• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 400
  • 259
  • 141
  • 73
  • 16
  • 10
  • 9
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1098
  • 310
  • 235
  • 190
  • 140
  • 134
  • 122
  • 122
  • 120
  • 108
  • 105
  • 99
  • 99
  • 83
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Amélioration des propriétés barrière d'un copolymère EVOH par les approches nanocomposites et mélanges de polymères : relations structure-morphologie-propriétés / Improvement of barrier properties of EVOH copolymer by nanocomposite and polymer blend approaches : structure-morphology-properties relationships

Blanchard, Anthony 14 December 2018 (has links)
L’EVOH est un copolymère thermoplastique semi-cristallin composé de segments de polyéthylène et d’alcool polyvinylique de proportion variable. Grâce notamment à une importante densité d’énergie cohésive lui conférant d’excellentes propriétés barrière à l’oxygène et aux arômes en condition anhydre, ce matériau est aujourd’hui largement utilisé dans l’élaboration d’emballages alimentaires multicouches. Sa grande sensibilité à l’eau, provoquant une détérioration importante des propriétés du matériau en conditions hydratées, reste cependant la principale problématique liée à son utilisation actuelle. Dans ce contexte, les travaux ont dans un premier temps porté sur la compréhension approfondie du comportement d’hydratation de l’EVOH afin de mettre en évidence des relations propriétés-structure, ce qui n’avait pas été réalisé jusqu’à présent. Deux axes de recherches ont ensuite été développés dans le but d’améliorer les propriétés barrière du matériau aussi bien à l’état anhydre qu’à l’état hydraté, tout en conservant une bonne transparence et une tenue mécanique correcte: le mélange de polymère d’une part, et l’approche nanocomposite d’autre part. Le choix de la voie fondu, procédé de mise en œuvre peu décrit dans la littérature pour ces systèmes, et celui des charges ont été guidés par la possibilité de transposer facilement les études à l’échelle industrielle / EVOH is a semi-crystalline thermoplastic copolymer composed of polyethylene and polyvinyl alcohol segments in various contents. Thanks to an important cohesive energy density leading to excellent oxygen and food aromas barrier properties in anhydrous state, this material is currently widely used in the elaboration of multilayer food packaging. Its high moisture sensitivity, causing an important deterioration of the properties of the material in hydrated conditions, still constitutes the main inconvenient for its current use. In this context, the studies were firstly focused on the detailed comprehension of the hydration behavior of EVOH in order to underline properties-structure relations, which was still unrealized. Two research axes were then developed in order to improve the barrier properties of the material in both dry and hydrated states, while remaining mechanical behavior and transparency stable: the polymers blend, on the one hand, and the nanocomposite approach on the other hand. The choice of the melting way, rarely described in the literature for these systems, and the one of the fillers nature were dictated by the possibility to easily transpose the experiments to an industrial scale
412

Plasma based assembly and engineering of advanced carbon nanostructures / Plasmas appliqués à la production de nanostructures de carbone avancées

Vieitas de Amaral Dias, Ana Inês 04 October 2018 (has links)
L’environnement réactif du plasma constitue un outil puissant dans la science des matériaux, permettant la création de matériaux innovatifs et l'amélioration de matériaux existants qui ne serait autrement pas possible.Le plasma fournit simultanément des fluxes de particules chargées, des molécules chimiquement actives, des radicaux, de la chaleur, des photons, qui peuvent fortement influencer les voies d'assemblage à différentes échelles temporelles et spatiales, y compris à l’échelle atomique.Dans cette thèse de doctorat, des méthodes tenant pour base des plasmas micro-ondes ont été utilisées pour la synthèse de nanomatériaux de carbone, y compris graphène, graphène dopé à l'azote (N-graphène) et structures de type diamant.À cette fin, ce travail est lié à optimisation de la synthèse de nanostructures 2D du carbone, comme graphène et N-graphène par la poursuite de l'élaboration et du raffinement de la méthode développée en Plasma Engineering Laboratory (PEL). La synthèse de graphène de haute qualité et en grandes quantités a été accomplie avec succès en utilisant des plasmas d'Ar-éthanol à ondes de surface dans des conditions de pression ambiante. De plus, le N-graphène a été synthétisé par un procédé en une seule étape, de l'azote a été ajouté au mélange d’Ar-éthanol, et par un procédé en deux étapes, en soumettant des feuilles de graphène préalablement synthétisées ont été exposées à un traitement plasma argon-azote à basse pression. Les atomes d'azote ont été incorporés avec succès dans le réseau de graphène hexagonal, formant principalement liaisons pyrroliques, pyridiniques et quaternaires. Un niveau de dopage de 25 at.% a été atteint.Différents types de nanostructures de carbone, y compris du graphène et des structures de type diamant, ont été synthétisées au moyen d'un plasma d’argon en utilisant du méthane et du dioxyde de carbone comme précurseurs du carbone.De plus, des plasmas à couplage capacitif ont également été utilisés pour la fonctionnalisation du graphène et pour la synthèse de nanocomposites, tels que les composites de Polyaniline (PANI)-graphène. Les utilisations potentielles de ces matériaux ont été étudiées et les deux structures ont démontré avoir des attributs remarquables pour leur application aux biocapteurs. / Plasma environments constitute powerful tools in materials science by allowing the creation of innovative materials and the enhancement of long existing materials that would not otherwise be achievable. The remarkable plasma potential derives from its ability to simultaneously provide dense fluxes of charged particles, chemically active molecules, radicals, heat and photons which may strongly influence the assembly pathways across different temporal and space scales, including the atomic one.In this thesis, microwave plasma-based methods have been applied to the synthesis of advanced carbon nanomaterials including graphene, nitrogen-doped graphene (N-graphene) and diamond-like structures. To this end, the focus was placed on the optimization of the production processes of two-dimensional (2D) carbon nanostructures, such as graphene and N-graphene, by further elaboration and refinement of the microwave plasma-based method developed at the Plasma Engineering Laboratory (PEL). The scaling up of the synthesis process for high-quality graphene using surface-wave plasmas operating at atmospheric pressure and argon-ethanol mixtures was successfully achieved. Moreover, N-graphene was synthetized via a single-step process, by adding nitrogen to the argon-ethanol mixture, and via two-step process, by submitting previously synthetized graphene to the remote region of a low-pressure argon-nitrogen plasma. Nitrogen atoms were usefully incorporated into the hexagonal graphene lattice, mainly as pyrrolic, pyridinic and quaternary bonds. A doping level of 25% was attained.Different types of carbon nanostructures, including graphene and diamond-like nanostructures, were also produced by using methane and carbon dioxide as carbon precursors in an argon plasma.Additionally, capacitively-coupled radio-frequency plasmas have been employed in the functionalization of graphene and in the synthesis of Polyaniline (PANI)-graphene composites. The potential uses of these materials were studied, with both showing favourable characteristics for their applicability in biosensing applications.
413

Desulphurization of diesel fuel using carbon-based metal oxide nanocomposites

Cherubala, Rusumba Bienvenu 04 1900 (has links)
M.Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / This thesis presents a slight on desulphurization process of the commercial diesel fuel using the carbon-based metal oxide nanocomposites such as graphene oxide, ZnO, rGO as a nano-adsorbent, activated carbon (PAC and AC) and charcoal Granular active carbon (GAC) to produce a fuel of less than 10 ppm sulphur content. Due to the high percentage of sulphur compounds in the fuel causing air pollution, acid rain and other problems related to combustion process. The synthesised of sorbents were achieved using incipient impregnation, microwaved-assisted and chemical exfoliation methods. The materials were characterized using Thermogrametric Analyzer (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), Brunauer, Emmett and Teller (BET). The examination effect of operating conditions on the adsorption capacity with DBT and Sulphur compounds adsorption, the isotherms and the adsorption kinetic models were evaluated. The experimental data for PAC and AC were well suited to Freundlich isotherm and pseudo second-order kinetic models. The results shown that the sulphur feed concentration, the space velocity and the functional groups of the adsorbents have a considerable effect on the adsorption. In addition, it was observed that the temperature in the range of 30 to 80oC has a significant effect on the adsorption of Sulphur compounds from diesel fuel using 20 wt.% of sorbents. The rGO substrate which contained abundant oxygen functional groups was confirmed to promote the dispersion metal oxide and increased the adsorption efficiency of sulphur compounds (H2S and SO2) by providing oxygen ions weakly bound to the sulphur molecules. For the desulfurization process by adsorption, PAC and AC exhibited a better affinity for 80% removal of sulphur compared to the GAC and GO. The effects of metal species such as zinc oxide (ZnO) and reduced graphite oxide (rGO) composite on the adsorption capacity of hydrogen sulphide (H2S) were investigated. It was found that depending on the copper load, the adsorption capacity of H2S increased up to 20 times compared to pure ZnO. To study the oxidation changes on copper and zinc oxides, crystallite analysis by XRD and chemical state analysis by XPS were performed.
414

EXPERIMENTAL INVESTIGATION TO STUDY THE FEASIBILITY OF FABRICATING ULTRA-CONDUCTIVE COPPER WIRE

Pallikonda, Mahesh Kumar 15 December 2021 (has links)
No description available.
415

Polyethylene Terephthalate / clay nanocomposites. Compounding, fabrication and characterisation of the thermal, rheological, barrier and mechanical properties of Polyethylene Terephthalate / clay nanocomposites.

Al-Fouzan, Abdulrahman M. January 2011 (has links)
Polyethylene Terephthalate (PET) is one of the most important polymers in use today for packaging due to its outstanding properties. The usage of PET has grown at the highest rate compared with other plastic packaging over the last 20 years, and it is anticipated that the increase in global demand will be around 6% in the 2010 ¿ 2015 period. The rheological behaviour, thermal properties, tensile modulus, permeability properties and degradation phenomena of PET/clay nanocomposites have been investigated in this project. An overall, important finding is that incorporation of nanoclays in PET gives rise to improvements in several key process and product parameters together ¿ processability/ reduced process energy, thermal properties, barrier properties and stiffness. The PET pellets have been compounded with carefully selected nanoclays (Somasif MAE, Somasif MTE and Cloisite 25A) via twin screw extrusion to produce PET/clay nanocomposites at various weight fractions of nanoclay (1, 3, 5, 20 wt.%). The nanoclays vary in the aspect ratio of the platelets, surfactant and/or gallery spacing so different effect are to be expected. The materials were carefully prepared prior to processing in terms of sufficient drying and re-crystallisation of the amorphous pellets as well as the use of dual motor feeders for feeding the materials to the extruder. The rheological properties of PET melts have been found to be enhanced by decreasing the viscosity of the PET i.e. increasing the ¿flowability¿ of the PET melt during the injection or/and extrusion processes. The apparent shear viscosity of PETNCs is show to be significantly lower than un-filled PET at high shear rates. The viscosity exhibits shear thinning behaviour which can be explained by two mechanisms which can occur simultaneously. The first mechanism proposed is that some polymer has entangled and few oriented molecular chain at rest and when applying high shear rates, the level of entanglements is reduced and the molecular chains tend to orient with the flow direction. The other mechanism is that the nanoparticles align with the flow direction at high shear rates. At low shear rate, the magnitudes of the shear viscosity are dependent on the nanoclay concentrations and processing shear rate. Increasing nanoclay concentration leads to increases in shear viscosity. The viscosity was observed to deviate from Newtonian behaviour and exhibited shear thinning at a 3 wt.% concentration. It is possible that the formation of aggregates of clay is responsible for an increase in shear viscosity. Reducing the shear viscosity has positive benefits for downstream manufacturers by reducing power consumption. It was observed that all ii three nanoclays used in this project act as nucleation agents for crystallisation by increasing the crystallisation temperature from the melt and decreasing the crystallisation temperature from the solid and increasing the crystallisation rate, while retaining the melt temperature and glass transition temperatures without significant change. This enhancement in the thermal properties leads to a decrease in the required cycle time for manufacturing processes thus potentially reducing operational costs and increasing production output. It was observed that the nanoclay significantly enhanced the barrier properties of the PET film by up to 50% this potentially allows new PET packaging applications for longer shelf lives or high gas pressures. PET final products require high stiffness whether for carbonated soft drinks or rough handling during distribution. The PET/Somasif nanocomposites exhibit an increase in the tensile modulus of PET nanocomposite films by up to 125% which can be attributed to many reasons including the good dispersion of these clays within the PET matrix as shown by TEM images as well as the good compatibility between the PET chains and the Somasif clays. The tensile test results for the PET/clay nanocomposites micro-moulded samples shows that the injection speed is crucial factor affecting the mechanical properties of polymer injection moulded products.
416

Effects of nano-clay on the structure and properties of thermotropic liquid crystal polymer an its blends with poly (ethylene terephthalate)

Bandyopadhyay, Jayita 18 April 2018 (has links)
La première partie de cette thèse présente la préparation et la caractérisation des nanocomposites (LCPCNs) composés d'une matrice de polymère à cristaux liquides thermotropique (LCP, Vectra B950) contenant des nanoparticules de montmorillonite (argile) organiquement modifiée (OMMT). Des LCPCNs contenant deux concentrations de nanoparticules OMMT (1.3 et 2% massiques) ont été préparés par le procédé d'extrusion. Différentes techniques de caractérisation, telles que la diffraction des rayons X (XRD), la microscopie électronique à transmission (TEM), la calorimétrie différentielle (DSC), l'analyse thermogravimétrique (TGA) et l'analyse mécanique-dynamique (DMA) ont été utilisées pour caractériser la matrice LCP et les nanocomposites LCPCNs développés. Les patrons XRD ainsi que les observations microscopiques TEM ont montré 1'intercalation des nanoparticules OMMT au sein de la matrice LCP et ce pour les deux compositions en OMMT. Aussi, les patrons XRD(2D) ont montré qu'un certain ordre très peu smectique était présent dans le polymère LCP. Cependant, dans le cas de LCPCNs, les chaînes LCP tendaient à s'orienter dans la direction des lamelles d'OMMT dispersées. Les balayages DSC ont montré que, durant le premier chauffage, le premier de pic fusion représente la transition de la phase cristalline à nématique et, après cela, une isotropisation a eu lieu. Les analyses TGA ont montré deux différents types de comportements de dégradation des échantillons LCP et LCPCN dans les environnements inertes et oxydants. Les résultats de DMA ont montré une amélioration des modules élastiques, de stockage et de perte des LCPCNs avec l'augmentation de la concentration en OMMT. La seconde partie de la thèse présente les propriétés rhéologiques à l'état fondu de la matrice LCP et des nanocomposites LCPCNs à la fois dans les zones viscoélastiques linéaires et non linéaires (en modes oscillatoires et rotationnels). Cette caractérisation rhéologique a montré que les LCPCNs les plus chargés en OMMT présentent des structures partiellement réticulées presque sans défauts comparativement aux LCPCNs les moins chargés en OMMT et aussi les LCP purs. Les mesures de relaxation des contraintes (domaine linéaire) ont révélé que, après l'imposition d'une déformation constante pendant une période spécifique, le LCP pur relaxe plus rapidement que les LCPCNs. Lors de l'essai de relaxation, il a été observé qu'un taux de cisaillement élevé modifie très rapidement les défauts dans le LCP pur et probablement atteint presque une position d'équilibre, tandis que les LCPCNs ont montré un fort comportement rhéofluidifiant. Afin de mieux comprendre les propriétés rhéologiques inhabituelles des LCPCNs à l'état fondu, les variations de la dispersion des nanoparticules OMMT dans la matrice LCP ainsi que le changement de la croissance des cristaux du LCP ont été largement étudiés par la technique de diffusion des rayons X aux petits et grands angles. La technique Généralisée de la Transformation de Fourier développée par Glatter a été utilisée pour caractériser l'état de dispersion des nanoparticules OMMT en fonction de la température. Il s'agit d'une nouvelle approche que nous avons récemment proposée pour une analyse quantitative de la dispersion plutôt qu'une analyse qualitative. La troisième partie de la thèse est dédiée à la préparation de nanocomposites à base de poly(éthylène terephthalate) (PET) ainsi qu'à la caractérisation de la croissance des cristaux dans le PET pur et les nanocomposites préparés. Deux nanocomposites à base de PET (PETCNs) avec des concentrations en poids de OMMT égales à 1.3 et 2% ont été préparés par extrusion. Les patrons de diffraction des rayons X ainsi que les images TEM ont révélé la formation de nanocomposites avec des nanoparticules OMMT intercalées. Les comportements de fusion et de cristallisation du PET pur et des PETCNs ont été étudiés en utilisant les techniques de DSC classique et DSC à température modulée (TMDSC). Les résultats de DSC sur des échantillons moulés par compression ont montré des fusions successives avec un pic endothermique, accompagné d'un épaulement pour les PETCNs. Les résultats de DSC et de TMDSC pour les échantillons trempés ont montré que la fusion suivie d'une cristallisation froide. Pour tous les échantillons, les résultats de TMDSC ont également confirmé que la fusion est associée au phénomène de recristallisation. Les résultats de la caractérisation DMA ont montré que les PETCNs ont subi une amélioration considérable du module dans la gamme de températures étudiées. Cependant, l'effet de la variation de la concentration en nanoparticules OMMT est minime. Afin de mieux connaître la cinétique de croissance cristalline (non isotherme) du PET pur et du PETCNs, les modèles D'Avrami, d'Ozawa et d'Avrami-Ozawa ont été utilisés. Différents paramètres cinétiques déterminés à partir de ces modèles ont démontré que les nanoparticules OMMT intercalées étaient efficaces pour démarrer plus tôt la cristallisation par nucléation. Cependant, la croissance des cristaux était moins rapide en raison de l'intercalation de chaînes de polymères entre les lamelles OMMT. Les observations de la microscopie optique en lumière polarisée appuient aussi les résultats de la DSC. Les énergies d'activation pour la cristallisation estimées par les trois modèles (Augis-Bennett, Kissinger et Takhor) ont montré la tendance suivante PETCN2 < PETCN1.3 < PET. L'effet de l'incorporation de nanoparticlues OMMT sur les propriétés thermiques des mélanges de PET/LCP est décrit dans la quatrième partie de cette thèse. Des mélanges PET/LCP (80/20) et des nanocomposites à base de ces mélanges ont été préparés par extrusion bi-vis. Les analyses morphologiques des mélanges PET/LCP ont montré que l'ajout de nanoparticules OMMT favorise une structure à phases séparées du mélange PET/LCP. Une étude détaillée sur les propriétés thermiques du mélange PET/LCP et du nanocomposite PET/LCP/OMMT a été réalisée à l'aide des techniques DSC et TMDSC. Les résultats ont montré un comportement de fusion complexe comportant une succession de fusion et de recristallisation. Enfin, la cinétique de croissance des cristaux (non-isotherme) dans les mélanges PET/LCP et les nanocomposites PET/LCP/OMMT a aussi été caractérisée à l'aide de divers modèles tels que ceux d'Avrami, Ozawa et Avrami-Ozawa. La dernière partie de cette thèse présente les résultats des travaux sur la relation structure-propriétés des mélanges PET/LCP (80/20) développés par extrusion et des nanocomposites PET/LCP/OMMT (1.3 et 2.8% massiques de OMMT) en fonction de la fréquence d'oscillation et de la température. Les expériences de balayage en fréquence sous déformation constante et à différentes températures ont été réalisées à l'état solide à l'aide de la technique DMA. Celles de balayage en température des mélanges PET/LCP purs et des nanocomposites PET/LCP/OMMT ont été effectuées dans le but de déterminer la variation des modules de flexion, de stockage et de perte ainsi que les valeurs tanS correspondantes en fonction de la température. Afin de mieux comprendre les modifications de stmcture des nanoparticules OMMT dispersées dans la matrice PET/LCP, le degré d'anisotropie ainsi que les valeurs moyennes de l'orientation des lamelles OMMT ont été caractérisés à l'aide de la technique de diffusion de la lumière aux petits angles, avant et après les caractérisations sous balayage en fréquence and en température.
417

Fundamental interactions and physical properties of starch, poly vinyl alcohol and montmorillonite clay based nanocomposites prepared using solution mixing and melt extrusion

Ali, Samer Shaur January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Sajid Alavi / Plastics from petroleum sources are the main raw materials used for producing food packaging films. But these plastic films cause a great environmental concern due to their non-degradable nature and non-renewable source. Biodegradable polymers like starch can be used as a base material which can replace petroleum based plastics packaging. In this study, starch (0-80%) and polyvinyl alcohol (PVOH) (20-100%) were used as base polymers to produce nanocomposites. Glycerol (30%) and sodium montmorillonite (0-20%) were used as a plasticizer and nano-filler, respectively. Nanocomposites were produced through two methods: solution and melt extrusion method. Extrusion method resulted in greater exfoliation of nanocomposites than solution method because it provided more shear stress to disrupt the layered silicate structure. In extrusion method, a lab scale extruder was used to produce these nanocomposites and films were made by casting. Process parameters, including screw speed (200-400 RPM) and barrel temperature (145-165[superscript]oC), were varied systematically. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were conducted to characterize the nanostructure of these nanocomposites. Thermal characterization of these films was carried out through differential scanning calorimetric (DSC) studies. Results from XRD and TEM explained the phenomenon of intercalation and exfoliation in these nanocomposites. Structural and thermal data indicated important role for Na[superscript]+MMT along with process parameters in controlling exfoliation and glass transition temperature of the nanocomposites. These results also helped in understanding the fundamental interactions among all the components. The tensile strength and elongation at break of films ranged from 4.72 to 23.01MPa and 63.40 to 330.15% respectively, while water vapor permeability ranged from 1.68 to 0.79g.mm/kPa.h.m[superscript]2. These results provide a great understanding for further improvements in order to bring these films close to commercial plastic films which have superior tensile strength (10-80MPa), elongation at break (200-800%) and water vapor permeability (0.002- 0.05g.mm/kPa.h.m[superscript]2). The cost for polyethylene is approximately $0.70/lb while the raw material cost for this starch based films is approximately $0.85/lb.
418

Biodegradable poly(lactic acid) nanocomposites: synthesis and characterization

Li, Yonghui January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / X. Susan Sun / Biobased polymers derived from renewable resources are increasingly important due to acute concerns about the environmental issues and limited petroleum resources. Poly(lactic acid) (PLA) is such a polymer that has shown great potential to produce biodegradable plastics. However, low glass transition temperature (Tg), low thermal stability, slow biodegradation rate, and high cost limit its broad applications. This dissertation seeks to overcome these limitations by reinforcing PLA with inorganic nanoparticles and low-cost agricultural residues. We first synthesized PLA nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylized nanoparticles (MgO nanocrystals and TiO2 nanowires) and investigated the structure-property relationships. PLA grafted nanoparticles (PLA-g-MgO, PLA-g-TiO2) were isolated from the bulk nanocomposites via repeated dispersion/centrifugation processes. The covalent grafting of PLA chains onto nanoparticle surface was confirmed by Fourier transform infrared spectroscopy and thermalgravimetric analysis (TGA). Transmission electron microscopy and differential scanning calorimetry (DSC) results also sustained the presence of the third phase. Morphological images showed uniform dispersion of nanoparticles in the PLA matrix and demonstrated a strong interfacial interaction between them. Calculation based on TGA revealed that more than 42.5% PLA was successfully grafted into PLA-g-MgO and more than 30% was grafted into PLA-g-TiO2. Those grafted PLA chains exhibited significantly increased thermal stability. The Tg of PLA-g-TiO2 was improved by 7 °C compared with that of pure PLA. We also reinforced PLA with low-value agricultural residues, including wood flour (WF), soy flour (SF), and distillers dried grains with solubles (DDGS) by thermal blending. Tensile measurements and morphological images indicated that methylene diphenyl diisocyanate (MDI) was an effective coupling agent for PLA/WF and PLA/DDGS systems. MDI compatibilized PLA/WF and PLA/DDGS composites showed comparable tensile strength and elongation at break as pure PLA, with obviously increased Young’s modulus. Increased crystallinity was observed for PLA composites with SF and DDGS. Such PLA composites have similar or superior properties compared with pure PLA, especially at a lower cost and higher biodegradation rate than pure PLA. The results from this study are promising. These novel PLA thermoplastic composites with enhanced properties have potential for many applications, such as packaging materials, textiles, appliance components, autoparts, and medical implants.
419

Synthesis of smart nanomaterials for preconcentration and detection of E.coli in water

Mahlangu, Thembisile Patience 06 1900 (has links)
It is common knowledge that water is one of the basic needs for human beings. However, the consumption of contaminated water can lead to waterborne diseases and fatalities. It is, therefore imperative to constantly monitor the quality of potable water. There are numerous technologies used for water quality monitoring. These technologies are relatively effective however these tests are expensive and complex to use, which then require experienced technicians to operate them. Other tests are not rapid, making consumers of water susceptible to waterborne diseases. In this study, dye-doped, surface functionalized silica nanoparticles (SiNPs) and surface-functionalized magnetic nanocomposites (MNCs) were proposed as materials that can be applied in order to reduce the time taken to get results as well as to make the processes less complex and portable. The aim of this study was to synthesize and characterize surface functionalized dye-doped SiNPs and surface functionalized MNCs for detection and preconcentration of in water. Additionally, proof of concept had to be shown using the synthesized materials. SiNPs were the materials of choice due to their easily functionalized surfaces and their strong optical properties. SiNPs are photostable and they do not leach in solution due to the inert nature of the silica matrix in aqueous media. MNCs were chosen as materials of choice for preconcentration of E. coli in water because they are easy to synthesize and they can be applied in various biological applications due to their functional groups. SiNPs were synthesized using the water-in-oil microemulsion. The SiNPs were further functionalized with amine and carboxyl groups and avidin. Thereafter, they were bioconjugated with biotinylated anti-E. coli antibodies. The pure and surface functionalized SiNPs were characterized using ATR-FTIR spectroscopy, FE-SEM, HR-TEM, Zeta Sizer, UV-vis spectroscopy and spectrofluorometry. The application of the dye—doped surface functionalized SiNPs in E. coli detection was characterized using the fluorescence plate reader. The SiNPs were spherical and uniform in size. They increased in size as they were being functionalized, ranging from 21.20 nm to 75.06 nm. The SiNPs were successfully functionalized with amine and carboxyl groups as well as with avidin and antibodies. Two methods were investigated for carboxyl group attachment (direct and indirect attachment) and the direct attachment method yielded the best results with a surface charge of -31.9 mV compared to -23.3 mV of the indirect method. The dye loading was found to be 1% after particle synthesis. The optical properties of the Ru(Bpy) dye were enhanced 3 fold when they were encapsulated in the Si matrix. The SiNPs were binding to the E. coli cells and enabled detection. MNCs were synthesized through in-situ polymerization. The MNCs were characterized using ATR-FTIR spectroscopy, SEM, TEM and XRD. The MNCs were successfully functionalized with carboxyl groups. The increase in size of the nanocomposites as seen in SEM images proved that the Fe3O4 was successfully encapsulated in the polymer matrix. The MNCs were proven to be magnetic by a simple magnetism test whereby they were separated in an aqueous solution using an external magnetic field. The antibody-labelled MNCs were binding to the E. coli cells as shown in TEM images. E. coli cells were removed from water at varying concentrations of 1x106 CFU/mL to 1x109 CFU/mL at 10 mL volumes. This study has demonstrated that dye-doped SiNPs amplify the signal of E. coli cells using fluorescence. The study has also demonstrated that the MNCs can be applied in sample preconcentration and enrichment for E. coli detection. However, further studies should investigate and optimize the combination of the two techniques in a point of use device for water quality testing of 100 mL-samples as per the requirement of the SANS 241 standard. / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
420

Alumina based nanocomposites by precipitation

Xu, Chen January 2014 (has links)
This project addressed two main problems pertaining to Al<sub>2</sub>O<sub>3</sub>-FeAl2O4 nanocomposites developed via solid state precipitation: the mechanisms for precipitation in ceramic solid solution via reduction reaction, and the mechanisms for the improved mechanical properties and wear resistance of the developed Al2O3-FeAl2O4 nanocomposites. A model was proposed for precipitation in ceramic solid solutions via reduction reactions (the PRCS model). The thermodynamics of reduction reactions during aging treatments under various atmospheres were calculated and discussed relative to the second phase precipitate formation. Attempts were made to measure the corresponding diffusion kinetics using a new theory developed here based on volume fraction profiles of second phase particles in the aged samples. It was found that the measured apparent oxygen vacancy diffusivities conform well to the oxygen vacancy grain boundary diffusion coefficients reported in the literature, and the measured apparent matrix diffusivity conforms well to the Fe3+ ion matrix diffusion coefficients reported in literature. Based on the thermodynamics calculations, diffusion kinetics and some essential mechanisms that were discussed, the PRCS model was proposed. This has two aspects: macroscopic and microscopic. The macroscopic aspect of PRCS model was mainly used to explain the general aspects of microstructure and the distribution of intergranualar second phase particles. The microscopic aspect of the PRCS model was mainly used to explain the precipitation of intragranualar nanoparticles. The mechanical properties, thermal residual stress and wear resistance of selected Al2O3-FeAl2O4 nanocomposites were measured. The results revealed that the Al2O3-FeAl2O4 possessed improved fracture toughness (by around 46%), flexural strength (by around 30%) and abrasive wear resistance (by a factor of around 5) with respect to monolithic alumina. Several mechanisms were proposed to explain the improvements in both mechanical properties and wear resistance. Compressive residual stress was found in the surface layer of Al2O3-FeAl2O4 nanocomposites due to the thermal expansion coefficient mismatch between surface layer and bulk parts. Such residual stress was also interpreted as the main reason for the improvements in both mechanical properties and wear resistance.

Page generated in 0.0856 seconds