• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 234
  • 115
  • 45
  • 40
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 571
  • 169
  • 118
  • 96
  • 80
  • 79
  • 78
  • 72
  • 70
  • 65
  • 64
  • 61
  • 59
  • 57
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Concurrent topology optimization of structures and materials

Liu, Kai 11 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Topology optimization allows designers to obtain lightweight structures considering the binary distribution of a solid material. The introduction of cellular material models in topology optimization allows designers to achieve significant weight reductions in structural applications. However, the traditional topology optimization method is challenged by the use of cellular materials. Furthermore, increased material savings and performance can be achieved if the material and the structure topologies are concurrently designed. Hence, multi-scale topology optimization methodologies are introduced to fulfill this goal. The objective of this investigation is to discuss and compare the design methodologies to obtaining optimal macro-scale structures and the corresponding optimal meso-scale material designs in continuum design domains. These approaches make use of homogenization theory to establish communication bridges between both material and structural scales. The periodicity constraint makes such cellular materials manufacturable while relaxing the periodicity constraint to achieve major improvements of structural performance. Penalization methods are used to obtain binary solutions in both scales. The proposed methodologies are demonstrated in the design of stiff structure and compliant mechanism synthesis. The multiscale results are compared with the traditional structural-level designs in the context of Pareto solutions, demonstrating benefits of ultra-lightweight configurations. Errors involved in the mult-scale topology optimization procedure are also discussed. Errors are mainly classified as mesh refinement errors and homogenization errors. Comparisons between the multi-level designs and uni-level designs of solid structures, structures using periodic cellular materials and non-periodic cellular materials are provided. Error quantifications also indicate the superiority of using non-periodic cellular materials rather than periodic cellular materials.
562

Multiskalen-Ansatz zur Vorhersage der anisotropen mechanischen Eigenschaften von Metall-Schaumstoff-Verbundelementen

Gahlen, Patrick 21 September 2023 (has links)
Metall-Schaumstoff-Verbundelemente werden aufgrund ihrer sehr guten Flammschutzwirkung, selbsttragenden Eigenschaften bei geringem Gewicht und der kostengünstigen Montagemöglichkeit zunehmend in der Baubranche zur effizienten Wärmedämmung eingesetzt. Die Verbundelemente bestehen aus zwei flächigen, linierten oder profilierten, außen liegenden metallischen Deckschichten geringer Dicke, in denen der Zwischenraum (Kernschicht) mit einer wärmedämmenden Hartschaumschicht aus z. B. Polyisocyanurat ausgefüllt ist. Bedingt durch den (kontinuierlichen) Fertigungsprozess entstehen im Schaumkern material- und strukturbedingte Inhomogenitäten, wodurch dessen Materialeigenschaften über der Schaumdicke variieren. Diese Inhomogenitäten können die mechanischen Eigenschaften der Verbundelemente negativ beeinflussen und zu einem frühzeitigen Versagen führen. Aus diesem Grund ist das Verständnis bzw. die Berücksichtigung der lokalen Effekte im Schaum sowohl für die Auslegung der Verbundelemente als auch zur Schöpfung möglicher Potenziale zur Verbesserung der Produktqualität essenziell. Da die Betrachtung der lokalen Einflussfaktoren experimentell und analytisch nur begrenzt isoliert möglich ist, wird in dieser Arbeit ein numerischer Multiskalen-Ansatz unter Verwendung der Finite-Elemente-Methode vorgestellt, welcher in der Lage ist, die mechanischen Eigenschaften der lokalen mesoskaligen Schaumstrukturen mittels Homogenisierung in einem makroskaligen Simulationsmodell eines kompletten Verbundelementes zu berücksichtigen. Für die Validierung und Bewertung des Modells werden kommerziell erhältliche Verbundelemente verwendet. Im ersten Schritt werden die lokalen (höhenaufgelösten) Schaumeigenschaften dieser Verbundelemente experimentell charakterisiert. Besonderes Augenmerk liegt auf der Analyse des Schaumbasismaterials und der Zellstruktur. Basierend auf den experimentellen Daten wird ein mesoskaliges Simulationsmodell eines Repräsentativen Volumenelements erstellt und validiert, welches eine Vorhersage der mechanischen Eigenschaften anisotroper Schaumstrukturen mit unterschiedlichen Aspektverhältnissen und Orientierungen der individuellen Zellen auf Basis definierter Ellipsoidpackungen und einer anisotropen Mosaik-Methode ermöglicht. Neben der Vorhersage der lokalen Schaumeigenschaften bietet das mesoskalige Modell die Möglichkeit, Auswirkungen einzelner Einflussfaktoren auf die Schaumeigenschaften isoliert zu betrachten. Ein Vergleich zwischen experimentellen und numerischen Ergebnissen aus einem zuvor definierten Bereich zeigt, dass sowohl im Experiment, als auch in der mesoskaligen Simulation die Strukturen ein stark anisotropes Verhalten aufweisen, wobei der Grad der Anisotropie in der Simulation tendenziell leicht unterschätzt wird. Trotz kleiner Abweichungen stimmen die Simulationsergebnisse gut mit den experimentellen Daten überein. Demnach ist das mesoskalige Simulationsmodell geeignet, um die lokalen, anisotropen mechanischen Schaumeigenschaften nachzubilden. Darauf aufbauend werden die lokalen Materialeigenschaften eines ausgewählten Verbundelementes numerisch bestimmt und auf das makroskopische Modell übertragen. Im Zuge dessen werden sowohl geeignete Methoden zur Implementierung der Schaumeigenschaften vorgestellt, als auch eine Sensitivitätsanalyse zum Einfluss der Auflösung der lokalen mesoskaligen Schaumstruktur auf die makroskopischen Eigenschaften der Verbundelemente durchgeführt. Die Qualität des makroskopischen Simulationsmodells wird über den Vergleich der simulativen Ergebnisse mit bauteil-typischen Messungen analysiert. Vergleichbar zur mesoskaligen Validierung können die makroskaligen Bauteileigenschaften mit kleineren Abweichungen gut wiedergegeben werden. Voraussetzung ist jedoch, dass die im Vergleich zur (nahezu) homogenen Schaum-Kernschicht äußeren, inhomogenen Randschichten separat modelliert werden. Diese Erkenntnisse lassen sich auch auf andere Verbundelemente mit unterschiedlichen Dicken übertragen, da aus den experimentellen Untersuchungen bekannt ist, dass die Verbundelemente qualitativ vergleichbare Eigenschaftsverteilungen aufweisen. Aufgrund des hohen Rechen- und Modellierungsaufwands wird abschließend bewertet, inwiefern die komplexen mesomechanischen Eigenschaften anisotroper Schaumstrukturen in zukünftigen Multiskalen-Simulationen effizienter berücksichtigt werden können. Hierzu wird ein Künstliches Neuronales Netz verwendet, wobei der Fokus aufgrund der benötigten Dauer zur Erstellung einer geeigneten Datenbasis auf der Vorhersage des orthotropen Steifigkeitstensors liegt. Die Ergebnisse zeigen, dass bei einer geeigneten Netzwerkstruktur und einer ausreichenden Datenbasis die mechanischen Eigenschaften komplexer Zellstrukturen mittels eines Neuronalen Netzes innerhalb von Sekunden sehr gut reproduziert werden können. In einer abschließenden Studie wird der Einfluss der Datenbankgröße auf die Vorhersagegenauigkeit untersucht. Es kann festgestellt werden, dass mindestens 500 Trainingsdatenpunkte erforderlich sind, um eine ausreichende Genauigkeit zu erreichen. / Metal-foam composite elements are used increasingly for efficient thermal insulation in the construction industry due to their very good flame-retardancy, self-supporting properties combined with low weight, and low-cost assembly options. The composite elements consist of two thin, flat, lined, or profiled external metallic cover layers, in which the interspace (core layer) is filled with a thermally insulating low-density layer of rigid foam, e.g. polyisocyanurate. Due to the (continuous) manufacturing process, material- and structure-related inhomogeneities occur in the foam core, causing its material properties to vary over the core thickness. These inhomogeneities can negatively affect the mechanical properties of the composite elements and lead to premature failure. For this reason, understanding and considering the local effects is essential both for the design of the composite elements and for creating possible potentials to improve the product quality. Since the consideration of local influencing factors is limited experimentally and analytically in isolation, this work presents a numerical multiscale approach using the finite element method, which can consider the mechanical properties of the local mesoscale foam structures using homogenization in a macroscale simulation model of a complete composite element. For the validation and evaluation of the model, commercially available composite elements are used. In a first step, the local (height-resolved) foam properties of these composite elements are characterized experimentally. Particular attention is paid to the analysis of foam base material, foam density, and cell structure. Based on the experimental data, a mesoscale simulation model of a representative volume element is created and validated, which allows a prediction of mechanical properties of anisotropic foam structures with different aspect ratios and orientations of the individual cells based on defined ellipsoid packings and an anisotropic tessellation method. In addition to predicting local foam properties, this mesoscale model offers the possibility to consider effects of individual influencing factors on foam performance in isolation. A comparison between experimental and numerical results from a previously defined area shows that in both the experiment and the mesoscale simulation, the structures exhibit strongly anisotropic behavior, although the degree of anisotropy tends to be slightly underestimated in the simulation. Despite small deviations, simulation results agree well with experimental data. Accordingly, this mesoscale simulation model is suitable to reproduce local anisotropic mechanical foam properties. Based on this, local material properties of a selected composite element are determined numerically and transferred to the macroscopic model. In the course of this, suitable methods for implementing foam properties are presented as well as a sensitivity analysis on the influence of resolution of the local mesoscale foam structure on macroscopic properties of composite elements. The quality of the macroscopic simulation model is again analyzed via a comparison of simulative results with component-typical measurements. Comparable to the mesoscale validation, macroscale component properties can be reproduced well with minor deviations. A prerequisite, however, is that outer, inhomogeneous layers are modeled separately compared to (nearly) homogeneous foam core layer. These findings can also be applied to other composite elements with different thicknesses since it is known from experimental investigations that composite elements exhibit qualitatively comparable property distributions. Finally, due to the high computational and modeling effort, it is evaluated to what extent the complex mesomechanical properties of anisotropic foam structures can be considered more efficiently in future multiscale simulations. For this purpose, an Artificial Neural Network is used, focusing on the prediction of orthotropic stiffness tensor due to the required duration to generate a suitable database. Results from this study show that with a suitable network structure and a sufficient database, the mechanical properties of complex foam structures can be reproduced very well via the Artificial Neural Network within seconds. In a final study, the effect of the database size on the prediction accuracy was examined. It could be observed that at least 500 training datapoints are required to obtain sufficient accuracy.
563

Landscape-level heterogeneity of agri-environment measures improves habitat suitability for farmland birds

Roilo, Stephanie, Engler, Jan O., Václavík, Tomáš, Cord, Anna F. 21 May 2024 (has links)
Agri-environment schemes (AESs), ecological focus areas (EFAs), and organic farming are the main tools of the common agricultural policy (CAP) to counteract the dramatic decline of farmland biodiversity in Europe. However, their effectiveness is repeatedly doubted because it seems to vary when measured at the field-versus-landscape level and to depend on the regional environmental and land-use context. Understanding the heterogeneity of their effectiveness is thus crucial to developing management recommendations that maximize their efficacy. Using ensemble species distribution models and spatially explicit field-level information on crops grown, farming practice (organic/conventional), and applied AES/EFA from the Integrated Administration and Control System, we investigated the contributions of five groups of measures (buffer areas, cover crops, extensive grassland management, fallow land, and organic farming) to habitat suitability for 15 farmland bird species in the Mulde River Basin, Germany. We used a multiscale approach to identify the scale of effect of the selected measures. Using simulated land-use scenarios, we further examined how breeding habitat suitability would change if the measures were completely removed and if their adoption by farmers increased to meet conservation-informed targets. Buffer areas, fallow land, and extensive grassland were beneficial measures for most species, but cover crops and organic farming had contrasting effects across species. While different measures acted at different spatial scales, our results highlight the importance of land-use management at the landscape level—at which most measures had the strongest effect. We found that the current level of adoption of the measures delivers only modest gains in breeding habitat suitability. However, habitat suitability improved for the majority of species when the implementation of the measures was increased, suggesting that they could be effective conservation tools if higher adoption levels were reached. The heterogeneity of responses across species and spatial scales indicated that a mix of different measures, applied widely across the agricultural landscape, would likely maximize the benefits for biodiversity. This can only be achieved if the measures in the future CAP will be cooperatively designed in a regionally targeted way to improve their attractiveness for farmers and widen their uptake.
564

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 16 December 2014 (has links) (PDF)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.
565

On Deep Multiscale Recurrent Neural Networks

Chung, Junyoung 04 1900 (has links)
No description available.
566

Atomistische Modellierung und Simulation des Filmwachstums bei Gasphasenabscheidungen

Lorenz, Erik E. 27 November 2014 (has links)
Gasphasenabscheidungen werden zur Produktion dünner Schichten in der Mikro- und Nanoelektronik benutzt, um eine präzise Kontrolle der Schichtdicke im Sub-Nanometer-Bereich zu erreichen. Elektronische Eigenschaften der Schichten werden dabei von strukturellen Eigenschaften determiniert, deren Bestimmung mit hohem experimentellem Aufwand verbunden ist. Die vorliegende Arbeit erweitert ein hochparalleles Modell zur atomistischen Simulation des Wachstums und der Struktur von Dünnschichten, welches Molekulardynamik (MD) und Kinetic Monte Carlo-Methoden (KMC) kombiniert, um die Beschreibung beliebiger Gasphasenabscheidungen. KMC-Methoden erlauben dabei die effiziente Betrachtung der Größenordnung ganzer Nano-Bauelemente, während MD für atomistische Genauigkeit sorgt. Erste Ergebnisse zeigen, dass das Parsivald genannte Modell Abscheidungen in Simulationsräumen mit einer Breite von 0.1 µm x 0.1 µm effizient berechnet, aber auch bis zu 1 µm x 1 µm große Räume mit 1 Milliarden Atomen beschreiben kann. Somit lassen sich innerhalb weniger Tage Schichtabscheidungen mit einer Dicke von 100 Å simulieren. Die kristallinen und amorphen Schichten zeigen glatte Oberflächen, wobei auch mehrlagige Systeme auf die jeweilige Lagenrauheit untersucht werden. Die Struktur der Schicht wird hauptsächlich durch die verwendeten molekulardynamischen Kraftfelder bestimmt, wie Untersuchungen der physikalischen Gasphasenabscheidung von Gold, Kupfer, Silizium und einem Kupfer-Nickel-Multilagensystem zeigen. Stark strukturierte Substrate führen hingegen zu Artefakten in Form von Nanoporen und Hohlräumen aufgrund der verwendeten KMC-Methode. Zur Simulation von chemischen Gasphasenabscheidungen werden die Precursor-Reaktionen von Silan mit Sauerstoff sowie die Hydroxylierung von alpha-Al2O3 mit Wasser mit reaktiven Kraftfeldern (ReaxFF) berechnet, allerdings ist weitere Arbeit notwendig, um komplette Abscheidungen auf diese Weise zu simulieren. Mit Parsivald wird somit die Erweiterung einer Software präsentiert, die Gasphasenabscheidungen auf großen Substraten effizient simulieren kann, dabei aber auf passende molekulardynamische Kraftfelder angewiesen ist.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Einleitung 2 Grundlagen 2.1 Gasphasenabscheidungen 2.1.1 Physikalische Gasphasenabscheidung 2.1.2 Chemische Gasphasenabscheidung 2.1.3 Atomlagenabscheidung 2.1.4 Methoden zur Simulation von Gasphasenabscheidungen 2.2 Molekulardynamik 2.2.1 Formulierung der Molekulardynamik 2.2.2 Auswahl verfügbarer Molekulardynamik-Software 2.2.3 Molekulardynamische Kraftfelder 2.3 Kinetic Monte Carlo-Methoden 2.4 Datenstrukturen 2.4.1 Numerische Voraussetzungen an Gasphasenabscheidungen 2.4.2 Vergleich der Laufzeiten für verschiedene Datenstrukturen 2.4.3 Effiziente Datenstrukturen 2.4.4 Alpha-Form 3 Methoden und Modelle 3.1 Stand der Forschung 3.1.1 Anwendungen von KMC-Simulationen für die Gasphasenabscheidung 3.1.2 Anwendung von MD-Simulationen für die Gasphasenabscheidung 3.2 Parsivald-Modell 3.2.1 Zielsetzung für Parsivald 3.2.2 Beschreibung des Parsivald-Modells 3.2.3 Annahmen und Einschränkungen 3.2.4 Erweiterungen im Rahmen der Masterarbeit 3.2.5 Behandlung von fehlerhaften Ereignissen 3.3 Laufzeitanalyse von Parsivald-Simulationen 3.3.1 Ereignis-Laufzeit TE 3.3.2 Ereignis-Durchsatz RE 3.3.3 MD-Laufzeit TMD 3.3.4 Worker-Laufzeit Tworker 3.3.5 Serielle Laufzeit T1 3.3.6 Anzahl der parallelen Prozesse p 3.3.7 Workerdichte rhoworker 3.3.8 Parallele Laufzeit Tp 3.3.9 Speedup Sp 3.3.10 Parallele Effizienz Ep 3.3.11 Auswertung der Laufzeitparameter 3.3.12 Fazit 3.4 MD-Simulationen: Methoden und Auswertungen 3.4.1 Zeitskalen in MD-Simulationen 3.4.2 Relaxierungen 3.4.3 Strukturanalysen 3.4.4 Bestimmung der Dichte und Temperatur 3.4.5 Radiale Verteilungsfunktionen, Bindungslänge und Koordinationszahl 3.4.6 Oberfläche, Schichtdicke, Rauheit und Porösität 3.4.7 Reaktionen und Stabilität von Molekülen 4 Simulationen von Gasphasenabscheidungen 4.1 Gold-PVD 4.1.1 Voruntersuchungen 4.1.2 Thermodynamische Eigenschaften 4.1.3 Simulation von Gold-PVD 4.1.4 Skalierbarkeit mit der Simulationsgröße 4.1.5 Fazit 4.2 Kupfer-PVD 4.2.1 Voruntersuchungen 4.2.2 Thermodynamische Eigenschaften 4.2.3 Simulation von Kupfer-PVD 4.2.4 Untersuchung der maximalen Workerdichte 4.2.5 Fazit 4.3 Multilagen-PVD 4.3.1 Multilagen-Simulationen mit Parsivald 4.3.2 Vergleich mit Ergebnissen reiner MD-Simulationen 4.3.3 Vergleich der Parallelisierbarkeit 4.3.4 Fazit 4.4 Silizium-PVD 4.4.1 Voruntersuchungen 4.4.2 Simulationen von Silizium-PVD 4.4.3 Fazit 4.5 Aluminiumoxid-ALD 4.5.1 ReaxFF-Parametersätze 4.5.2 Voruntersuchungen 4.5.3 Fazit 5 Zusammenfassung und Ausblick 5.1 Zusammenfassung 5.2 Ausblick A Physikalische Konstanten und Stoffeigenschaften B Datenstrukturen B.1 Übersicht über KMC-Operationen B.2 Beschreibung grundlegender Datenstrukturen B.3 Delaunay-Triangulationen B.3.1 Ausgewählte Eigenschaften einer Delaunay-Triangulation B.3.2 Algorithmen zur Konstruktion einer Delaunay-Triangulation C Ergänzungen zur Laufzeitanalyse von Parsivald C.1 Einfluss der Ereignis-Laufzeit auf die effiziente Raumgröße weff C.2 Zusätzliche Einflüsse auf das Maximum der Prozesse pmax C.3 Abschätzung der maximalen Workerdichte per Random Sequential Adsorption D Ergänzungen zur Simulation von Gold-PVD E Multilagen-PVD E.1 Porenbildung bei Unterrelaxation E.2 Simulationen mit Lagendicken von jeweils 5 nm F Simulation der CVD-Precursormoleküle Silan und Sauerstoff F.1 Stabilität der Precursormoleküle F.2 Reaktion der Precursormoleküle Literaturverzeichnis
567

Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods

Peña Monferrer, Carlos 06 November 2017 (has links)
The study and modelling of two-phase flow, even the simplest ones such as the bubbly flow, remains a challenge that requires exploring the physical phenomena from different spatial and temporal resolution levels. CFD (Computational Fluid Dynamics) is a widespread and promising tool for modelling, but nowadays, there is no single approach or method to predict the dynamics of these systems at the different resolution levels providing enough precision of the results. The inherent difficulties of the events occurring in this flow, mainly those related with the interface between phases, makes that low or intermediate resolution level approaches as system codes (RELAP, TRACE, ...) or 3D TFM (Two-Fluid Model) have significant issues to reproduce acceptable results, unless well-known scenarios and global values are considered. Instead, methods based on high resolution level such as Interfacial Tracking Method (ITM) or Volume Of Fluid (VOF) require a high computational effort that makes unfeasible its use in complex systems. In this thesis, an open-source simulation framework has been designed and developed using the OpenFOAM library to analyze the cases from microescale to macroscale levels. The different approaches and the information that is required in each one of them have been studied for bubbly flow. In the first part, the dynamics of single bubbles at a high resolution level have been examined through VOF. This technique has allowed to obtain accurate results related to the bubble formation, terminal velocity, path, wake and instabilities produced by the wake. However, this approach has been impractical for real scenarios with more than dozens of bubbles. Alternatively, this thesis proposes a CFD Discrete Element Method (CFD-DEM) technique, where each bubble is represented discretely. A novel solver for bubbly flow has been developed in this thesis. This includes a large number of improvements necessary to reproduce the bubble-bubble and bubble-wall interactions, turbulence, velocity seen by the bubbles, momentum and mass exchange term over the cells or bubble expansion, among others. But also new implementations as an algorithm to seed the bubbles in the system have been incorporated. As a result, this new solver gives more accurate results as the provided up to date. Following the decrease on resolution level, and therefore the required computational resources, a 3D TFM have been developed with a population balance equation solved with an implementation of the Quadrature Method Of Moments (QMOM). The solver is implemented with the same closure models as the CFD-DEM to analyze the effects involved with the lost of information due to the averaging of the instantaneous Navier-Stokes equation. The analysis of the results with CFD-DEM reveals the discrepancies found by considering averaged values and homogeneous flow in the models of the classical TFM formulation. Finally, for the lowest resolution level approach, the system code RELAP5/MOD3 is used for modelling the bubbly flow regime. The code has been modified to reproduce properly the two-phase flow characteristics in vertical pipes, comparing the performance of the calculation of the drag term based on drift-velocity and drag coefficient approaches. / El estudio y modelado de flujos bifásicos, incluso los más simples como el bubbly flow, sigue siendo un reto que conlleva aproximarse a los fenómenos físicos que lo rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos CFD (Computational Fluid Dynamics) como herramienta de modelado está muy extendida y resulta prometedora, pero hoy por hoy, no existe una única aproximación o técnica de resolución que permita predecir la dinámica de estos sistemas en los diferentes niveles de resolución, y que ofrezca suficiente precisión en sus resultados. La dificultad intrínseca de los fenómenos que allí ocurren, sobre todo los ligados a la interfase entre ambas fases, hace que los códigos de bajo o medio nivel de resolución, como pueden ser los códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados aceptables, a no ser que se trate de escenarios muy conocidos y se busquen resultados globales. En cambio, códigos basados en alto nivel de resolución, como los que utilizan VOF (Volume Of Fluid), requirieren de un esfuerzo computacional tan elevado que no pueden ser aplicados a sistemas complejos. En esta tesis, mediante el uso de la librería OpenFOAM se ha creado un marco de simulación de código abierto para analizar los escenarios desde niveles de resolución de microescala a macroescala, analizando las diferentes aproximaciones, así como la información que es necesaria aportar en cada una de ellas, para el estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica de burbujas individuales a un alto nivel de resolución mediante el uso del método VOF (Volume Of Fluid). Esta técnica ha permitido obtener resultados precisos como la formación de la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja e inestabilidades que produce en su camino. Pero esta aproximación resulta inviable para entornos reales con la participación de más de unas pocas decenas de burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete Element Methods) en la que se representa a las burbujas como partículas discretas. En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han añadido un gran número de nuevos modelos, como los necesarios para contemplar los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por las burbujas, la distribución del intercambio de momento y masas con el fluido en las diferentes celdas por cada una de las burbujas o la expansión de la fase gaseosa entre otros. Pero también se han tenido que incluir nuevos algoritmos como el necesario para inyectar de forma adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un nivel de resolución superior a los desarrollados hasta la fecha. Siguiendo con la reducción del nivel de resolución, y por tanto los recursos computacionales necesarios, se efectúa el desarrollo de un solver tridimensional de TFM en el que se ha implementado el método QMOM (Quadrature Method Of Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla con los mismos modelos de cierre que el CFD-DEM para analizar los efectos relacionados con la pérdida de información debido al promediado de las ecuaciones instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite determinar las discrepancias encontradas por considerar los valores promediados y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproximación de nivel de resolución más bajo, se investiga el uso uso de códigos de sistema, utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condiciones de bubbly flow. El código es modificado para reproducir correctamente el flujo bifásico en tuberías verticales, comparando el comportamiento de aproximaciones para el cálculo del término d / L'estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly flow, segueix sent un repte que comporta aproximar-se als fenòmens físics que ho regeixen des de diferents nivells de resolució espacial i temporal. L'ús de codis CFD (Computational Fluid Dynamics) com a eina de modelatge està molt estesa i resulta prometedora, però ara per ara, no existeix una única aproximació o tècnica de resolució que permeta predir la dinàmica d'aquests sistemes en els diferents nivells de resolució, i que oferisca suficient precisió en els seus resultats. Les dificultat intrínseques dels fenòmens que allí ocorren, sobre tots els lligats a la interfase entre les dues fases, fa que els codis de baix o mig nivell de resolució, com poden ser els codis de sistema (RELAP,TRACE, etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos problemes per a oferir resultats acceptables , llevat que es tracte d'escenaris molt coneguts i se persegueixen resultats globals. En canvi, codis basats en alt nivell de resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d'un esforç computacional tan elevat que no poden ser aplicats a sistemes complexos. En aquesta tesi, mitjançant l'ús de la llibreria OpenFOAM s'ha creat un marc de simulació de codi obert per a analitzar els escenaris des de nivells de resolució de microescala a macroescala, analitzant les diferents aproximacions, així com la informació que és necessària aportar en cadascuna d'elles, per a l'estudi del règim de bubbly flow. En la primera part s'estudia la dinàmica de bambolles individuals a un alt nivell de resolució mitjançant l'ús del mètode VOF. Aquesta tècnica ha permès obtenir resultats precisos com la formació de la bambolla, velocitat terminal, camí recorregut, estela produida per la bambolla i inestabilitats que produeix en el seu camí. Però aquesta aproximació resulta inviable per a entorns reals amb la participació de més d'unes poques desenes de bambolles. Com a alternativa en aqueix cas es proposa l'ús de tècniques CFD-DEM (Discrete Element Methods) en la qual es representa a les bambolles com a partícules discretes. En aquesta tesi s'ha desenvolupat un nou solver per a bubbly flow en el qual s'han afegit un gran nombre de nous models, com els necessaris per a contemplar els xocs entre bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la distribució de l'intercanvi de moment i masses amb el fluid en les diferents cel·les per cadascuna de les bambolles o els models d'expansió de la fase gasosa entre uns altres. Però també s'ha hagut d'incloure nous algoritmes com el necessari per a injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix resultats amb un nivell de resolució superior als desenvolupat fins la data. Seguint amb la reducció del nivell de resolució, i per tant els recursos computacionals necessaris, s'efectua el desenvolupament d'un solver tridimensional de TFM en el qual s'ha implementat el mètode QMOM (Quadrature Method Of Moments) per a resoldre l'equació de balanç poblacional. El solver es desenvolupa amb els mateixos models de tancament que el CFD-DEM per a analitzar els efectes relacionats amb la pèrdua d'informació a causa del promitjat de les equacions instantànies de Navier-Stokes. L'anàlisi de resultats de CFD-DEM permet determinar les discrepàncies ocasionades per considerar els valors promitjats i el flux homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell de resolució més baix, s'analitza l'ús de codis de sistema, utilitzant el codi RELAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El codi és modificat per a reproduir correctament les característiques del flux bifàsic en canonades verticals, comparant el comportament d'aproximacions per al càlcul del terme de drag basades en velocitat de drift flux model i de les basades en coe / Peña Monferrer, C. (2017). Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90493
568

A multiscale modeling framework for the transient analysis of PEM Fuel Cells - From the fundamentals to the engineering practice

Franco, Alejandro A. 23 September 2010 (has links) (PDF)
In recent years, Polymer Electrolyte Membrane Fuel Cells (PEMFC) have attracted much attention due to their potential as a clean power source for many applications, including automotive, portable and stationary devices. This resulted in a tremendous technological progress, such as the development of new membranes and electro-catalysts or the improvement of electrode structures. However, in order to compete within the most attractive markets, the PEMFC technologies did not reach all the required characteristics yet, in particular in terms of cost and durability.Because of the strong coupling between different physicochemical phenomena, the interpretation of experimental observations is difficult, and analysis through modeling becomes crucial to elucidate the degradation and failure mechanisms, andto help improving both PEMFC electrochemical performance and durability.The development of a theoretical tool is essential for industrials and the scientific community to evaluate the PEMFC degradation and to predict itsperformance and durability in function of the materials properties and in a diversity of operating conditions. This manuscript summarizes my scientific research efforts in this exciting topic during the last 9 years in France, including my invention of the MEMEPhys multiscale simulation package,developed on the basis of my childhood passion for the New Technologies for Energyin Argentina. My perspectives of adapting this approach to other electrochemical systems such as water electrolyzers and batteries are also discussed.
569

Geometric approach to multi-scale 3D gesture comparison

Ochoa Mayorga, Victor Manuel 11 1900 (has links)
The present dissertation develops an invariant framework for 3D gesture comparison studies. 3D gesture comparison without Lagrangian models is challenging not only because of the lack of prediction provided by physics, but also because of a dual geometry representation, spatial dimensionality and non-linearity associated to 3D-kinematics. In 3D spaces, it is difficult to compare curves without an alignment operator since it is likely that discrete curves are not synchronized and do not share a common point in space. One has to assume that each and every single trajectory in the space is unique. The common answer is to assert the similitude between two or more trajectories as estimating an average distance error from the aligned curves, provided that the alignment operator is found. In order to avoid the alignment problem, the method uses differential geometry for position and orientation curves. Differential geometry not only reduces the spatial dimensionality but also achieves view invariance. However, the nonlinear signatures may be unbounded or singular. Yet, it is shown that pattern recognition between intrinsic signatures using correlations is robust for position and orientation alike. A new mapping for orientation sequences is introduced in order to treat quaternion and Euclidean intrinsic signatures alike. The new mapping projects a 4D-hyper-sphere for orientations onto a 3D-Euclidean volume. The projection uses the quaternion invariant distance to map rotation sequences into 3D-Euclidean curves. However, quaternion spaces are sectional discrete spaces. The significance is that continuous rotation functions can be only approximated for small angles. Rotation sequences with large angle variations can only be interpolated in discrete sections. The current dissertation introduces two multi-scale approaches that improve numerical stability and bound the signal energy content of the intrinsic signatures. The first is a multilevel least squares curve fitting method similar to Haar wavelet. The second is a geodesic distance anisotropic kernel filter. The methodology testing is carried out on 3D-gestures for obstetrics training. The study quantitatively assess the process of skill acquisition and transfer of manipulating obstetric forceps gestures. The results show that the multi-scale correlations with intrinsic signatures track and evaluate gesture differences between experts and trainees.
570

Geometric approach to multi-scale 3D gesture comparison

Ochoa Mayorga, Victor Manuel Unknown Date
No description available.

Page generated in 0.0641 seconds