zu. Im Bereich des TP sowie südlich und östlich davon gehen die Niederschläge zurück. Die starke Niederschlagszunahme nördlich des TP kann durch die Ausbildung eines Höhentrogs statt eines Höhenrückens in diesem Bereich erklärt werden. Das grundsätzliche räumliche Muster der Veränderungen besteht dabei bereits bei einer Plateauhöhe von 75% des Ausgangswertes und ändert sich bei weiterer Verringerung der Höhe nicht wesentlich. Lediglich der Betrag der Veränderungen nimmt zu. Dies gilt für die 2m-Temperatur und den Niederschlag und sowohl im Jahresmittel als auch für die einzelnen Jahreszeiten. Bezüglich der Intensität des indischen Sommermonsuns zeigt sich, dass zwischen 25% und 75% der heutigen Höhe des TP die stärkste Intensivierung stattfindet. Eine mit heute vergleichbare Monsunintensität tritt erst auf, wenn das TP die Hälfte seiner jetzigen Höhe erreicht hat. Im mittleren Holozän ist es im Jahresmittel in den meisten Teilen des Modellge- biets kälter und feuchter als heute. Die Unterschiede sind jedoch größtenteils gering und nicht signifikant. Hinsichtlich der Temperatur zeigen die Modelldaten nur vereinzelt eine gute Übereinstimmung mit den rekonstruierten Werten. Allerdings weisen die Rekonstruktionen eine hohe räumliche Variabilität auf, wodurch die in diesem Datensatz vorhandenen Unsicherheiten widergespiegelt werden. Hinsicht- lich des Niederschlags ist die Übereinstimmung besser. Hier deuten sowohl die simulierten als auch die rekonstruierten Daten auf feuchtere Bedingungen hin. In der Simulation für das Last-Glacial-Maximum liegen die Temperaturen überall im Modellgebiet im Jahresmittel und in allen Jahreszeiten um bis zu 8◦C unter den heutigen Werten. Es besteht eine gute Übereinstimmung mit den rekonstruierten Temperaturwerten für diese Zeitscheibe. Zu einer signifikanten Abnahme der jährlichen Niederschlagsmenge kommt es westlich und nordwestlich des TP, in Indien, Südostasien und entlang der Ostküste Chinas. Für die Bereiche, für die Niederschlagsrekonstruktionen verfügbar sind, stimmen die Modellergebnisse gut mit diesen überein. Zu einer signifikanten Niederschlagszunahme kommt es nur zwischen der Nordküste des Golfs von Bengalen und dem Himalaya, wobei dies möglicherweise ein Modellartefakt darstellt. Hinsichtlich der Monsunintensität bestehen große Unterschiede zwischen den Indizes. Während der Extended Indian Monsoon Rainfall Index eine starke Ab- schwächung des indischen Sommermonsuns anzeigt, ist der Wert des Webster and Yang Monsoon Index verglichen mit heute nahezu unverändert. Ein Vergleich der Monsunintensität in den Topographie- und den Quartärexperimenten macht deut- lich, dass der indische Monsun durch den Wechsel von warm- und kaltzeitlichen Randbedingungen mindestens so stark beeinflusst wird wie durch die Hebung des TP. / The Tibetan Plateau (TP) is the world’s most elevated highland which was built over the past 50 million years. With its extent, the TP did not only influence the climate in Asia, but also caused global changes. Today, the TP represents a climate change hot spot and is, as the source region of many large rivers in Asia, crucial for the water supply of billions of people. Considering this background, it is important to obtain a better understanding of the processes that control the climate in the region and to estimate the climate variability on different time scales. The basic goal of this study is to provide spatial highly resolved quantitative information about the changes in the climatic conditions in Asia during the uplift of the TP and during periods with warmer and colder boundary conditions and thus to put these different timescales in relation. Therefore, the modern climate and the paleoclimate of the region are being simulated with climate models. The global climate model ECHAM5 is dynamically downscaled with the regional climate model REMO, because previous studies have shown, that the results of models with higher resolution are more consistent with paleoclimate reconstructions than the results of models with lower resolution. The uplift of the TP is approximated by a series of five simulations (topography experiments) in which the elevation of the TP is varied in steps of 25% from 0% to 100% of its present day height. The late Quaternary climate variations are represented by two simulations with boundary conditions for the Mid-Holocene and the Last-Glacial-Maximum (Quaternary experiments). For the Quaternary experiments, the greenhouse gas concentration, orbital parameters, land cover and some vegetation parameters have been adopted for the particular time slice. The evaluation of the simulations’ results focusses on annual and seasonal changes of the near surface temperature and precipitation. Variations in the strength of the Indian monsoon are analyzed by means of different monsoon indices. In order to identify and characterize the regional climate types there, a cluster analysis is conducted for the TP and adjacent regions. The topography experiments show that the annual mean 2m-temperature drops by up to 30◦C in the region of the TP when the height of the plateau is reduced while it becomes colder nearly everywhere else in the model domain. The annual precipitation amount is reduced in the west and north of the TP when its height is reduced. The immense precipitation increase to the north of the TP can be explained by the formation of a trough instead of a ridge in the mid-troposphere of this region. The general spatial pattern of the changes already persists when the height of the TP is reduced to 75% of the present day value and it does not change fundamentally when the height is reduced further. This pertains for the 2m-temperature, the precipitation and for the annual as well as the seasonal means. The analysis of the intensity of the Indian Summer Monsoon shows that the strongest intensification appears between 25% to 75% of the TP’s present day elevation. Half of the current elevation is necessary to get a monsoon intensity comparable to the one of today. In the Mid-Holocene, it is on average colder and more humid in most parts of the model domain compared to present day. But the differences are mostly small and not significant. Concerning the temperature, the model data coincides only sporadically with reconstructed values. However, the reconstructions show great spatial variability, which reflects the uncertainties that are present in this data set. Regarding precipitation, the simulated data matches the reconstructions better. Both the simulated and the reconstructed data point towards wetter conditions. Compared to present day values, the simulation of the Last-Glacial-Maximum shows up to 8◦C lower annual and seasonal mean temperatures everywhere in the model domain compared to present day values. The results are in good conformity with reconstructed temperature values for this time slice. A significant reduction of the annual precipitation amount appears in the west and north of the TP, in India, Southeast Asia and along the east coast of China. Where precipitation reconstructions are available, the model results show good accordance with these values. A significant increase in precipitation appears only between the northern coast of the Bay of Bengal and the Himalayas, but this potentially represents a model artifact. There are big differences between the indices in terms of the monsoon intensity. The Extended Indian Monsoon Rainfall Index shows a strong reduction of the Indian Summer Monsoon,whereas the value of the Webster and Yang Monsoon Index remains nearly unchanged compared to the present day value. A comparison of the monsoon intensity in the topography and the quaternary experiments reveals that the change in boundary conditions between warm and cold intervals affects the Indian monsoon at least as much as the uplift of the TP.
7

Der Einfluss des Monsuns als bedeutender Klimafaktor auf dem Indischen Subkontinent und seine Beziehung zur geomorphologischen Exposition der Flüsse insbesondere im Bereich des Brahmaputra.

AlSamra, Jana 30 September 2014 (has links)
Geprägt wird das Klima auf dem Indischen Subkontinent ganz erheblich durch den Einfluss des Monsuns, der ein Teilelement des gesamten asiatischen Monsunsystems ist. Der Monsun hat als wesentlicher Klimafaktor einen wichtigen Einfluss auf die geomorphologische Entwicklung der Flüsse und Flusstäler des Indischen Subkontinents in Verbindung mit den Überschwemmungen, die durch die Niederschläge des Monsuns verursacht werden.
8

On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century

Salzmann, Marc, Cherian, Ribu January 2015 (has links)
The observed summertime drying over Northern Central India (NCI) during the latter half of the twentieth century is not reproduced by the Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensemble average. At the same time, the spread between precipitation trends from individual model realizations is large, indicating that internal variability potentially plays an important role in explaining the observed trend. Here we show that the drying is indeed related to the observed 1950–1999 positive trend of the Pacific Decadal Oscillation (PDO) index and that the relationship is even stronger for a simpler index (S1). Adjusting the CMIP5-simulated precipitation trends to account for the difference between the observed and simulated S1 trend increases the original multimodel average NCI drying trend from −0.09 ± 0.31 mm d−1 (50 years)−1 to −0.54 ± 0.40 mm d−1 (50 years)−1. Thus, our estimate of the 1950–1999 NCI drying associated with Pacific decadal variability is of similar magnitude as our previous CMIP5-based estimate of the drying due to anthropogenic aerosol. The drying (moistening) associated with increasing (decreasing) S1 can partially be attributed to a southeastward (northwestward) shift of the boundary between ascent and descent affecting NCI. This shift of the ascent region strongly affects NCI but not Southeast Asia and south China. The average spread between individual model realizations is only slightly reduced when adjusting for S1 as smaller-scale variability also plays an important role.
9

On intrinsic uncertainties in earth system modelling

Knopf, Brigitte January 2006 (has links)
Uncertainties are pervasive in the Earth System modelling. This is not just due to a lack of knowledge about physical processes but has its seeds in intrinsic, i.e. inevitable and irreducible, uncertainties concerning the process of modelling as well. Therefore, it is indispensable to quantify uncertainty in order to determine, which are robust results under this inherent uncertainty. The central goal of this thesis is to explore how uncertainties map on the properties of interest such as phase space topology and qualitative dynamics of the system. We will address several types of uncertainty and apply methods of dynamical systems theory on a trendsetting field of climate research, i.e. the Indian monsoon.<br><br> For the systematic analysis concerning the different facets of uncertainty, a box model of the Indian monsoon is investigated, which shows a saddle node bifurcation against those parameters that influence the heat budget of the system and that goes along with a regime shift from a wet to a dry summer monsoon. As some of these parameters are crucially influenced by anthropogenic perturbations, the question is whether the occurrence of this bifurcation is robust against uncertainties in parameters and in the number of considered processes and secondly, whether the bifurcation can be reached under climate change. Results indicate, for example, the robustness of the bifurcation point against all considered parameter uncertainties. The possibility of reaching the critical point under climate change seems rather improbable. <br><br> A novel method is applied for the analysis of the occurrence and the position of the bifurcation point in the monsoon model against parameter uncertainties. This method combines two standard approaches: a bifurcation analysis with multi-parameter ensemble simulations. As a model-independent and therefore universal procedure, this method allows investigating the uncertainty referring to a bifurcation in a high dimensional parameter space in many other models. <br><br> With the monsoon model the uncertainty about the external influence of El Niño / Southern Oscillation (ENSO) is determined. There is evidence that ENSO influences the variability of the Indian monsoon, but the underlying physical mechanism is discussed controversially. As a contribution to the debate three different hypotheses are tested of how ENSO and the Indian summer monsoon are linked. In this thesis the coupling through the trade winds is identified as key in linking these two key climate constituents. On the basis of this physical mechanism the observed monsoon rainfall data can be reproduced to a great extent. Moreover, this mechanism can be identified in two general circulation models (GCMs) for the present day situation and for future projections under climate change. <br><br> Furthermore, uncertainties in the process of coupling models are investigated, where the focus is on a comparison of forced dynamics as opposed to fully coupled dynamics. The former describes a particular type of coupling, where the dynamics from one sub-module is substituted by data. Intrinsic uncertainties and constraints are identified that prevent the consistency of a forced model with its fully coupled counterpart. Qualitative discrepancies between the two modelling approaches are highlighted, which lead to an overestimation of predictability and produce artificial predictability in the forced system. The results suggest that bistability and intermittent predictability, when found in a forced model set-up, should always be cross-validated with alternative coupling designs before being taken for granted. <br><br> All in this, this thesis contributes to the fundamental issue of dealing with uncertainties the climate modelling community is confronted with. Although some uncertainties allow for including them in the interpretation of the model results, intrinsic uncertainties could be identified, which are inevitable within a certain modelling paradigm and are provoked by the specific modelling approach. / Die vorliegende Arbeit untersucht, auf welche Weise Unsicherheiten, wie sie in der integrierten Klima(folgen)forschung allgegenwärtig sind, die Stabilität und die Struktur dynamischer Systeme beeinflussen. <br> Im Rahmen der Erdsystemmodellierung wird der Unsicherheitsanalyse zunehmend eine zentrale Bedeutung beigemessen. Einerseits können mit ihrer Hilfe disziplinäre Qualitäts-standards verbessert werden, andererseits ergibt sich die Chance, im Zuge von "Integrated Assessment" robuste entscheidungsrelevante Aussagen abzuleiten. <br><br> Zur systematischen Untersuchung verschiedener Arten von Unsicherheit wird ein konzeptionelles Modell des Indischen Monsuns eingesetzt, das einen übergang von einem feuchten in ein trockenes Regime aufgrund einer Sattel-Knoten-Bifurkation in Abhängigkeit derjenigen Parameter zeigt, die die Wärmebilanz des Systems beeinflussen. Da einige dieser Parameter anthropogenen Einflüssen und Veränderungen unterworfen sind, werden zwei zentrale Punkte untersucht: zum einen, ob der Bifurkationspunkt robust gegenüber Unsicherheiten in Parametern und in Bezug auf die Anzahl und die Art der im Modell implementierten Prozesse ist und zum anderen, ob durch anthropogenen Einfluss der Bifurkationspunkt erreicht werden kann. Es zeigt sich unter anderem, dass das Auftreten der Bifurkation überaus robust, die Lage des Bifurkationspunktes im Phasenraum ist hingegen sehr sensitiv gegenüber Parameterunsicherheiten ist. <br><br> Für diese Untersuchung wird eine neuartige Methode zur Untersuchung des Auftretens und der Lage einer Bifurkation gegenüber Unsicherheiten im hochdimensionalen Parameterraum entwickelt, die auf der Kombination einer Bifurkationsanalyse mit einer multi parametrischen Ensemble Simulation basiert. <br><br> Mit dem Monsunmodell wird des weiteren die Unsicherheit bezüglich des externen Einflusses von El Niño / Southern Oscillation (ENSO) untersucht. Es ist bekannt, dass durch ENSO die Variabilität des Indischen Monsun beeinflußt wird, wohingegen der zu Grunde liegende Mechanismus kontrovers diskutiert wird. In dieser Arbeit werden drei verschiedene Hypothesen zur Kopplung zwischen diesen beiden Phänomenen untersucht. Es kann gezeigt werden, dass die Passat Winde einen Schlüsselmechanismus für den Einfluß von ENSO auf den Indischen Monsun darstellen.<br> Mit Hilfe dieses Mechanismus können die beobachteten Niederschlagsdaten des Monsuns zu einem großen Anteil reproduziert werden. Zudem kann dieser Mechanismus kann auch in zwei globalen Zirkulationsmodellen (GCMs) für den heutigen Zustand und für ein Emissionsszenario unter Klimawandel identifiziert werden. <br><br> Im weiteren Teil der Arbeit werden intrinsische Unsicherheiten identifiziert, die den Unterschied zwischen der Kopplung von Teilmodulen und dem Vorschreiben von einzelnen dieser Module durch Daten betreffen. Untersucht werden dazu ein getriebenes GCM-Ensemble und ein konzeptionelles Ozean-Atmosphären-Modell, das eine strukturierte Analyse anhand von Methoden der Theorie dynamischer Systeme ermöglicht.<br> In den meisten Fällen kann die getriebene Version, in der ein Teil der Dynamik als externer Antrieb vorschrieben wird, das voll gekoppelte Pendant nachbilden. Es wird gezeigt, dass es jedoch auch Regionen im Phasen- und Parameterraum gibt, in dem sich die zwei Modellierungsansätze signifikant unterscheiden und unter anderem zu einer überschätzung der Vorhersagbarkeit und zu künstlichen Zuständen im getriebenen System führen. Die Ergebnisse legen den Schluss nahe, dass immer auch alternative Kopplungsmechanismen getestet werden müssen bevor das getriebene System als adäquate Beschreibung des gekoppelten Gesamtsystems betrachtet werden kann. <br><br> Anhand der verschiedenen Anwendungen der Unsicherheitsanalyse macht die Arbeit deutlich, dass zum einen Unsicherheiten intrinsisch durch bestimmte Arten der Modellierung entstehen und somit unvermeidbar innerhalb eines Modellierungsansatzes sind, dass es zum anderen aber auch geeignete Methoden gibt, Unsicherheiten in die Modellierung und in die Bewertung von Modellergebnissen einzubeziehen.
10

Některé aspekty dynamiky letního monsunu v Asii v reanalyzovaných meteorologických datech / Některé aspekty dynamiky letního monsunu v Asii v reanalyzovaných meteorologických datech

Jajcay, Nikola January 2013 (has links)
The Asian summer monsoon (ASM) is a high-dimensional and highly complex phenomenon affecting more than one fifth of the world population. The intraseasonal component of the ASM undergoes periods of active and break phases associated respectively with enhanced and reduced rainfall over the Indian subcontinent and surroundings. In this thesis the nonlinear nature of the intraseasonal monsoon variability is investigated using the leading Empirical Orthogonal Functions of ERA-40 sea level pressure reanalyses field over the ASM region. The probability density function is then computed in spherical coordinates using the Epaneshnikov kernel method. Three significant modes are identified. They represent respectively (i) the East - West mode with above normal sea level pressure over East China sea and below normal pressure over Himalayas, (ii) the mode with above normal sea level pressure over East China sea (without compensating centre of opposite sign as in (i)) and (iii) the mode with below normal sea level pressure over East China sea (same as (ii) but with opposite sign). The relationship with large-scale forcing is also investigated by stratifying the PCs according to representing indices. The regimes derived from spherical PDFs appear to be opposite under opposite large-scale conditions. EOF technique with...

Page generated in 0.0274 seconds