• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 47
  • 15
  • 11
  • 11
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Optode-bead-based Functional Chemical Imaging of 2D Substrates

Ahuja, Punkaj N. 30 June 2011 (has links)
No description available.
32

Mesure des déplacements cellulaires dans les tissus non transparents : une application de la diffusion dynamique de la lumière / Measuring cell displacements inside non-transparent tissues : an application of dynamic light scattering

Brunel, Benjamin 29 October 2018 (has links)
Lorsqu'une tumeur grossit, elle exerce une pression sur les tissus environnants et est comprimée en retour. Des expériences sur un modèle de tumeur in vitro, appelé sphéroïde, ont montré que cette pression influence largement le devenir du tissu cancéreux, notamment en freinant sa croissance, mais aussi en le rendant plus invasif. Pour mieux comprendre ce dernier effet, nous avons cherché à étudier le comportement migratoire des cellules à l'intérieur d'un sphéroïde sous pression. Observer l'intérieur d'un sphéroïde pose cependant un problème technique car les méthodes usuelles d'imagerie ne sont pas utilisables dans des tissus épais (> 100 μm). L'imagerie classique étant limitée en profondeur à cause de la diffusion de la lumière, nous nous sommes tournés vers une méthode qui utilise justement celle-ci : la diffusion dynamique de lumière ou DLS (Dynamic Light Scattering). Nous avons développé son application à la migration cellulaire, afin d'obtenir la distribution des déplacements relatifs des cellules au cours du temps. Cette mesure est faite sans utiliser de marqueurs spécifiques et est applicable à des sphéroïdes allant jusqu'à 400 μm de diamètre. Nous avons ainsi mis en évidence une organisation radiale du sphéroïde en termes de mobilité, avec des cellules rapides en surface et plus lentes au centre. Nous avons aussi montré qu'en appliquant une contrainte au sphéroïde, la vitesse moyenne diminue jusqu'à être réduite de moitié pour des pressions supérieures à 15kPa. Une autre équipe a mesuré par ailleurs une augmentation de la vitesse des cellules en surface suite à une compression, ce qui indique que l'organisation radiale se retrouve dans la réponse à la pression. Nous avons montré que cette sensibilité à la pression est une propriété qui émerge de l'organisation 3D du tissu, dans laquelle la matrice extracellulaire joue un rôle primordial. Enfin, pour explorer les possibilités qu'offre notre technique, nous l'avons appliquée à une autre question : comment la migration des macrophages est-elle affectée par les signaux provenant de cellules apoptotiques ? Les résultats ont montré que les cellules apoptotiques précoces augmentent la vitesse des macrophages tandis que les cellules apoptotiques tardives la réduisent. D'un cas à l'autre, la longueur de persistance du mouvement est conservée. / As a tumor grows, it exerts a mechanical pressure on its surrounding tissue and is compressed back as a reaction. Recent experiments on an in vitro tumor model, called spheroid, have shown that this pressure is crucial for the fate of the cancerous tissue. In particular, the pressure slows down its growth, but makes it more invasive. To further understand the latter effect, we decided to study the migration of cells inside spheroids under pressure. However, imaging the inside of a spheroid is technically challenging as usual microscopy methods do not work on thick tissues (> 100 μm). Standard imaging methods are limited in terms of depth penetration because of light scattering. For this reason, we decided to take advantage of this scattered light with a method called Dynamic Light Scattering (DLS). We developed its application to cell migration in order to measure the distribution of cells displacements over time. The measurement is label-free and works with spheroids as thick as 400 μm in diameter. By this means, we revealed a radial organization inside the spheroid in terms of mobility, with fast cells at the surface and slower cells in the core. We also showed that applying a pressure onto spheroids decreases the average cell speed by a factor up to two for pressure greater than 15 kPa. Another team reported an increase in the speed of cells located at the surface of a compressed spheroid, which implies that the radial organization is also true for the impact of pressure. We demonstrated that this sensitivity to an external pressure is a 3D emergent property, in which the extracellular matrix plays an essential role. Finally, we explored the potential of our technique by addressing another question: how do apoptotic cells signals affect the migration of macrophages? We found that early apoptotic cells increase the speed of macrophages whereas late apoptotic cells decrease it. In both cases, the persistence length of the motion is the same.
33

Investigating the effects of chemotherapy and radiation therapy in a prostate cancer model system using SERS nanosensors

Camus, Victoria Louise January 2016 (has links)
Intracellular redox potential (IRP) is a measure of how oxidising or reducing the environment is within a cell. It is a function of numerous factors including redox couples, antioxidant enzymes and reactive oxygen species. Disruption of the tightly regulated redox status has been linked to the initiation and progression of cancer. However, there is very limited knowledge about the quantitative nature of the redox potential and pH gradients that exist in cancer tumour models. Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments, similar to those found in tumours. From the necrotic core to the outer proliferating layer there exist gradients of oxygen, lactate, pH and drug penetration. Tumours also have inadequate vasculature resulting in a state of hypoxia. Hypoxia is a key player in metabolic dysregulation but can also provide cells with resistance against cancer treatments, particularly chemotherapy and radiation therapy. The primary hypoxia regulators are HIFs (Hypoxia Inducible Factors) which under low O2 conditions bind a hypoxia response element, inhibiting oxidative phosphorylation and upregulating glycolysis which has two significant implications: the first is an increase in levels of NADPH/NADH, the main electron donors found in cells which impacts the redox state, whilst the second is a decrease in intracellular pH (pHi) because of increased lactate production. Thus, redox state and intracellular pHi can be used as indicators of metabolic changes within 3D cultures and provide insight into cellular response to therapy. Surface-Enhanced Raman Spectroscopy (SERS) provides a real-time, high resolution method of measuring pHi and IRP in cell culture. It allows for quick and potentially portable analysis of MTS, providing a new platform for monitoring response to drugs and therapy in an unobtrusive manner. Redox and pH-active probes functionalised to Au nanoshells were readily taken up by prostate cancer cell lines and predominantly found to localise in the cytosol. These probes were characterised by density functional theory and spectroelectrochemistry, and their in vitro behaviour modelled by the chemical induction of oxidative and reductive stress. Next, targeting nanosensors to different zones of the MTS allowed for spatial quantification of redox state and pHi throughout the structure and the ability to map the effects of drug treatments on MTS redox biology. The magnitude of the potential gradient can be quantified as free energy (ΔG) and used as a measurement of MTS viability. Treatment of PC3 MTS with staurosporine, an apoptosis inducer, was accompanied by a decrease in free energy gradients over time, whereas treatment of MTS with cisplatin, a drug to which they are resistant, showed an increase in viability indicating a compensatory mechanism and hence resistance. Finally, using this technique the effects of ionising radiation on IRP and pHi in the tumour model was explored. Following exposure to a range of doses of x-ray radiation, as well as single and multi-fractionated regimes, IRP and pHi were measured and MTS viability assessed. Increased radiation dosage diminished the potential gradient across the MTS and decreased viability. Similarly, fractionation of a single large dose was found to enhance MTS death. This novel SERS approach therefore has the potential to not only be used as a mode of drug screening and tool for drug development, but also for pre-clinical characterisation of tumours enabling clinicians to optimise radiation regimes in a patient-specific manner.
34

Systems and synthetic biology studies in Saccharomyces cerevisiae

Regot Rodríguez de Mier, Sergi 15 July 2011 (has links)
A fundamental property of living cells is the ability to sense and respond appropriately to changing environmental conditions. In budding yeast (Sacharomyces cerevisiae), changes in extracellular osmotic conditions are sensed by the HOG SAPK pathway, which orchestrates the cell adaptation program required to maximize cell survival upon stress. Although most of the HOG pathway components have been described, little was known about the dynamics of the response. The aim of this thesis was to analyze the dynamic behavior of the HOG pathway. By using a chemical inhibitor and extensive signal quantification we showed that the HOG pathway is controlled by high basal signaling counteracted by a negative feedback regulatory system. This property determines dynamic signaling in terms of faster response times and higher sensitivity to small variations in extracellular stimuli. This thesis also aimed to implement novel strategies for biological computation that allow increasing complexity of circuits. By engineering signaling pathways in yeast, we have shown that distribution of computation tasks among several wired cells reduces wiring constraints and allows scalability of circuit complexity. Moreover, reusability of cells permits implementation of multiple circuits. Overall, our results define novel dynamic properties of the HOG pathway and have been important to achieve a better view of signal transduction process though MAPK pathways. Moreover, we have developed and implemented novel strategies for biological computation that solved fundamental constrains in the field of synthetic biology. / Una propietat cel•lular fonamental és l’habilitat de detectar estímuls i respondre coherentment a un ambient dinàmic. En cèl•lules de llevat (Saccharomyces cerevisiae), els canvis en l’osmolaritat externa són detectats per la via de senyalització de HOG que organitza tot el programa d’adaptació cel•lular, indispensable per assegurar la supervivència cel•lular en estrès osmòtic. Tot i que la gran majoria dels components de la via de HOG han estat identificats, la dinàmica del procés de senyalització és encara força desconeguda. L’objectiu d’aquest projecte de tesis ha estat analitzar el comportament dinàmic de la via de HOG. Gràcies a la utilització d’un al•lel inhibible de la MAPK Hog1 i a la quantificació sistemàtica del procés de senyalització, hem pogut demostrar que en la via de HOG existeix una intensa senyal basal reprimida constantment per un feedback negatiu depenent de la MAPK Hog1. Aquesta tesi també té com a objectiu la implementació de noves estratègies de computació biològica que permetin un increment de la complexitat dels circuits. Gràcies a la bioenginyeria de les vies de senyalització de llevat, hem demostrat que la distribució de la computació en diferents cèl•lules connectades entre elles disminueix les limitacions de connexió i permet incrementar la complexitat dels circuits a un baix cost. En conjunt, els nostres resultats defineixen noves propietats dinàmiques de la via de HOG i han estat importants per tenir una visió global millorada del procés de senyalització per vies de MAPK. A més, hem dissenyat i implementat noves estratègies de computació biològica que han resolt problemes fonamentals del camp de la biologia sintètica.
35

The cellular capsules technology and its applications to investigate model tumor progression and to engineer tissues in vitro / La technologie des capsules cellulaires et ses applications pour étudier la progression des modèles de tumeurs et fabriquer des tissus in vitro

Alessandri, Kévin 02 December 2013 (has links)
Bien que reconnu comme une étape importante vers une meilleur compréhension de l’évolution des tumeurs, de la morphogénèse des tissus et des tests hauts débits de médicaments, l’utilisation de tests cellulaires in vitro en trois dimensions est toujours limitée et ce surtout par la difficulté d’établir un protocole simple et robuste pour leur formation. Dans ce travail, nous présentons d'abord une nouvelle méthode microfluidique pour la formation des sphéroïdes multicellulaires. Cette technologie des Capsules cellulaire est basée sur l'encapsulation et la croissance des cellules à l'intérieur de micro- sphères creuses, perméable, élastiques. Deuxièmement, nous montrons que ces microcapsules servent de capteurs mécaniques pour mesurer la pression exercée par les sphéroïdes expansion. En imagerie en temps réel multi- photons, on observe en outre que le confinement induit une organisation cellulaire stratifiée, avec un noyau nécrotique, solide et dense, entouré d'un rebord de cellules périphériques hyper-mobiles, qui présentent des propriétés invasives. Troisièmement, nous avons adapté la technologie des capsules cellulaires pour former des tubes creux. Cette géométrie cylindrique nous permet d'étudier l'impact de la libération partielle de confinement (le long de l'axe du tube principal) sur la cinétique de croissance d’agrégats cellulaires pseudo-unidimensionnel (nommé cylindroids). Nos données de microscopie et l’analyse d'images suggèrent un mécanisme de croissance par pointe et la prouvent la génération d’une contrainte radiale. La combinaison des configurations sphériques et cylindriques tend vers l'image globale du confinement qui déclenche la motilité cellulaire et l'invasion par la périphérie de l'agrégat cellulaire tandis que la prolifération des cellules est inhibée dans le noyau lorsque la pression augmente. Quatrièmement, nous utilisons l’alginate comme moule pour concevoir des coquilles et tubes multicouches perméables. En particulier, une légère adaptation du protocole nous permet d'ancrer une fine couche de Matrigel (utilisé comme une membrane basale artificielle) sur la paroi interne de l'alginate. Par l'utilisation de ces capsules sphériques décorés de Matrigel, nous montrons que les monocouches sphériques fermés de cellules épithéliales, ou des kystes, peuvent être facilement conçus avec des tailles qui sont imposées par la taille des capsules. De même, les capsules tubulaires décorées de Matrigel sont utilisées pour la formation des organoïds cultivés à partir de cellules extraites des cryptes du côlon de la souris. Enfin, notre technologie offre une nouvelle voie pour produire dans les tests cellulaires in vitro utiles pour développer de nouvelles thérapies anticancéreuses ou des approches d'ingénierie tissulaire et d'étudier l'interaction entre la mécanique et de la croissance dans les agrégats cellulaires in vitro. / Although recognized as an important step towards better understanding of tumor progression, tissue morphogenesis and high throughput screening of drugs, the use of three dimensional in vitro cellular assays is still limited, especially due to the difficulty in establishing simple and robust protocols for their formation. In this work, we first present a novel microfluidics-assisted method for multicellular spheroids formation. This Cellular Capsules technology is based on the encapsulation and growth of cells inside permeable, elastic, hollow micro-spheres. Second, we show that these microcapsules serve as unique mechanical sensors to measure the pressure exerted by the expanding spheroids. By multiphoton live imaging, we additionally observe that confinement induces a layered cellular organization, with a dense, solid, necrotic core surrounded by a rim of hyper-motile peripheral cells, which exhibit enhanced invasive properties. Third, we adapt the Cellular Capsules technology to form hollow tubes. This cylindrical geometry allows us to investigate the impact of partial confinement release (along the main tube axis) on the growth kinetics of pseudo-one dimensional cellular aggregates (named cylindroids). Our microscopy data and image analyses suggest a tip-growing mechanism and evidence radial stress generation. The combination of the spherical and cylindrical configurations leads to the overall picture that confinement triggers cell motility and invasion at the periphery of the cellular aggregate while cell proliferation is inhibited in the core as pressure builds up. Fourth, we use alginate as a template to design multilayered permeable shells and tubes. In particular, slight adaptation of the protocol allows us to anchor a thin layer of Matrigel (used as an artificial basement membrane) to the alginate inner wall. Using these Matrigel-decorated spherical capsules, we show that closed spherical monolayers of epithelial cells, or cysts, can be readily engineered with sizes that are imposed by the size of the capsules. Similarly, Matrigel-decorated tubular capsules are shown to be convenient for the formation of organoids grown from cells extracted from the cypts of mouse colon. Finally, our technology offers a new avenue to produce in vitro cell-based assays useful for developing new anti-cancer therapies or tissue engineering approaches and to investigate the interplay between mechanics and growth of in vitro cellular assemblies.
36

Ciblage tumoral par des nanoparticules photoactivable basée sur des complexes de cyclodextrines encapsulées dans des liposomes / Cyclodextrin-based photoactive liposomal nanoparticles for tumor targeting

Yakavets, Ilya 12 November 2019 (has links)
La thérapie photodynamique (PDT) est un traitement alternatif du cancer plus ciblé et moins invasif que les modalités traditionnelles. La Temoporfine (mTHPC, nom sous forme médicamenteuse : Foscan®), est l'un des PS les plus puissants cliniquement approuvés. Cependant, sa faible solubilité en milieu aqueux a provoqué plusieurs complications lors de son administration. La présente étude vise à mettre au point des nanoparticules constituées d’une molécule anticancéreuse couplée à la cyclodextrine intégré dans un liposome (drug-in-cyclodextrin-in-liposome, DCL) en couplant deux systèmes d'administration indépendants : les complexes d'inclusion cyclodextrine-mTHPC et les vésicules liposomales pour améliorer le transport et la pénétration de la mTHPC dans le tissu cible. La formation de complexes d'inclusion entre les cyclodextrines et la mTHPC a été étudiée en détail. Sur la base de ces données, des mTHPC-DCL à simple et double charge ont été préparées, optimisées et caractérisées. Il a été démontré que les mTHPC-DCL sont stables et que presque tous les mTHPC-DCL sont liés à β-CDs dans la lumière aqueuse interne des liposomes. L'influence des DCLs sur l'accumulation, la distribution et l'efficacité photodynamique de la mTHPC a été étudiée dans des modèles cellulaire en monocouche et sphéroïde multicellulaires 3D d’adénocarcinome de pharynx humain (HT29). En utilisant des sphéroïdes, nous avons démontré que le DCL à base de triméthyl-β-CD fournissait une accumulation homogène de la mTHPC dans tout le volume des sphéroïdes tumoraux, suggérant ainsi une distribution optimale de la mTHPC. / Photodynamic therapy (PDT) is an alternative cancer treatment which offers a more targeted and less invasive treatment regimen compared to traditional modalities. Temoporfin (mTHPC, medicinal product name: Foscan®), is one of the most potent clinically approved PS. However, its poor solubility in aqueous medium caused several complications of its administration. The present study is aimed at the development of drug-in-cyclodextrin-in-liposome (DCL) nanoparticles by coupling two independent delivery systems: cyclodextrin/mTHPC inclusion complexes and liposomal vesicles to improve the transport and penetration of mTHPC to the target tissue. The formation of inclusion complexes between cyclodextrins and mTHPC was studied in detail. Based on these data, single and double loaded mTHPC-DCLs have been prepared, optimized and characterized. It was demonstrated that mTHPC-DCLs are stable and almost all mTHPC is bound to β-CDs in the inner aqueous liposome lumen. The influence of DCLs on mTHPC accumulation, distribution and photodynamic efficiency was studied in human adenocarcinoma HT29 cellular monolayer and spheroid models. Using 3D multicellular HT29 tumor spheroids we demonstrated that trimethyl-β-CD-based DCL provides homogenous accumulation of mTHPC across tumor spheroid volume thus supposing optimal mTHPC distribution.
37

Intrapulmonary Inoculation of Multicellular Tumor Spheroids to Construct an Orthotopic Lung Cancer Xenograft Model that Mimics Four Clinical Stages of Non-small Cell Lung Cancer

Huang, Yingbo 01 January 2019 (has links)
Lung cancer leads in mortality among all types of cancer in the US and Non-small cell lung cancer (NSCLC) is the major type of lung cancer. Immuno-compromised mice bearing xenografts of human lung cancer cells represent the most common animal models for studying lung cancer biology and for evaluating potential anticancer agents. However, orthotopic lung cancer models based on intrapulmonary injection of suspended cancer cells feature premature leakage of the cancer cells to both sides of the lung within five days, which generates a quick artifact of metastasis and thus belies the development and progression of lung cancer as seen in the clinic. Based on intrapulmonary inoculation of multicellular spheroids (MCS), we have developed the first orthotopic xenograft model of lung cancer that simulates all four clinical stages of NSCLC progression in mice over one month: Stage 1 localized tumor at the inoculation site; Stage 2 multiple tumor nodules or larger tumor nodule on the same side of the lung; Stage 3 cancer growth on heart surface; and Stage 4 metastatic cancer on both sides of the lung. The cancer development was monitored conveniently by in vivo fluorescent imaging and validated by open-chest anatomy, ex vivo fluorescent imaging, and histological studies. The model enjoys high rates of postoperative survival (100%) and parenchymal tumor establishment (88.9%). The roughness of the inoculated MCS is associated negatively with the time needed to develop metastatic cancer (p=0.0299). In addition, we have constructed a co-culture MCS that consisted of A549-iRFP lung cancer cells and WI38 normal human fibroblast cells. The pro-proliferation effect and the high expression of α-smooth muscle actin (α-SMA) by the co-cultured WI38 cells indicated their transformation from normal fibroblasts to cancer-associated fibroblasts (CAFs). The morphology of the co-culture MCS features a round shape, a tight internal structure, and quicker development of roughness. The large roughness value of co-culture MCS suggests that small co-culture MCS could be inoculated into mice lung with a small needle to reduce the surgical trauma. Taken together, a new orthotopic model of NSCLC has been developed, which would facilitate future development of medications against lung cancer.
38

Quiescent cancer cells : Three-dimensional cell models for evaluation of new therapeutics / Vilande cancerceller : Tredimensionella cellmodeller för utvärdering av nya cancerläkemedel

Ek, Frida January 2022 (has links)
Inadequate metabolic conditions in solid tumors lead to the formation of quiescent cancer cells that are suspended in a transient cell cycle arrest. When conditions change, quiescent cancer cells can re-enter the cell cycle and cause recurrence. Drug screening efforts have revealed mitochondrial oxidative phosphorylation as a unique metabolic dependency in quiescent cancer cells. The anthelmintic drug nitazoxanide is an inhibitor of oxidative phosphorylation and preferentially active against quiescent cancer cells in multicellular tumor spheroids.  In this thesis, we employed current and developed new models of quiescent cancer cells and applied live cell imaging for improved preclinical evaluation of cancer drugs in hepatocellular and colorectal carcinoma cell lines. As part of this work, a new assay to measure mitochondrial membrane potential in three-dimensional cell models was developed, an application of the JC-1 assay, and we demonstrated that the preferential activity against quiescent cancer cells of nitazoxanide is shared by two kinase inhibitors: sorafenib and regorafenib. The sensitivity of quiescent cancer cells to nitazoxanide, sorafenib, and regorafenib correlated with the disruption of the mitochondrial membrane potential. Nitazoxanide and sorafenib, in combination, caused an additive decrease in viability, mitochondrial membrane potential, and colony regrowth capacity.  Furthermore, we developed a quiescent hollow fiber assay and implemented an improved analysis using live cell imaging and adenosine triphosphate analysis. Hypoxia and cancer cell quiescence were enriched in hollow fiber macrocapsules over time, and the culture conditions affected nitazoxanide sensitivity. Additionally, we used basement membrane extract gel to support cell growth in hollow fiber macrocapsules and implanted macrocapsules in mice. We observed that the in vivo environment was favorable to cell growth. Through this characterization of the quiescent hollow fiber assay, we were able to outline important paths for future research.
39

Agrégats multicellulaires magnétiques : mécanique des tissus et biodégradation des nanomatériaux / Magnetic multicellular aggregates : tissues mechanics and nanomaterials biodegradation

Mazuel, François 22 September 2016 (has links)
Les nanoparticules d’oxyde de fer ont récemment été envisagées comme outils pour l’ingénierie tissulaire. Elles sont internalisées par les cellules qui deviennent alors magnétiques. Des forces magnétiques peuvent ainsi être appliquées à distance sur ces cellules pour contrôler leur organisation spatiale et temporelle, et former un tissu. Ces applications posent la question du devenir des nanoparticules, qui conditionne in fine leur utilisation clinique. Ce travail s’inscrit dans ce cadre et comporte deux axes.La première partie traite de l’étude des propriétés mécaniques et rhéologiques de tissus biologiques modèles, les agrégats multicellulaires. Une combinaison de méthodes magnétiques est proposée pour fabriquer et stimuler des tissus magnétiques de taille et de forme contrôlées. Ces agrégats magnétiques sont soumis à distance à des contraintes magnétiques d’écrasement. L’étude de leur déformation permet d’explorer des caractéristiques statiques et dynamiques rarement étudiées à l’échelle tissulaire (tension de surface, loi puissance, non linéarité). La deuxième partie se concentre sur l'évolution à moyen terme des nanoparticules dans leur environnement tissulaire, au cœur des agrégats. En combinant ce tissu modèle avec des méthodes de quantification magnétique, nous avons pu mettre en évidence une dégradation massive d’origine endosomale, sans pour autant impacter de manière importante l’homéostasie du fer. De plus, le modèle tissulaire mis en place permet d’étudier la biodégradation intracellulaire de n’importe quel type de nanoparticules. Nous l'avons testé avec des nano-architectures plus complexes: nanocubes, nanodimers, ou nanoparticules magnéto-plasmoniques / Iron oxide nanoparticles are promising candidates for applications in nanomedecine (contrast agents, vectors). They were also recently considered as a powerful tool for tissue engineering. Cells, magnetized through nanoparticules internalization, can be organized in space and time thanks to remote magnetic forces. For all those applications the nanoparticles fate inside the cells remains a key issue concerning the final clinical use. The first part of this work focuses on the study of the mechanical and rheological properties of biological tissue models, the multicellular aggregates. An original magnetic molding method and two different experimental setups were developed to produce aggregates with controlled shapes and sizes, to measure their surface tension and to evidence their power law and non linear behavior.In the second part, we investigate the medium term fate of iron oxide nanoparticles in stem cells forming a spheroid as a model tissue. We reveal a massive endosomal degradation. The set of methods and spheroid model we propose allow a comprehensive and quantitative follow up of the biodegradation of any nanomaterials. This was illustrated by investigating the degradation of nanomaterials with more complex nano-architectures (nanocubes, nanodimers) and assessing the efficiency of a protection strategy to modulate the biodegradation
40

Liquides activés par jet de plasma froid pour le traitement sélectif du cancer colorectal : synthèse, caractérisation et essais thérapeutiques sur modèles cellulaires 3D in vitro et in vivo / Liquids activated by cold pasma jet for selective treatment of colorectal cancer : synthesis, characterization and therapeutic trials on 3D in vitro and in vivo models

Judée, Florian 14 November 2016 (has links)
Les dispositifs plasma à la pression atmosphérique (PA) produisent de nombreuses espèces actives physiques (photons, particules chargées, champ électriques etc.) et chimiques (radicaux libres, espèces réactives de l'oxygène, espèces réactives de l'azote etc.). Ces espèces connues pour leurs effets biologiques directs ou indirects font de l'utilisation des jets de plasmas froids à la PA pour des traitements biomédicaux un sujet de recherche en plein développement. La recrudescence des cas de radiorésistance et chimiorésistance chez les micro-organismes et les cellules cancéreuses impose la recherche de nouveaux modes de traitements innovants. C'est dans ce contexte général que s'inscrit les travaux présentés ici dont l'enjeu majeur est la compréhension des mécanismes d'actions des plasmas froids à la PA sur le cancer colorectal (deuxième cause de mortalité par cancer en France). Le travail de thèse présenté concerne l'utilisation d'un modèle biologique in-vitro (sphéroïde tumoraux multicellulaire du cancer du côlon HCT116) en 3 dimensions qui permet de prendre en compte des paramètres déterminants dans la prolifération tumorale. Ce modèle permet ainsi une meilleure prédiction des résultats in vivo dans l'objectif d'une étude clinique ultérieure. De plus les cinétiques de créations des espèces actives ont été étudiées dans leur globalité depuis le dispositif plasma jusqu'aux interactions intracellulaires à partir d'analyses physiques, biologiques et chimiques. Le traitement indirect par utilisation de liquides activés par jet de plasma d'hélium a été privilégié pour élaborer un traitement endoscopique du cancer colorectal. L'ensemble des travaux menés sur l'observation des interactions des liquides activés par plasma sur les sphéroïdes tumoraux multicellulaires a permis de révéler deux modes d'actions distincts. Le premier étant une génotoxicité du liquide activé induite par la présence de peroxyde d'hydrogène dont l'action induit une cassure double brin de l'ADN intracellulaire conduisant les cellules à la mort par apoptose. Une interaction directe des radicaux libres produits dans le milieu avec les composants de ce dernier (acides aminés, glucose, etc.) ainsi que la présence de nitrites et nitrates induisent également un effet antiprolifératif à long terme du milieu activé par plasma sur les tumeurs HCT116. Différentes méthodes comme la résonance paramagnétique électronique et la spectroscopie d'émission optique ont permis de révéler des voies de création possibles conduisant à la formation de ces espèces actives. Des campagnes d'essais thérapeutiques ont permis d'évaluer la capacité des liquides activés par plasma à cibler davantage les cellules cancéreuses plutôt que les cellules saines ce qui en fait une méthode de traitement sélectif particulièrement prometteuse. Le développement et la caractérisation d'un second jet de plasma d'argon a été réalisé avec l'objectif d'optimiser l'effet antiprolifératif des plasmas sur les tumeurs tout en tenant compte des contraintes imposées par l'utilisation d'un tel dispositif pour le traitement du cancer colorectal. / Plasma devices at atmospheric pressure (AP) generate many physical active species (photons, charged particles, electric field, etc.) and chemical (free radicals, reactive oxygen species, reactive nitrogen species, etc...). This species are well known for their direct or indirect biological effects thus biomedical treatment by low temperature plasma jets at AP is currently a hot research topic. The upsurge of radioresistance and chemoresistance of microorganisms and cancer cells requires the development of new biomedical treatment. In this general context, the present work is a step towards the understanding of the effect induced by low temperature plasma jets at atmospheric pressure on colorectal cancer (second leading cause of death by cancer in France). This thesis focuses on the implementation of an in vitro biological model (multicellular tumor spheroid of colorectal cancer HCT116) in 3 dimensions which allows to take into account key parameters in tumor proliferation. This model is also well suited for the prediction of in vivo results in the aim of a subsequent clinical study. Further research about kinetic reactions of active species has been studied from the plasma device up to intracellular interactions through physical, biological and chemical analyses. Indirect treatment of tumors was carried out through helium plasma jet activated liquids. This solution was chosen for its relevance for endoscopic treatment of colorectal cancer. Interaction between plasma activated liquid and multicellular tumor spheroids has shown two distinct pathways. The first one is the genotoxicity of activated medium induced by the occurrence of hydrogen peroxide which induced DNA damages once penetrated in intracellular medium and leading to cell death by apoptosis. A direct interaction between free radicals generated in liquid medium and the latter components (amino acids, glucose, etc.) associated with the occurrence of nitrites and nitrates induces a long-term antiproliferative effect of plasma activated liquid. Chemical pathways of the formation of these active species were identified by using different analysis techniques such as electron paramagnetic resonance and optical emission spectroscopy. Therapeutic analysis have also demonstrated that plasma activated liquid damage preferentially colon cancer cells rather than healthy cells making it a particularly promising selective treatment method. The design and the characterization of a second plasma jet using argon as a carrier gas was carried out with the aim to improve the antiproliferative effect of plasmas on tumors while taking into account the requirement for the use of such device for colorectal cancer treatment.

Page generated in 0.0724 seconds