291 |
Multiphase flow measurement using gamma-based techniquesArubi, Isaac Marcus Tesi 03 1900 (has links)
The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves. This has led oil companies to develop smaller/marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective soluti8ons of on-line continuous multiphase flow measurement. The pattern recognition approach for clamp-on multiphase measurement employed in this research study provides one means for meeting this need. Cont/d.
|
292 |
The flow of a compressible gas through an aggregate of mobile reacting particles /Gough, P. S. (Paul Stuart) January 1974 (has links)
No description available.
|
293 |
Thermal and hydrodynamic interactions between a liquid droplet and a fluid interfaceGreco, Edwin F. 15 January 2008 (has links)
The research presented in this thesis was motivated by the desire to understand the flow field within a new digital microfluidic device currently under development. This required an investigation of the dynamics of a droplet migrating along the surface of another fluid due to interfacial surface tension gradients. The quantitative analysis of the flow field presented in this thesis provides the first known solution for the velocity field in a migrating droplet confined to an interface.
The first step towards gaining insight into the flow field was accomplished by using the method of reflections to obtain an analytical model for a submerged droplet migrating near a free surface. The submerged droplet model enabled the analysis of the velocity field and droplet migration speed and their dependence on the fluid properties. In general, the migration velocity of a submerged droplet was found to differ dramatically from the classic problem of thermocapillary migration in an unbounded substrate.
A boundary-collocation scheme was developed to determine the flow field and migration velocity of a droplet floating trapped at the air-substrate interface. The numerical method was found to produce accurate solutions for the velocity and temperature fields for nearly all parameters. This numerical scheme was used to judge the accuracy of the flow field obtained by the submerged droplet model. In particular, the model was tested using parameter values taken from a digital microfluidic device. It was determined that the submerged droplet model captured most of the flow structure within the microfluidic droplet. However, for a slightly different choice of parameters, agreement between the two methods was lost. In this case, the numerical scheme was used to uncover novel flow structures.
|
294 |
Análise paramétrica de escoamento particulado aplicado ao preenchimento de fraturasBarbosa, Marcos Vinicius 19 March 2015 (has links)
CNPq / Dentre os diversos tipos de escoamentos multifásicos, o escoamento particulado desperta interesse devido à sua presença em diversos sistemas, como na indústria farmacêutica, química e de petróleo, entre outros. Na indústria petrolífera, especificamente, o escoamento particulado pode ser utilizado quando existe o fenômeno de invasão, caracterizado pela fuga de fluido do poço em direção à formação rochosa, associado à presença de fraturas. Partículas de granulometria selecionada são adicionadas ao fluido de perfuração para promover o preenchimento das fraturas e reestabelecer a circulação no poço. Nesse sentido, o objetivo deste trabalho é investigar o escoamento particulado aplicado ao preenchimento de uma fratura perfeitamente retangular e não permeável. A modelagem matemática do escoamento utiliza uma abordagem euleriana para a fase contínua (fluido) e lagrangiana para a fase discreta (partículas). Os modelos numéricos aplicados para a solução do problema consistem no Dense Discrete Phase Model (DDPM) para o cálculo do acoplamento entre as partículas e o fluido e do Discrete Element Method (DEM) para contabilizar as colisões entre partículas. A análise em questão mostra a influência do comprimento da fratura (hF R ), de parâmetros do escoamento (número de Reynolds - Re e viscosidade dinâmica do fluido - μβ ), das partículas (diâmetro da partícula - Dp e razão entre massa específica da partícula e fluido - ρp/β ) e do processo de injeção (número de partículas injetadas - Np,inj ) sobre a formação do leito de partículas. Tal influência é analisada através do comprimento (hpct ) e posicionamento (hpct ) do leito, além do preenchimento vertical da fratura (epct ). Um leito de partículas ótimo é capaz de reduzir a vazão de fuga (Qf uga ) até um patamar próximo de zero, se formar no menor tempo possível (test ), próximo à entrada da fratura, apresentando um comprimento mínimo e um preenchimento vertical máximo. Para obter um leito ótimo, a pressão na entrada do canal (pm,CH,i ) deve ser monitorada para garantir que a pressão de fratura, que é a pressão na qual existe a falha mecânica da formação, não seja ultrapassada pela pressão gerada pela injeção de partículas. A pressão de entrada é analisada através da adimensionalização em relação à pressão no fenômeno de invasão, antes da injeção de partículas e em relação ao gradiente de pressão gerado entre a saída do canal e a saída da fratura. Os resultados obtidos mostram que todos os parâmetros são capazes de alterar as características geométricas do leito, mostrando uma influência direta na vazão de fuga e no tempo de preenchimento. / Among the most diverse types of multiphase flow, the particulate flow raises interest due to its presence in several systems such as farmaceutical, chemical and oil and gas indus- try. Specifically in the oil and gas industry the particulate flow may be applied upon the appearence of the invasion phenomenon, characterized by the fluid loss to the reservoir, associated to the presence of fractures. Particles with selected granulometry are added to the mud in order to fill the fratures and reestablish circulation. In this line, the aim of this work is to investigate the particulate flow applied to the filling of a perfectly retangular and impermeable fracture. The flow is mathematicaly modeled by an eulerian approach applied to the continuous phase (fluid) and by a lagrangian approach applied to the discrete phase (particles). The numerical models used to attain the solution of the problem are the Dense Discrete Phase Model (DDPM) which accounts for the coupling between the phases and the Discrete Element Method (DEM) which calculates particle collision. The analysis shows the influence of the fracture length (hF R ), flow paramenters (Reynolds number - Re and dynamic viscosity - μβ ), particle parameters (diameter - Dp and specific mass ratio between particles and fluid - ρp/β ) and parameters of the injection process (number of injected particles - Np,inj ) on the formation of the bed. Such influence is analyzed through the length (hpct ) and heigth (hpct ) of the bed and the vertical filling of the fracture (epct ). An optimal bed would be capable to attain a fluid loss close to zero in the least time possible (test ) by forming itself very close to the fracture entering, having a minimum length and a maximum height. In order to obtain the optimized bed, the pressure on the channel inlet (pm,CH,i ) should be monitored to guarantee that the fracturing pressure is not surpassed by the buildup pressure generated by the particles injection. This pressure is analyzed by the initial pressure on the inlet channel, before the particle injection, and the pressure drop generated by the fracture. Results indicate that all sensitivity parameters can alter the geometric characteristics of the bed, showing a direct influence on reducing the fluid loss through the fracture and on the filling time.
|
295 |
Modélisation des effets d'interpénétration entre fluides au travers d'une interface instableHuber, Grégory 28 August 2012 (has links)
Les mélanges multiphasiques en déséquilibre de vitesse sont habituellement modélisés à l'aide d'un modèle à 6 ou 7 équations (Baer and Nunziato, 1986). Ces modèles sont très efficaces pour traiter des mélanges avec effets d'interpénétration. Ils peuvent aussi être utilisés pour traiter des problèmes à interface dans lesquels il est nécessaire de respecter les conditions d'interface (continuité de la vitesse normale et de la pression). Ceci est réalisé à l'aide de solveurs de relaxation mécanique (Saurel and Abgrall, 1999). Une autre méthode consiste à utiliser un modèle à une vitesse et une pression (Kapila et al., 2001). Cependant, de nombreuses applications font intervenir des interfaces instables entre fluides. On traite habituellement ces zones de mélanges turbulents en utilisant un modèle à une vitesse et en résolvant spatialement les diverses instabilités. Dans de nombreuses applications cela devient impossible en raison du trop grand nombre de « jets » et de « bulles ». De plus, on rencontre des difficultés numériques y compris pour le calcul d'une instabilité isolée (Liska and Wendroff, 2004). Dans ce manuscrit, nous abordons le problème de la modélisation des zones de mélange avec des modèles multiphasiques. Cela pose un sérieux problème de modélisation pour des écoulements évoluant d'une situation où l'interface est bien définie (une seule vitesse) vers une configuration de mélange de fluides à plusieurs vitesses. Cette question a été abordée par Besnard and Harlow (1988), Youngs et al. (1989), Chen et al. (1996), Glimm et al. (1999), Saurel et al. (2003) par exemple. / Multiphase mixtures with velocity disequilibrium are usually modelled with 6 or 7 equations models (Baer and Nunziato, 1986). These models are very efficient to model mixtures with velocity drift effects. They can also be used to model interfacial flows where the respect of interface conditions (continuous normal velocity and pressure) is mandatory. Such aim is usually achieved with the help of stiff mechanical relaxation solvers (Saurel and Abgrall, 1999). Another option is to use single pressure and single velocity models (Kapila et al., 2001). However, many applications involve unstable fluid-fluid interfaces for which flow conditions range from well separated fluids to fully mixed ones. The usual way to deal with these turbulent mixing zones is to use a single velocity flow model and to resolve spatially the various instabilities. However, spatial resolution of these instabilities in many applications is impossible as too many ‘jets' and ‘bubbles' are present. Also, numerical difficulties and large inaccuracies are present even for an isolated instability computation (Liska and Wendroff, 2004). In this work, we address the issue of mixing zone modelling with multiphase flow models. This poses the serious difficulty of model derivation for flows conditions ranging from well defined interfaces (single velocity) to fluid mixtures evolving with several velocities. This issue has been addressed by Besnard and Harlow (1988), Youngs et al. (1989), Chen et al. (1996), Glimm et al. (1999), Saurel et al. (2003) to cite a few. In Saurel et al. (2010) an extension of the Kapila et al. (2001) model was done to deal with permeation effects through material interfaces.
|
296 |
[en] MULTIPHASE FLOW SIMULATOR FOR OIL PRODUCTION WELLS / [pt] SIMULADOR DE ESCOAMENTO EM POÇOS DE PRODUÇÃO DE PETRÓLEODALILA DE SOUSA GOMES 06 May 2016 (has links)
[pt] Sistemas de escoamento multifásico se formam ao longo de um poço de produção de petróleo. A análise do comportamento do escoamento através da coluna de produção é realizada com o apoio de ferramentas computacionais e é essencial para o projeto e operação de um sistema de produção de petróleo. Os simuladores comerciais disponíveis para esse tipo de análise exigem aquisição de licença, cujo custo é elevado, restringindo seu uso às grandes companhias petrolíferas e aos renomados institutos de pesquisa. Além disso, esses programas não permitem a visualização da metodologia utilizada para o tratamento do problema físico e para a solução numérica empregada, e nem a alteração de parâmetros internos, tornando seu uso restrito a certas classes de problemas. Apesar da grande demanda e utilidade desse tipo de software ainda há poucos trabalhos desenvolvidos nessa área. Esta pesquisa tem como objetivo apresentar o desenvolvimento de um simulador de escoamento multifásico simplificado e aberto, com aplicação na otimização da produção de óleo e gás. Dentre as aplicações do programa podemos citar a obtenção das curvas de gradiente de pressão e a otimização de gás-lift. Um estudo paramétrico foi conduzido, mostrando a influência de parâmetros como, por exemplo, o diâmetro da tubulação. Os resultados obtidos foram comparados com a literatura e são fisicamente coerentes. Sendo assim, o programa desenvolvido mostra-se promissor. / [en] Multiphase flow systems are formed along an oil production well. The analysis of the flow behavior through the production column is performed with the aid of computational tools, and is very important to the design and optimization of the oil well production operation. In general, the commercial softwares available to analyze this process are very expensive, which restrict its use to some particular companies. In addition, the methodology used to analyze the physical problem, and the numerical solution are fixed and closed, which restrict its use to certain classes of problems, since it is not possible to change or improve the numerical solution. Despite the great demand and use of this kind of software, there are few researches in this area. This research aims to present the development of a simplified multiphase flow simulator open to public, with application to the optimization of oil and gas production wells. Among the applications are the plot of pressure-distribution curves and the optimization of gas-lift. A parametric study is performed, showing the influence of some governing parameters, such as tubing diameter, in the production flow rate. The results obtained were compared with pertinent literature and are physically reasonable, showing that the software developed is promising.
|
297 |
[en] TRANSIENT MODELING OF HORIZONTAL AND NEAR HORIZONTAL FOR WELLBORE DRILLING / [pt] MODELAGEM PARA O ESCOAMENTO TRANSIENTE HORIZONTAL E QUASE HORIZONTAL NA PERFURAÇÃO DE POÇOS DE PETRÓLEOSUZANA SANTOS COSTA 22 August 2006 (has links)
[pt] Dentre os custos considerados na explotação de um campo de
petróleo, os
de perfuração constituem uma parcela significativa do
total. Dentro deste
cenário, devemos estar atentos à remoção dos cascalhos
gerados pela
perfuração, também referido como limpeza de poços. Esta
operação é, ainda
hoje, um tema crítico na perfuração de poços de alta
inclinação, pois os
cascalhos que se depositam devido à ação da gravidade,
formam um leito no
interior do espaço anular formado entre a coluna de
perfuração e o revestimento.
Quando este leito ocupa grande parte do espaço anular, ele
é responsável por
diversos problemas na perfuração, como por exemplo,
desgaste prematuro da
broca, baixas taxas de penetração, fraturamento da
formação, torques e arrastes
excessivos na coluna de perfuração, prisão da coluna de
perfuração, interrupção
da circulação de fluido, aumento da pressão no anular,
etc. Se esta situação não
for tratada adequadamente, o problema pode provocar a
perda do poço. A tese
propõe uma modelagem para o escoamento multifásico na
perfuração de poços
de petróleo, capaz de avaliar a formação do leito de
cascalhos e prever
oscilações de pressões no anular decorrentes do
escoamento. O modelo
adotado é o de duas camadas, onde o espaço anular é
dividido em duas regiões:
leito e suspensão. O leito (Região 1) é formado pelos
cascalhos que se
sedimentam devido ao efeito gravitacional enquanto a
suspensão (Região 2) é a
porção do anular acima do leito depositado, formada pelo
fluido de perfuração e
os cascalhos transportados. As equações que constituem o
modelo
implementado são dadas pelas equações de conservação de
massa para os
sólidos e para o líquido e as equações de conservação de
quantidade de
movimento para o leito e para a suspensão. O método dos
volumes finitos foi
utilizado para a discretização das equações diferenciais
juntamente com o
método de Newton para a solução do sistema não-linear de
equações. A
solução é dada através das seguintes variáveis: altura do
leito, velocidade dos
sólidos no leito e na suspensão, velocidade do fluido no
leito e na suspensão, pressão no anular e concentração de
sólidos no anular. Exemplos de aplicação
da metodologia são apresentados e mostram o comportamento
das variáveis
envolvidas ao longo do tempo. Os exemplos mostram a
eficácia da metodologia
para simular operações de perfuração, em especial, a
limpeza de poço. / [en] Among the costs considered on an oil field exploration,
the drilling process
related ones constitute a significant share. Consequently,
the focus on the
removal of cuttings generated by the drilling process, or
the hole cleaning
operation, is essential. This operation remains a critical
issue in the drilling of
high inclination-wells, since the cuttings tend to deposit
themselves due to
gravity´s action, forming a bed in the annular space
formed between the drill
string and the casing. When this bed takes a sizable
fraction of the annular
space, it becomes responsible for many problems that
appear on the drilling
stage, such as premature bit´s exhaustion, low rates of
penetration, formation
fracture, excessive torque and drag on the drillstring,
stuck pipe, fluid flow
interruption, etc. If this situation is not treated
properly, it may cause the loss of
the well. This present thesis proposes a model for
multiphase flow in the
wellbore drilling, capable of evaluating the formation of
the cuttings´ bed and to
predict oscillations of pressures in annulus due to the
flow. A two-layer model is
adopted, where the annular space is divided in two
regions: bed and suspension.
The bed (Region 1) is formed by the cuttings, which were
deposited due to the
action of gravitational force, while the suspension
(Region 2) is the portion of the
annular above the deposited bed, formed by the drilling
fluid and cuttings. The
constitutive equations of the aforementioned model are
given by the equations of
mass conservation for solids and liquids and the momentum
conservation
equations for the bed and the suspension. The finite
volumes method was used
to turn the differentials equations into discrete ones,
while the Newton´s method
was applied for the solution of the nonlinear system of
equations. The solution is
given through the following variables: bed height, solid
velocity and fluid velocity
both in bed and suspension, annular pressure and solid
concentration in the
annular. Examples of application of the methodology are
presented, showing the
behavior of the involved variables through time. The
examples show the efficacy
of the methodology to simulate drilling operations, in
special hole cleaning ones.
|
298 |
Mass transfer coefficients across dynamic liquid steel/slag interface / Identification des coefficients de transfert de masse à travers d’une interface acier liquide/laitier liquide dynamiqueDe Oliveira Campos, Leandro Dijon 10 March 2017 (has links)
Afin de prédire l’évolution de la composition chimique du laitier dans différents procédés sidérurgiques, un modèle CFD a été développé. Les coefficients de transfert de masse sont estimés à partir des modèles basés sur les paramètres physico-chimiques et hydrodynamiques, comme par exemple la diffusivité des espèces chimiques et la divergence de l’interface. Ces modèles ont été développé pour la prédiction du transfert gaz-liquide où le les nombres de Schmidt (Sc=ν⁄D) sont relativement faible (Sc≈200). Par contre, les procédés industriels ont un nombre de Sc considérablement plus importante, de l’ordre de 103 à 104. Pour évaluer la pertinence de ces modèles, l’hydrodynamique au voisinage d’une interface liquide-liquide a été étudiée. Un modèle CFD et des mesures par l’anémométrie laser (LDA) ont été utilisés pour calculer et valider les champs de vitesse d’une maquette à eau d’une lingotière de coulée continue (CC).Le modèle de transfert de masse d’une lingotière de coulée continu industriel nous a montré que les coefficients de transfert de masse ne sont pas distribués de manière homogène, et les propriétés physiques du laitier ne doivent pas y être non plus. Cette distribution non-homogène a été confirmée par des essais physiques. Les écoulements calculés numériquement ont été utilisé pour prédire les coefficients de transfert de masse entre les deux phases liquide. Ces paramètres seront utilisés comme donnée d’entré pour un modèle de thermodynamique afin de prédire l’évolution de la composition chimique du laitier. / In order to characterize the mass transfer coefficients (MTC) of different species across liquid steel/slag interface, a multiphase Computational Fluid Dynamic (CFD) model was developed. MTC’s are estimated from models based on physicochemical and hydrodynamic parameters, such as mass diffusivity, interface shear and divergence strength. These models were developed for gas-liquid interactions with relative low Schmidt (Sc=ν⁄D) numbers (Sc≈200). However, the industrial processes involve mass transfer of chemical species with Sc number ranging from 103 to 104. To evaluate the applicability of these existing models, the fluid flow in the vicinity of a liquid/liquid interface is investigated. Computational Fluid Dynamic (CFD) and Laser Doppler Anemometry (LDA) were used to calculate and measure the velocity field on a continuous casting (CC) water model configuration. The work provides new insights and original measures to understand the fluid flow near liquid-liquid interfaces.The mass transfer model of an industrial continuous casting mold showed that the mass transfer coefficients are not homogeneously distributed, and slag properties should follow this trend. This non-homogeneity was confirmed by physical experiments performed with a water model of a CC configuration and its CFD representation. The calculated flow was used to predict the MTC and the interface area between phases, since the interface is constantly moving. These parameters will be the input of thermodynamic models to predict slag composition and viscosity. This methodology is currently under validation, and it will also be applied to improve steel plant performance in the desulphurization process.
|
299 |
Simulation numérique de l’écoulement d’un mélange air et phase dispersée pour l’allumage d’une chambre de combustion aéronautique via un formalisme Euler Lagrange / Numerical simulation of an air flow with a dispersed phase for the ignition of an aeronautical combustion chamber with an Euler Lagrange methodHervo, Loïc 15 December 2017 (has links)
L'objectif de cette thèse est de contribuer au développement et à la validation d'outils numériques permettant la Simulation aux Grandes Echelles (SGE) de l'allumage d'un écoulement turbulent diphasique dans une chambre de combustion. Pour ce faire, une méthode de dépôt d'énergie modélisant l'apport d'énergie lié au claquage de la bougie d'allumage a été implémentée dans la chaîne de calcul CEDRE. Cette méthode a été validée sur une simulation de l'allumage d'un écoulement laminaire purement gazeux d'air et de propane. Une SGE de l'écoulement d'air du MERCATO a été effectué à l'aide du solveur Navier-Stokes CHARME de CEDRE. Cette simulation reproduit fidèlement l'écoulement turbulent non-réactif dans la chambre de combustion. Une méthode d'injection simplifiée FIMUR a été ajoutée au solveur lagrangien SPARTE de CEDRE. Dans cette méthode, des gouttes sont injectées directement au nez de l'injecteur avec une distribution de vitesse et de taille imposée. Une SGE de l'écoulement turbulent diphasique dispersé non-réactif dans la chambre MERCATO a ensuite été réalisée avec cette méthode. La comparaison des champs particulaires moyens de vitesse et de taille obtenus par simulation numérique avec les données expérimentales est satisfaisante. Enfin, des SGE de l'allumage de la chambre MERCATO ont été effectuées à partir du champ diphasique non-réactif simulé et de la méthode de dépôt d'énergie développée. Selon l'instant du dépôt d'énergie, les simulations conduisent à des allumages réussis ou ratés. La propagation de la flamme dans la chambre pour un allumage réussi a fait l'objet d'une analyse détaillée pour tenter de déterminer les principaux facteurs l'influençant. / The goal of this thesis is to contribute to the development and validation of numerical tools for the Large Eddy Simulation (LES) of the ignition of a turbulent multiphase flow in a combustion chamber. An energy deposition method that models the energy supplied by the spark plug to the flow was implemented in the CEDRE code. This method was validated on a simulation of the ignition of a purely gaseous laminar propane-air flow. Then, a LES of the non-reacting gas flow in the monosector combustor MERCATO was performed with the Navier-Stokes solver CHARME of the CEDRE code. The comparison between simulations and experiments demonstrates that the main flow field features are well reproduced. In order to simulate the non-reacting dispersed two-phase flow of the same configuration, a simplified injection method called FIMUR was implemented in the Lagrangian solver SPARTE of the CEDRE code. In this method, droplets are injected directly at the tip of the injector with velocities deduced from experimental correlations while the size distribution is directly obtained from experimental data. The comparison of the mean droplet velocity and diameter fields in the vicinity of the injector between simulations and experiments appears satisfactory. Finally, LES's of the ignition of the MERCATO were performed using the non-reacting two-phase flow simulations and the aformentioned energy deposition method. Depending on the instant of energy deposition, the simulations lead to successful or failed ignitions. The flame propagation in a successful ignition was analysed in order to attempt to determine the physical phenomena at play and to better understand them.
|
300 |
Hydrodynamics, Mass Transfer and Mixing induced by Bubble Plumes in Viscous Fluids / Hydrodynamique, transfert massique et mélange induit par un panache de bulles en fluides visqueuxLaupsien, David 08 December 2017 (has links)
Ce travail est une investigation expérimentale de l’hydrodynamique, du transfert massique et du mélange induit par un panache de bulles dans des milieux de différentes viscosités. Dans l’industrie on est souvent confronté à des problèmes de transfert et de mélange d’une phase liquide et d’une phase gazeuse afin de provoquer des réactions chimiques ou biochimiques. La plupart du temps on utilise des colonnes à bulles, simple à mettre en œuvre, pour ce type de procédé. Mais il existe d’autres situations adaptées aux très grands volumes comme par exemple les bassins d’aération de traitement des eaux ou les méthaniseurs. Dans ce cas de figure, la répartition des injecteurs de gaz doit être adaptée aux dimensions du bassin et contribuer au mélange du liquide. Ceci est autant plus vrai pour le bioréacteur de méthanisation où l’état du liquide change en continu pendant la fermentation. Cependant, il y a un manque d'informations concernant l'hydrodynamique induit par l'injection de gaz en milieu visqueux. Afin de mieux comprendre l'écoulement, le transfert massique et finalement le mélange dans ces situations, il a été décidé d’étudier le cas d'un panache de bulles, généré par un seul injecteur dans des liquides de différentes viscosités. Pour cela des expériences ont été effectuées dans deux types de colonne à bulles avec injection centrale. Un grand nombre de méthodes métrologiques tel que la PIV, l’ombroscopie, différents capteurs etc. ont été utilisés. Une attention particulière a été donnée aux fluctuations à différentes échelles induit par le mouvement oscillatoire du panache de bulles. / This work is an experimental investigation on hydrodynamics, mass transfer and mixing induced by a bubble plume. In chemical engineering, people are often confronted to mixing problems of liquid and gas to create chemical or biochemical reactions. Most of the time, bubble column of big height compared to its diameter are used for such kind or processes.But there are also situations using large scale reactors like tanks for methanization or wastewater treatment. In such configurations, spargers must be adapted to reactor dimensions and fluid properties. This particularly important for methanization reactors since fluid properties are changing continuously during the fermentation. In order to understand hydrodynamics, mass transfer and mixing it is easier to study one single bubble swarm, or so called bubble plume, first.Different experiments were figured out in two different columns types. First one is a pseudo two dimensional column (6cm * 35 cm * 130cm ) allowing the application of optical metrological methods. Hence, the gas phase was studied via shadowgraphy and the liquid phase via PIV. Plus, light intensity measurements after dye injection were done. Besides, pressure sensors and oxygen probes were used.In this way, one could study the oscillating behavior, the corresponding characteristic frequency, mass transfer and mixing time scales. In order to analyze fluid properties, a copolymer called Breox was used. Plus, two different spargers generating different bubble shapes and sizes were applied to estimate their impact. Additional experiments in a cylindrical bubble column were performed at the HDZR in Germany. The same fluids and the same spargers were used to compare results from both geometries. Due to the difficulty to apply optical methods, a Wire-Mesh system recently developed at the HZDR was used to follow the bubble plume movement. Finally, first CFD simulations showing encouraging results are presented at the end of the manuscript.
|
Page generated in 0.0724 seconds