Spelling suggestions: "subject:"myoinositol"" "subject:"dylinositol""
31 |
Elucidation of Inositol Polyphosphate Dephosphorylation Pathways using Stable-Isotope Labelling and NMR spectroscopyNguyen Trung, Minh 29 September 2023 (has links)
Inositolpolyphosphate (InsPs) bilden eine ubiquitäre Gruppe an hochphosphorylierten, intrazellulären Signalmolekülen in eukaryotischen Zellen. Trotz deren Beteiligung an unzähligen biologischen Prozessen bleibt die Detektion von InsPs (insb. einzelner Enantiomere) eine Herausforderung, da die momentan verfügbaren Analysemethoden immer noch limitiert sind. In der vorliegenden Arbeit wird die stabile Isotopenmarkierung von myo-Inositol (Ins) und InsPs in Kombination mit Kernspinresonanzspektroskopie (engl. Nuclear Magnetic Resonance spectroscopy, NMR) erkundet, um diese Lücke zu schließen. Die Abhängigkeit von NMR-Daten und chemischer Struktur erlaubte die Analyse komplexer Mixturen aus InsPs aus in vitro-Experimenten und biologischen Proben. Durch stereospezifische 13C-Markierung konnten sogar Enantiomere voneinander unterschieden werden. Mit Hilfe dieser Methode wurden mehrere InsP-Stoffwechselwege untersucht. Als Erstes wurde das menschliche, Phytase-artige Enzym MINPP1 (engl. Multiple Inositol Polyphosphate Phosphatase 1) detailliert in vitro und in lebenden Zellen charakterisiert. Dabei wurde ein bisher unbeschriebener InsP-Stoffwechselweg in menschlichen Zellen erstmals beschrieben. Als Zweites wurden InsP verdauende Bakterien aus der menschlichen Darmflora untersucht, sodass der Abbauweg von Inositolhexakisphosphat beleuchtet werden konnte. Als Drittes wurden DUSP-Enzyme (engl. Dual-Specificity Phosphatases) identifiziert und in vitro charakterisiert, die in der Lage sind, die Phosphoanhydrid-Bindung von Inositolpyrophosphaten (PP-InsPs) zu spalten. Die vorliegende Arbeit demonstriert, dass 13C-Markierung in Verbindung mit NMR ein mächtiges Werkzeug darstellt, um InsP-Stoffwechselvorgänge zu untersuchen. / Inositol polyphosphates (InsPs) comprise a ubiquitous group of densely phosphorylated intracellular messengers in eukaryotic cells. Despite their contributions to a myriad of biological processes the detection of InsPs remains challenging to this day, especially with regards to differentiating enantiomers, as the available analytical toolset is still limited. In this thesis the use of stable isotope labelling of myo-inositol (Ins) and InsPs is explored to address this shortcoming. Combining 13C-labelling and nuclear magnetic resonance spectroscopy (NMR) provides both enhanced sensitivity and makes use of NMR’s strong structure-data dependency. This enabled the deconvolution of complex mixtures of InsPs from in vitro experiments or biological samples. With stereo-specific 13C-labels InsP mixtures could be resolved to individual enantiomers. Using this technique several InsP metabolic pathways were examined. Firstly, the human phytase-like enzyme Multiple Inositol Polyphosphate Phosphatase (MINPP1) was characterized in depth in vitro and in living cells, establishing a hitherto undescribed inositol polyphosphate metabolic path in humans. Secondly, inositol phosphate digesting bacteria isolated from the human gut microbiome were investigated, shedding light on the metabolic fate of inositol hexakisphosphate in the digestive track. Thirdly, a set of Dual-Specificity Phosphatases (DUSPs) were identified to be able to hydrolyze the phosphoanhydride bond of inositol pyrophosphates (PP-InsPs) and characterized in vitro. The 13C-labelling approach of InsPs in junction with NMR represents a powerful tool for the study of inositol polyphosphate metabolism. In the thesis at hand, this method has facilitated our understanding of inositol polyphosphate pathways and it will be continuing doing so in the future in several biological contexts.
|
32 |
Synthese von Inositderivaten für die Manipulation von Sphingolipid-metabolisierenden EnzymenPrause, Kevin 12 February 2024 (has links)
Ceramid, ein zentrales Signalmolekül des Sphingolipidstoffwechsels, ist neben der de novo Synthese über die enzymatische Spaltung von Sphingomyelin und Glucosylceramid zugänglich. Genetische Mutationen, die eine Fehlfaltung der verantwortlichen Enzyme saure Sphingomyelinase (aSMase) und Glucocerebrosidase (GCase) begünstigen, könnten somit zu einer Dysregulation des gesamten Sphingolipidstoffwechsels und den damit verbundenen Signaltransduktionsprozessen führen. Niedermolekulare Inhibitoren können in Zellstudien einen Einblick in diese Prozesse geben und den Defekt eines Enzyms simulieren oder eine etwaige Überaktivität derselben Enzyme verhindern. Für derartige Studien ist die Möglichkeit einer zeitaufgelösten Inhibition von Vorteil. Für diese Methode müssten photolabile Schutzgruppen in eine bereits bekannte Inhibitorstruktur integriert werden. Im Fall der aSMase würden sich hierfür myo-Inosit-bisphosphat-Derivate anbieten, die starke, kompetitive Inhibitoren des Enzyms darstellen. Auf dieser Grundlage werden in der vorliegenden Arbeit die Synthese sowie die in vitro und in cellulo Wirkung des ersten zellpermeablen, photoaktivierbaren Inhibitors für die aSMase präsentiert. Kompetitive Inhibitoren können ebenso als sogenannte pharmakologische Chaperone fungieren, welche Proteine durch Herabsetzung der freien Energie des jeweiligen Faltungszustandes stabilisieren. Dies ist besonders bei von Mutationen betroffenen lysosomalen Enzymen von Interesse, um diese vor einem proteasomalen Abbau zu bewahren und einen geregelten Transport in die Lysosomen zu gewährleisten. So wurden in der vorliegenden Arbeit verschiedene myo-Inositderivate als potenzielle pharmakologische Chaperone für die aSMase und GCase synthetisiert. Um eine Verdrängung der Verbindungen vom aktiven Zentrum des Enzyms durch das natürliche Substrat zu beschleunigen, wurde eine Orthoesterfunktion in die Seitenkette der Inhibitorstruktur integriert, die im sauren Milieu der Lysosomen gespalten werden kann. / Ceramide, a central signaling molecule in sphingolipid metabolism, is in addition to the novo synthesis accessible via the enzymatic cleavage of sphingomyelin and glucosylceramide.
Genetic mutations that promote misfolding of the responsible enzymes acid sphingomyelinase (aSMase) and glucocerebrosidase (GCase) could thus lead to a dysregulation of the entire sphingolipid metabolism and the associated signal transduction processes. Small molecule inhibitors can provide insight into these processes in cell studies and simulate the defect of an enzyme or prevent eventual overactivity of the same enzyme. For such studies, the possibility of a time-resolved inhibition would be advantageous. For this method, photolabile protecting groups would have to be integrated into the structure of a known inhibitor. In the case of aSMase, myo-inositol-diphosphate derivatives, which represent strong, competitive inhibitors of the enzyme, would be suitable for this purpose. On this basis, the synthesis as well as the in vitro and in cellulo effects of the first cell-permeable photocaged inhibitor for acid sphingomyelinase are presented in this work. Competitive inhibitors can also act as so-called pharmacological chaperones, which stabilize proteins by reducing the free energy of the respective folding state. This is of particular interest in the case of lysosomal enzymes affected by mutations, in order to protect them from proteasomal degradation and to ensure regulated transport into the lysosomes. In the present work, various myo-inositol derivatives were synthesized as potential pharmacological chaperones for aSMase and GCase. To accelerate displacement of the compounds from the enzyme's active site by the natural substrate, an orthoester function was integrated into the side chain of the inhibitor structure, which can be cleaved in the acidic environment of the lysosome.
|
33 |
Advanced Modeling of Longitudinal Spectroscopy DataKundu, Madan Gopal January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Magnetic resonance (MR) spectroscopy is a neuroimaging technique. It is widely used to quantify the concentration of important metabolites in a brain tissue. Imbalance in concentration of brain metabolites has been found to be associated with development of neurological impairment. There has been increasing trend of using MR spectroscopy as a diagnosis tool for neurological disorders. We established statistical methodology to analyze data obtained from the MR spectroscopy in the context of the HIV associated neurological disorder. First, we have developed novel methodology to study the association of marker of neurological disorder with MR spectrum from brain and how this association evolves with time. The entire problem fits into the framework of scalar-on-function regression model with individual spectrum being the functional predictor. We have extended one of the existing cross-sectional scalar-on-function regression techniques to longitudinal set-up. Advantage of proposed method includes: 1) ability to model flexible time-varying association between response and functional predictor and (2) ability to incorporate prior information.
Second part of research attempts to study the influence of the clinical and demographic factors on the progression of brain metabolites over time. In order to understand the influence of these factors in fully non-parametric way, we proposed LongCART algorithm to construct regression tree with longitudinal data. Such a regression tree helps to identify smaller subpopulations (characterized by baseline factors) with differential longitudinal profile and hence helps us to identify influence of baseline factors. Advantage of LongCART algorithm includes: (1) it maintains of type-I error in determining best split, (2) substantially reduces computation time and (2) applicable even observations are taken at subject-specific time-points.
Finally, we carried out an in-depth analysis of longitudinal changes in the brain metabolite concentrations in three brain regions, namely, white matter, gray matter and basal ganglia in chronically infected HIV patients enrolled in HIV Neuroimaging Consortium study. We studied the influence of important baseline factors (clinical and demographic) on these longitudinal profiles of brain metabolites using LongCART algorithm in order to identify subgroup of patients at higher risk of neurological impairment. / Partial research support was provided by the National Institutes of Health grants U01-MH083545, R01-CA126205 and U01-CA086368
|
Page generated in 0.0452 seconds