1 |
Young Children Conceptualize the Relationships Among Positive and Negative Numbers and ZeroManchester, Peggy D. 12 May 2011 (has links)
No description available.
|
2 |
Záporná čísla v současné výuce matematiky na 1. stupni ZŠ / Negative numbers in contemporary primary school mathematicsSkálová, Tereza January 2016 (has links)
The aim of this thesis is to deal with teaching of negative numbers in mathematics in lower primary school. The thesis brings an overview of exercises related to negative numbers, which are available in textbooks dedicated to lower and upper primary school. Main part of the thesis is devoted to three different experiments - pupils experiment, teaching experiment and parlour game. The pupils experiment analysis the successes and troubles of pupils attending 4th and 5th class when filling out the worksheets focused on various models of negative numbers. Furthermore, the teaching experiment based on a questionnaire survey describes comments of lower and upper primary school teachers in regards to implementation and usefulness of negative numbers. Parlour game experiment demonstrates the ability of pupils to grasp mathematical phenomenon by playing a game. Key words: additive operations with negative numbers experiment models of negative number: thermometer, floor, surface environment Stepping environment Stairs word problems board game negative numbers
|
3 |
Från naturliga tal till hela tal (från N till Z) : Vad kan göra skillnad för elevers möjligheter att bli bekanta med de negativa talen? / From natural numbers to integers (from N to Z) : What can make a difference to students' possibilities to become familiar with negative numbers?Lövström, Anna January 2015 (has links)
The aim of the thesis is to gain knowledge concerning what pupils aged 8 and 9 need to learn to become familiar with negative numbers. The framework used in this research, variation theory, impliesthat students' problems in learning what was intended may have to do with the fact that some critical aspects of the studied object have not yet been discerned by the student. To get the pupils to understand the idea behind each critical aspect, carefully constructed examples were used. According to variation theory it is necessary to experience differences before you experience similarities. To answer the research question data was collected by using the learning study model. It is characterized by an iterative design where I as a researcher collaborate with teachers to try to find and orchestrate the critical aspects. The method is interventionist, which means that interventions are done in teaching. In the learning study I have cooperated with two primary school teachers and 64 pupils in four different classes. The data consists of video-recordings of lessons, pre- and posttests, interviews with pupils and notes from the meetings of the learning study group. When planning lessons as well as analyzing data, concepts relating to the theory of variation have been used as analytical tools. This thesis contributes to research by investigating in detail what aspects students need to differentiate in order to become familiar with negative numbers. The results show that the pupils needed not only to discern, but also to differentiate three different critical aspects: To differentiate the values of two negative numbers. To differentiate the function of the minuend versus the function of the subtrahend in a subtraction. To differentiate the minus sign for negative numbers versus the minus sign for subtraction.
|
4 |
Uma investigação sobre o uso de jogos no ensino de números relativosGajko, Thiago Crestani January 2018 (has links)
Esta dissertação apresenta uma experiência de aplicação de sequência de atividades cujo tema central é números relativos, envolvendo uso de jogos. Tal sequência foi aplicada em uma turma do sétimo ano de uma escola particular da cidade de Porto Alegre. A construção da sequência apoiou-se em literatura que afirma que jogos podem propiciar contextos que façam mais sentido aos alunos do que as situações ditas do cotidiano, comumente retratadas em livros didáticos. Buscou-se, por meio dos jogos, constituir contextos que provocassem a necessidade da representação de números de sentidos opostos e das operações com esses números, incluindo situações complexas como a do efeito resultante da retirada de um número negativo. Foram coletados registros da produção dos alunos e das discussões em sala de aula por meio de gravação em áudio, fotografias de cadernos e do quadro-negro, e questionários preenchidos pelos alunos após cada atividade. A análise desses materiais permitiu concluir que os jogos representaram uma sustentação para o pensamento lógico e operatório dos alunos, na construção dos esquemas mobilizados para somar e subtrair números positivos e negativos. / This work presents an experiment of an activity sequence centered on Relative Numbers and involving the use of games. Such sequence was applied in a seventh grade class of a Porto Alegre’s private school. The conception of the sequence was supported by literature that affirms that games can provide contexts that make more sense to the students than the so-called “daily situations” frequently presented in didactic books. It was sought, by the games, to constitute contexts that provoked the need for representation of numbers with opposite signs and the operations with those numbers, including more complex cases, like the result of subtracting a negative number. The data collected includes audio recordings of students’ production and discussions, notebooks and blackboard’s photographs, and questionnaires filled by students after each activity. The analysis of this data allowed me to conclude that games could support the logical and operational thinking of the students in the construction of mobilized schemes to add and subtract positive and negative numbers.
|
5 |
Uma investigação sobre o uso de jogos no ensino de números relativosGajko, Thiago Crestani January 2018 (has links)
Esta dissertação apresenta uma experiência de aplicação de sequência de atividades cujo tema central é números relativos, envolvendo uso de jogos. Tal sequência foi aplicada em uma turma do sétimo ano de uma escola particular da cidade de Porto Alegre. A construção da sequência apoiou-se em literatura que afirma que jogos podem propiciar contextos que façam mais sentido aos alunos do que as situações ditas do cotidiano, comumente retratadas em livros didáticos. Buscou-se, por meio dos jogos, constituir contextos que provocassem a necessidade da representação de números de sentidos opostos e das operações com esses números, incluindo situações complexas como a do efeito resultante da retirada de um número negativo. Foram coletados registros da produção dos alunos e das discussões em sala de aula por meio de gravação em áudio, fotografias de cadernos e do quadro-negro, e questionários preenchidos pelos alunos após cada atividade. A análise desses materiais permitiu concluir que os jogos representaram uma sustentação para o pensamento lógico e operatório dos alunos, na construção dos esquemas mobilizados para somar e subtrair números positivos e negativos. / This work presents an experiment of an activity sequence centered on Relative Numbers and involving the use of games. Such sequence was applied in a seventh grade class of a Porto Alegre’s private school. The conception of the sequence was supported by literature that affirms that games can provide contexts that make more sense to the students than the so-called “daily situations” frequently presented in didactic books. It was sought, by the games, to constitute contexts that provoked the need for representation of numbers with opposite signs and the operations with those numbers, including more complex cases, like the result of subtracting a negative number. The data collected includes audio recordings of students’ production and discussions, notebooks and blackboard’s photographs, and questionnaires filled by students after each activity. The analysis of this data allowed me to conclude that games could support the logical and operational thinking of the students in the construction of mobilized schemes to add and subtract positive and negative numbers.
|
6 |
Uma investigação sobre o uso de jogos no ensino de números relativosGajko, Thiago Crestani January 2018 (has links)
Esta dissertação apresenta uma experiência de aplicação de sequência de atividades cujo tema central é números relativos, envolvendo uso de jogos. Tal sequência foi aplicada em uma turma do sétimo ano de uma escola particular da cidade de Porto Alegre. A construção da sequência apoiou-se em literatura que afirma que jogos podem propiciar contextos que façam mais sentido aos alunos do que as situações ditas do cotidiano, comumente retratadas em livros didáticos. Buscou-se, por meio dos jogos, constituir contextos que provocassem a necessidade da representação de números de sentidos opostos e das operações com esses números, incluindo situações complexas como a do efeito resultante da retirada de um número negativo. Foram coletados registros da produção dos alunos e das discussões em sala de aula por meio de gravação em áudio, fotografias de cadernos e do quadro-negro, e questionários preenchidos pelos alunos após cada atividade. A análise desses materiais permitiu concluir que os jogos representaram uma sustentação para o pensamento lógico e operatório dos alunos, na construção dos esquemas mobilizados para somar e subtrair números positivos e negativos. / This work presents an experiment of an activity sequence centered on Relative Numbers and involving the use of games. Such sequence was applied in a seventh grade class of a Porto Alegre’s private school. The conception of the sequence was supported by literature that affirms that games can provide contexts that make more sense to the students than the so-called “daily situations” frequently presented in didactic books. It was sought, by the games, to constitute contexts that provoked the need for representation of numbers with opposite signs and the operations with those numbers, including more complex cases, like the result of subtracting a negative number. The data collected includes audio recordings of students’ production and discussions, notebooks and blackboard’s photographs, and questionnaires filled by students after each activity. The analysis of this data allowed me to conclude that games could support the logical and operational thinking of the students in the construction of mobilized schemes to add and subtract positive and negative numbers.
|
7 |
Gymnasieelevers uppfattningar om negativa tal och vilka strategier som synliggörs i deras beräkningar : En fenomenografisk studie / The upper secondary school pupils’ perceptions of negative numbers and what strategies are made visible in their calculations : A phenomenographic studyKidwell, Ann-Sofie January 2019 (has links)
Från en tidig ålder får barn lära sig att använda positiva tal. De kan lägga ihop två tal och få ett större tal eller dra ifrån ett tal från ett annat för att få ett mindre tal. Till exempel får småbarn lära sig att två plus två äpplen blir fyra äpplen och att om man har tre päron och tar bort två får man ett päron kvar. Man kan på ett konkret sätt se det framför sig. Något som inte är lika självklart är tal som t ex. fyra minus fem. Hur kan man ha fyra päron och dra ifrån fem? Negativa tal dyker sällan dyker upp i vardagliga problem, men det är fortfarande något som lärs ut i skolan. Syftet med arbetet som beskrivs i denna rapport är att undersöka gymnasieelevers uppfattningar om negativa tal och som teoretiskt ramverk används den fenomenografiska ansatsen. För att ta reda på vilka olika uppfattningar elever kan ha intervjuades åtta eleversom går sitt andra år på gymnasiet (och läser Matematik 2b). Undersökningen ämnade svarapå följande frågeställning: Hur uppfattar gymnasieelever negativa tal och vilka strategiersynliggörs i deras beräkningar? Vilka skilda beskrivnings-kategorier om negativa tal går detatt urskilja. En kvalitativ undersökning gjordes av materialet med hjälp av en fenomenografisk analys. Efter analysen gick det att särskilja fem distinkt olika beskrivningskategorier, där alla kategorier, utom den sista, leder till att eleven använder någon form av strategi för att underlätta beräkningar med negativa tal: (1) Minus minus blir plus, (2) Negativa tal förklaras med metaforer, (3) Uträkningar blir lättare om termerna i ett uttryck flyttas om, (4) Negativa tal håller till på andra sidan noll och (5) Upplever en osäkerhet kring negativa tal. Resultatet kan hjälpa matematiklärare förstå de utmaningar elever står inför beräkningar med negativa tal. Exempelvis att eleverna inte tycker det falla sig naturligt eller tillräckligt att beskriva ett tal som negativt, vilket kan bottna i att de är vana att matematik kan förklaras med konkreta exempel. Det är något som matematiklärare borde vara medvetna om. / From an early age we learn to use positive numbers. We can put two numbers together and get a bigger number or subtract a number from another to get a smaller number. For example,young children learn that two plus two apples will be four apples and that if you have three pears and remove two you have one pear left. It is easy to visualize the numbers in front of you. Something that is not as obvious is calculations such four minus five. How can one have four pears and subtract five? Negative numbers rarely appear in everyday problems, but it is still something we are required to learn in school. The purpose of the work described in this report is to examine the upper secondary school pupils' perceptions of negative numbers and as the theoretical framework a phenomenographic approach is used. To find out what different perceptions pupils may have about negative numbers, eight pupils were interviewed. They were all in their second year in upper secondary school and study mathematics at the (Swedish) level 2b. The survey intended to answer the following question: How do upper secondary school students perceive negative numbers and what strategies are made visible in their calculations? What different categories of descriptions about negative numbers can be distinguished? A qualitative study was preformed of the collected material using a phenomenographic analysis. After the analysis, five distinctly different description categories could be distinguished, where all categories, except the last one, results in the student using some form of strategy as help when performing calculations containing negative numbers: (1) Minus minus becomes plus, (2) Negative numbers are explained by metaphors, (3) Calculations become easier if the terms in an expression are moved around, (4) Negative numbers are on the other side zero, and (5) Experience of uncertainty about negative numbers. The results can help math teachers understand the challenges students face when calculating with negative numbers. For example, the pupils do not think it is natural or enough to describe a number as negative, which may be because they are used to mathematics which can beexplained by concrete examples. This is something that math teacher should be aware of.
|
8 |
Hypercomplex Numbers and Early Vector Systems: A HistoryBushman, Nathan 29 September 2020 (has links)
No description available.
|
9 |
Relationer eller operationer - två sidor av samma mynt : Elevers utforskande av en del-helhetsmodell som redskap för att urskilja relationer i additiva strukturerAndersson, Charlotta January 2022 (has links)
Syftet med denna licentiatuppsats är att pröva en specifik strukturell modell som stöd för elevers utforskande av relationer mellan tal i additiva strukturer även när negativa tal är inkluderade. En intention är att resultatet ska kvalificera undervisningen och utgöra ett stöd vid planering och genomförande av en undervisning avseende ekvationer med additiv struktur utifrån algebraisk undervisning som alternativ till att i första hand finna en lösning med stöd av regler och procedurer. Under studien kartlades, kategoriserades och beskrevs elevernas erfarande av fenomenet relationer mellan kvantiteter. I studien prövades även om, och i sådant fall, på vilka sätt en specifik strukturell modell användes av elever under arbetet med att utforska ekvationers struktur. Elever från årskurserna 3, 8 och 9 deltog i semistrukturerade intervjuer samt i forskningslektioner. Tre grupper av lärare samt två forskare planerade, genomförde och reviderade forskningslektionerna baserat på ansatsen learning study. Fenomenografi var den teoretiska ansatsen för de inledande semistrukturerade intervjuerna. Variationsteori och lärandeverksamhet var de teoretiska ramverken för forskningslektionerna där Davydovs program var en inspirationskälla. För att uppnå syftet formulerades följande forskningsfrågor: Vilka skilda sätt att erfara fenomenet relationer mellan kvantiteter kan urskiljas i elevintervjuer? På vilka sätt använder elever en specifik strukturell modell för att utforska ekvationer? Den första forskningsfrågan besvaras i Artikel 1 som visar att elever erfar relationer mellan kvantiteter som någonting som ska beräknas alternativt någonting som ska relateras. Den andra forskningsfrågan besvaras i Artikel 2 som visar att elever använde sig av den i studien prövade specifika strukturella modellen såsom ett formulär att fylla i alternativt som en lärandemodell och redskap för att identifiera del-helhetsstrukturen mellan tal i en ekvation samt för att välja lämplig operation att lösa ut det obekanta talet. Resultaten visar på möjligheten, men även utmaningen, att introducera en algebraisk undervisning med fokus på analys och teoretiska resonemang även för elever med erfarenheter från en alternativ bakgrund. / The aim of the licentiate thesis is to examined a specific structural model in order to support students' exploration of relationships between numbers in additive structures even when negative numbers is included. One intention is that the finding should qualify the teaching and constitute a support when plan and implement teaching regarding equations with additive structure based on algebraic teaching as an alternative to primarily finding a solution with support of rules and procedures. During the study, the students' experiences of the phenomenon relationships between quantities was examined, categorized and described. In the study it was also examined whether and, if so, in what ways a specific structural model was used by students during the work of exploring the structure of equations. Students from grades 3, 8 and 9 participated in semi-structured interviews and in research lessons. Three groups of teachers and two researchers planned, conducted and revised the research lessons based on the learning study approach. Phenomenography was the theoretical approach for the initial semi-structured interviews. Variation theory and learning activity were the theoretical frameworks for the research lessons where Davydov's curriculum was a source of inspiration. In order to achieve the aim, the following research questions were formulated: 1) What different ways of experiencing the phenomenon of relationships between quantities can be discerned in student interviews? 2) In what ways do students use a specific structural model to explore equations? The first research question is answered in Article 1, which shows that students experience relationships between quantities as something to be calculated or something to be related. The second research question is answered in Article 2, which shows that students used the specific structural model examined in the study as a form to fill in alternatively as a learning model and a tool to identify the part-whole structure between numbers in an equation and to choose appropriate operation to find the unknown number. The findings show the possibility, but also the challenge, of introducing an algebraic teaching with a focus on analysis and theoretical reasoning also for students with experiences from an alternative background.
|
10 |
O jogo como ferramenta no trabalho com números negativos: um estudo sob a perspectiva da epistemologia genética de Jean Piaget / Games as a tool to deal with negative number: an studyon the genetic epistemology approach of jean PiagetKimura, Cecilia Fukiko Kamei 09 November 2005 (has links)
Made available in DSpace on 2016-04-27T16:57:19Z (GMT). No. of bitstreams: 1
tese_cecilia_fukiko_kimura.pdf: 1205177 bytes, checksum: 0a0351df0aa3c85bad823ec8d55d2d51 (MD5)
Previous issue date: 2005-11-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The central theme of this work is the structuralism construtivist, in that detached the importance of the mathematical structure for the acquisition of the logical-mathematical knowledge. We began our study presenting an abbreviation summary on the life and work of Piaget, the theory of the knowledge exposing the theoretical arguments of the rationalism (Leibniz), of the empiricism (Locke), of the interacionismo (Kant) and the constructivism piagetian. The approached themes show the different forms of understanding the origin of the knowledge. Due to your importance for our work made a study about the structuralism piagetiano and mathematical structuralism. For the fact of the structuralism piagetiano to present a dynamic character related with the activity, organization, transformation, action coordination and construction looked for a model to assist her/it those requirements. In this sense, we opted for the study of the game in the vision piagetian, because he comes as an appropriate model of the algebraic structures or of the Mathematics in general. Thus, for understanding the shape to represent those models we made a study on semiotics in Peirce and Piaget, because the game presents a direct connection with the representation. In our work we presented two studies: the first was an exploratory study with semi-structured questionnaire and, in the second, we applied the game of the chess board with activities on the negative numbers; the activities were developed with ten teachers of public school of the state net of teaching that act in the 6a. series of the Fundamental Teaching. The study concludes that the game is a suitable tool, as it presents the structure of the negative numbers as well as it offers and different representation forms more clearly / O tema central deste trabalho é o estruturalismo construtivista, em que destacamos a importância da estrutura matemática para a aquisição do conhecimento lógico-matemático. Começamos nosso estudo apresentando um breve resumo sobre a vida e obra de Piaget, a teoria do conhecimento expondo os argumentos teóricos do racionalismo (Leibniz), do empirismo (Locke), do interacionismo (Kant) e o construtivismo piagetiano. Os temas abordados mostram as diferentes formas de compreender a origem do conhecimento. Devido à sua importância para o nosso trabalho fizemos um estudo sobre o estruturalismo piagetiano e estruturalismo matemático. Pelo fato de o estruturalismo piagetiano apresentar um caráter dinâmico relacionado com a atividade, organização, transformação, coordenação de ação e construção buscamos um modelo que atendesse a esses requisitos. Neste sentido, optamos pelo estudo do jogo na visão piagetiana, pois se apresenta como um modelo adequado das estruturas algébricas ou da Matemática em geral, assim para representar esses modelos fizemos um estudo sobre semiótica em Peirce e Piaget, pois o jogo apresenta uma ligação direta com a representação. No nosso trabalho apresentamos dois estudos: no primeiro, um estudo exploratório com questionário semi-estruturado e, no segundo, aplicamos o jogo do tabuleiro de xadrez com atividades sobre os números negativos; as atividades foram desenvolvidas com dez professores de escola pública da rede estadual de ensino que atuam na 6a. série do Ensino Fundamental. O estudo conclui que o jogo é uma boa ferramenta, pois apresenta mais claramente a estrutura dos números negativos e oferece diferentes formas de representação
|
Page generated in 0.05 seconds